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Abstract
Key message  Large genetic improvement can be achieved by simultaneous genomic selection for grain yield and 
protein content when combining different breeding strategies in the form of selection indices.
Abstract  Genomic selection has been implemented in many national and international breeding programmes in recent years. 
Numerous studies have shown the potential of this new breeding tool; few have, however, taken the simultaneous selection 
for multiple traits into account that is though common practice in breeding programmes. The simultaneous improvement in 
grain yield and protein content is thereby a major challenge in wheat breeding due to a severe negative trade-off. Accordingly, 
the potential and limits of multi-trait selection for this particular trait complex utilizing the vast phenotypic and genomic 
data collected in an applied wheat breeding programme were investigated in this study. Two breeding strategies based on 
various genomic-selection indices were compared, which (1) aimed to select high-protein genotypes with acceptable yield 
potential and (2) develop high-yielding varieties, while maintaining protein content. The prediction accuracy of prelimi-
nary yield trials could be strongly improved when combining phenotypic and genomic information in a genomics-assisted 
selection approach, which surpassed both genomics-based and classical phenotypic selection methods both for single trait 
predictions and in genomic index selection across years. The employed genomic selection indices mitigated furthermore the 
negative trade-off between grain yield and protein content leading to a substantial selection response for protein yield, i.e. 
total seed nitrogen content, which suggested that it is feasible to develop varieties that combine a superior yield potential 
with comparably high protein content, thus utilizing available nitrogen resources more efficiently.

Introduction

The implementation of genomic selection in many national 
and international plant breeding programmes in recent years 
(Guzmán et al. 2016; Lado et al. 2016; Michel et al. 2016; 
Cericola et al. 2017; Belamkar et al. 2018; Juliana 2018) 
highlights the potential of this new breeding tool for variety 
development and accelerating the genetic improvement in 
crop plants. The merit of employing genomic predictions 
has been frequently tested by cross-validation, but also 
across families and years taking genomic relationship and 
genotype-by-environment interaction into account (Gezan 
et al. 2017; Ben Hassen et al. 2018; Kristensen et al. 2018; 
Huang et al. 2018; Pembleton et al. 2018). These factors are 
highly relevant to enable an adequate comparison with phe-
notypic selection in conventional breeding schemes (Sallam 
and Smith 2016; Song et al. 2017; Belamkar et al. 2018)and 
optimizing resource allocations in hybrid and line variety 
breeding programmes (Longin et al. 2015; Marulanda et al. 
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2016). Various prediction model extensions have further-
more been proposed for such genomic breeding approaches 
including the modelling of marker-by-environment inter-
action (Schulz-Streeck et al. 2013; Bernal-Vasquez et al. 
2017;Pérez-Rodríguez et al. 2017), usage of prior informa-
tion about genotype performance, e.g. from preliminary 
yield trials (Endelman et al. 2014; Michel et al. 2017) or 
the inclusion of non-additive effects (Philipp et al. 2016; 
Akdemir et al. 2017; Jiang et al. 2017, 2018). Furthermore, 
multi-trait prediction models have been recommended for 
cases in which prior information from a correlated trait is 
earlier available or easier to obtain than the main trait of 
interest (Jia and Jannink 2012; Fernandes et al. 2017; Hayes 
et al. 2017; Schulthess et al. 2018).

The idea of conducting a simultaneous selection for sev-
eral traits of interest readily suggests itself for the latter class 
of prediction models, while converting the specific goals of 
a breeding programme as well as the desired response to 
selection for each trait into selection indices aims to maxi-
mize the net merit and might significantly ease selection 
decisions (Bauer and Léon 2008; Schulthess et al. 2016). 
Such methods can thus be useful to conduct a simultane-
ous selection for major agronomic traits like grain yield and 
protein content which poses a major challenge in breeding 
wheat due to frequently observed strong negative correla-
tion between both traits (Simmonds 1995). This trade-off 
renders the simultaneous improvement in both traits com-
plicated, and given that the protein content is one important 
determinant of baking quality (Gabriel et al. 2017) breeders 
rather aimed to shift this undesirable correlation by increas-
ing grain yield while maintaining the protein content in the 
past (DePauw et al. 2007). The employment of an index to 
support selection decisions aims consequently to translate 
the underlying mechanics of such an approach into a more 
accessible quantity. The necessary economic weights are 
however difficult to derive and can, e.g., be set according 
to the pricing for the involved traits (Haile et al. 2018) or to 
values that seem to fit the current breeding goals of a given 
programme (Heffner et al. 2011).

The protein yield has been suggested as one promising 
alternative selection criterion that specifically targets the 
protein content/grain yield trade-off as it is equivalent to the 
total seed nitrogen yield, which has also been systematically 
improved by breeding in the last decades (McNeal 1982; 
Simmonds 1995; Acreche and Slafer 2009; Cormier et al. 
2013). Another related aspect is the observation that some 
genotypes deviate from the negative trend seen between 
grain yield and protein content, which represent thus highly 
appreciated outliers that possess a comparably higher protein 
content as would be expected by their respective grain yield. 
The residuals from this linear regression of protein content 
on grain yield line have become widely known as grain pro-
tein deviation (GPD) (Monaghan et al. 2001) that have been 

generalized in the regression–residual method proposed by 
Hänsel (2001) and can be seen as a method to derive yield-
adjusted protein content estimates. These adjusted pheno-
typic breeding values have already shown some potential 
for mitigating the above-mentioned negative trade-off when 
used in a recurrent selection scheme (Arief et al. 2010). For 
this purpose, the grain protein deviations can be calculated 
on a plot basis by either regressing non-adjusted plot values 
of protein content on grain yield and deriving the residuals 
(Monaghan et al. 2001) or firstly fitting a bivariate model for 
additionally taking design effects into account when estimat-
ing the necessary regression coefficients before conducting 
a multi-environment analysis (Rapp et al. 2018; Thorwarth 
et al. 2018). The simplest method is though given by calcu-
lating the residuals from the regression of protein content 
on grain yield based on environmental means (Oury and 
Godin 2007).

Although using at least some of these concepts is com-
mon practice in many wheat breeding programmes to con-
duct a simultaneous selection of grain yield and protein 
content, they have not yet been tested in combination with 
various prediction model extensions and in the presence 
of genotype-by-environment interactions across multiple 
years that breeders have to face both in conventional and 
genomic wheat breeding. The aims of this study were thus 
(i) to compare different concepts for achieving a simultane-
ous response to selection for grain yield and protein content 
and (ii) investigate the potential of these concepts in the 
scope of genotype-by-environment interaction by a forward 
prediction across multiple years in a applied wheat breeding 
programme.

Materials and methods

Plant material and phenotypic data

A population of 1114 F4:6 generation and double haploid 
winter wheat breeding lines (Triticum aestivum L.) derived 
from more than 600 crosses containing 1–17 individuals per 
family was analysed in this study. All lines were developed in 
an applied breeding programme and tested in multi-environ-
ment trials under Central and Eastern European conditions 
from 2010 to 2016. Grain yield (dt ha−1), protein content 
(%), and protein yield (dt ha−1) were assessed in unbalanced 
series of 4–24 multi-environment trials each year depend-
ing on the trait. The according phenotypic information from 
590 of these lines coming from preliminary yield trials 
2012–2015 was additionally included in the analysis and was 
mostly comprised of unreplicated performance assessments 
in one location, and year before, multi-environment trials 
were conducted. Notwithstanding, replicated check varieties 
were tested along with unreplicated earlier generation lines 
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in preliminary yield trials allowing to correct for spatial field 
trends according to standard procedure in plant breeding.

Statistical analysis of phenotypic data

The phenotypic data were analysed in two stages, where 
each individual yield trial was firstly analysed with various 
models correcting for row and/or column effects as well as 
autoregressive variance–covariance structures of the residu-
als (Burgueño et al. 2000). The best fitting model was cho-
sen by Akaike´s information criterion (AIC) and used to 
calculate best linear unbiased estimates (BLUE) as well as 
the repeatability by h2 = �2

G
∕(�2

G
+

1

2
MVD) , where �2

G
 des-

ignates the genetic variance and MVD the mean variance of 
a difference of the BLUEs (Piepho and Möhring 2007). Tri-
als with a heritability larger than 0.3 were forwarded to the 
second stage, where an across trial analysis was conducted 
using a linear mixed model of the form:

where yij are the BLUEs from the first stage, � is the grand 
mean, and gi is the effect of the ith line that was modelled as 
random with � ∼ N

(

0, ��2
G

)

 to estimate the genetic variance 
and as fixed to derive BLUEs for further genomic analyses. 
The effect of the jth trial tj was fixed, while the effect eij 
that incorporated both the trial-by-line interaction variance 
and the residual effect was assumed random and followed a 
normal distribution with � ∼ N

(

0, ��2
e

)

 . All trials conducted 
across 2010–2012 were analysed together to create a single 
dataset of 415 lines used for training genomic prediction 
models, while the each year 2013–2016 was analysed sepa-
rately to create four unique subpopulations of 164–185 lines 
that were used to validate these models. The subpopulations 
were unique in the sense that none of the lines occurred 
twice in different years and each line was assigned to the 
year of its first testing in multi-environment trials. All phe-
notypic analyses were conducted using the statistical pack-
age ASReml 3 (VSN International 2015) for the R program-
ming environment (R development core team 2018).

Genotypic data and population structure

DNA was extracted following the protocol by Saghai-
Maroof et al. (1984) using leaf samples that were collected 
from F4:5 or doubled haploid lines by sampling a minimum 
of ten plants per line during early summer. All lines were 
genotyped using the DarT genotyping-by-sequencing (GBS) 
approach. Quality control was applied by filtering out mark-
ers with a call rate lower than 90%, a minor allele frequency 
smaller than 0.05, and more than 10% of missing data. Miss-
ing data of the remaining 7.3 K SNP markers were chromo-
some wise imputed by the missForest algorithm following 
Stekhoven and Bühlmann (2012), resulting on average in a 

(1)yij = � + gi + tj + eij

coverage of one marker every 0.97 cM. The same marker 
data were again used for training genomic selection models 
with F4:6 lines. The minor change in average heterozygosity 
was expected to introduce a small error which was neverthe-
less seen to be acceptable considering the cost–benefit ratio 
of re-genotyping all lines in later generations. The popula-
tion structure with the corresponding membership of each 
line to its subpopulation was investigated with a principal 
component analysis (Online Resource 1).

Comparison of genomics‑based, genomics‑assisted, 
and phenotypic selection

The available genotypic and phenotypic data of the train-
ing dataset 2010–2012 and the four unique subpopulations 
2013–2016 were combined and initially employed for inves-
tigating the merit of various prediction model extensions for 
genomic selection in early generations. The kinship between 
lines was for this purpose estimated by the genomic relation-
ship matrix, which was computed according to the method 
described by Endelman and Jannink (2012):

where � is a centred N × M marker matrix of the i lines 
with Wik = Zik + 1 − 2pk and pk being the allele frequency at 
the kth locus. The derived variance–covariance matrix was 
used to fit genomic best linear unbiased prediction models 
(GBLUP) and derive genomic estimated breeding values 
(GEBV):

where y is an N × 1 vector of BLUEs obtained in the phe-
notypic analysis and � is an N × 1 vector of additive effects 
with � ∼ N

(

0,�σ2
G

)

 and the additive genetic variance �2
G
 

as well as its corresponding random effect design matrix 
� . The residual effect � followed a normal distribution 
with � ∼ N

(

0, ��2
e

)

 , and the fixed effect of the grand mean 
was contained in the vector � and its corresponding design 
matrix �.

The genomic estimated breeding value for the ith line was 
defined by GEBVi = � + gi with the additive genetic effect 
gi and the facultative constant � designating the grand mean.

Given that genetic fingerprints are obtained at a breeding 
stage when preliminary yield trials are conducted in parallel 
(Guzmán et al. 2016; Gaynor et al. 2017), it could be worth-
while to integrate such early phenotypic information into 
genomic prediction models and in this way exploit the 
genetic relationship between the early and advanced genera-
tion lines to strengthen the predictiveness of preliminary 
yield trials (Endelman et al. 2014; Müller et al. 2015; Michel 
et al. 2017). This would give rise to a genomics-assisted 
selection in contrast to the genomics-based selection without 

(2)� = ��T∕2�
(

pk − 1
)

pk

(3)� = �� + �� + �
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any prior phenotypic information from the selection candi-
dates. Model (3) was accordingly modified for this purpose 
with preliminary yield trials having a distinct fixed year 
effect from the years of multi-environment trials. However, 
it can be expected that the data quality from preliminary 
yield or observation trials will oftentimes be considerably 
low, thus introducing an appropriate weighting might be 
beneficial for achieving an optimal prediction ability. Het-
erogeneous residual variances were thus integrated into (3) 
by assigning a common residual variances to multi-environ-
ment trials that was though different from the one given to 
preliminary yield trials 

∑

e = diag
�

�2
eMET

, �2
ePYT

�

 where �2
eMET

 
and �2

ePYT
 are the residual variances for multi-environment 

trials and the respective preliminary yield trial.
All models were examined in a forward prediction of 

lines tested in multi-environment trials 2013–2016 using 
300 randomly sampled lines from the years 2010–2012 as 
training population for genomic-based selection and pre-
liminary yield trials 2012–2015 for phenotypic as well as 
genomic-assisted selection (Fig. 1). A set of 100 unique lines 
was randomly sampled 30 times from each year of multi-
environment trials 2013–2016, while the set sampled from 
preliminary yield trials was identical with the validation 
population, which finally resulted in 120 training by vali-
dation population combinations. All models for genomics-
based and genomics-assisted selection were fitted with the 
mixed model package sommer (Covarrubias-Pazaran 2016) 
for R (R development core team 2018).

Concepts for a simultaneous selection of grain yield 
and protein content

A strong negative correlation between grain yield and protein 
content could be observed with the available data in the study 
at hand (Fig. 2). Genotypes that deviate from this negative 
trend and constitute the highly appreciated outliers in breeding 
programmes were firstly identified by utilizing grain protein 
deviations that aim to point out genotypes with comparably 
high protein content at a given yield level (Monaghan et al. 
2001). The simplest method for deriving these grain protein 
deviations by calculating the residuals from the regression of 
protein content on grain yield based on environmental means 
(Oury and Godin 2007) was chosen in this study. Hence, 
BLUEs were used in this study to obtain the residuals from a 
regression of protein content on grain yield (Fig. 2a–c):

with �� being the observed values for protein content, �̂� the 
protein content values predicted by the regression on grain 
yield, �� the observed grain yield, and finally with � and � 
being the estimates for the intercept and regression coeffi-
cient, respectively. Changing the role of protein content and 
grain yield in the equation above brings forth grain yield 
deviations (Rapp et al. 2018) that were also considered as a 
viable selection criterion:

with �̂� being the predicted grain yield values from a regres-
sion of grain yield on protein content (Fig. 2d–f), and all 
other designations remaining constant. A closely related 
concept is the usage of a selection index of the form:

(4)��� = �� − �̂� = �� − (� + �g�) = �� − � − ���

(5)��� = �� − �̂� = �� − (� + ���) = �� − � − ���

(6)� = �−1�

Fig. 1   Forward prediction for 
the subpopulations tested in 
2013–2016 (shaded) using lines 
tested in multi-environment 
trials 2010–2012 (blue) for 
genomics-based selection and 
lines from preliminary yield 
trials (red) for phenotypic selec-
tion (color figure online)
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where � are the index weights, � is a vector of the index 
weights given by � =

(

aPC, aGY
)T , and �−1 is the inverse of 

the phenotypic variance–covariance matrix:

where �2
PPC

 and �2
PGY

 are the phenotypic variance of the pro-
tein content and grain yield, respectively, and values �P on 
the off-diagonal genetic represent the covariance between 
both traits. Aiming to improve protein content and holding 
grain yield stable, the index weights were chosen as aPC = 1 
and aGY = 0 resulting in a vector of index weights given by:

and a restriction index of the form:

where �� and �� were again the observed values for protein 
content and grain yield, thus highlighting the close connec-
tion between grain protein deviations as calculated in this 
study and a restriction index, which are in fact identical aside 
from the regression intercept a that has though no influence 
in the ranking of line performances. Notice that the selec-
tion index (6) with the described index weights � is strongly 
related to a desired gain index in the form of a restriction 
index (Pesek and Baker 1969, 1970); however, the latter fea-
tures a genetic correlation matrix, thus driving the genetic 
response to selection, while (6) and consequently the clas-
sical grain protein deviations would drive the phenotypic 
response to selection. Grain protein deviations represent thus 
a criterion for selecting high-protein lines with acceptable 
yield potential, while grain yield deviations and the accord-
ing index

seemed more suitable for developing high-yielding varie-
ties, while maintaining the protein content (Fig. 2). A rather 
different concept that has been suggested for achieving a 
simultaneous gain for both protein content and grain yield 
is a selection based on protein yield (Simmonds 1995), 
which measures the total harvested seed nitrogen content. 
Regarding the isolines of equal protein yield (Fig. 2), it is 
clear that some lines possess a high protein yield due to high 
grain yield, whereas others realize it with elevated protein 
content, which results in a positive correlation with both 
protein content and, generally a stronger one, grain yield 
(Fig. 2m–o). Like the grain protein deviations, the protein 
yield is furthermore associated with nitrogen-use efficiency-
related traits (Cormier et al. 2013) and was thus seen as a 
further important target criterion in this study.

(7)

(

�2
PPC

�P
�P �2

PGY

)

(8)� =

(

1

−�P∕�
2
PGY

)

=

(

1

−�

)

(9)�������� = �� − ���

(10)�������� = �� − ���

The possibility to combine both concepts was subsequently 
explored by utilizing the deviations from a linear regression of 
protein yield on either grain yield (Fig. 2g–i) or protein content 
(Fig. 2j–l). Lines that show a high performance, i.e. positive 
deviation, in the former exhibit a high protein yield due to high 
protein content, and positive deviations in the latter indicate a 
superior protein yield caused by grain yield. Both cases were 
again expressed in the form of restriction indices:

and

with �� protein yield, �� for grain yield, �� for protein con-
tent, and � being again the index weight for either grain yield 
or protein content and can be again interpreted as the regres-
sion coefficient. The first index ������� will be designated 
as the high yield index, while the second index ������� is 
referred to as the high protein index in this study in order to 
differentiate them from the other two indices �������� and 
�������� . All indices were calculated based on phenotypic 
data and used for phenotypic selection with preliminary 
yield trial. Notwithstanding, the above-described concepts 
are representing steps towards a simultaneous selection of 
grain yield and protein content; it was argued that in the case 
of genomic selection, the genomic correlation (de los Cam-
pos et al. 2015; Gianola et al. 2015) between traits has to be 
taken into account especially as the genomic and genetic cor-
relation converge if markers adequately capture all genetic 
information. Hence, using a genomic variance–covariance 
matrix instead of a phenotypic variance–covariance matrix 
might be more suitable to drive the response to selection 
in an index selection, and several genomic selection indi-
ces were developed by using the same methodological 
approaches as described above:

where � are the genomic index weights, �−1 is in this case 
the inverse of the genomic variance–covariance matrix, and 
� is again the vector of the desired gains with � = (1, 0)T in 
order to improve the primary trait and holding the secondary 
trait stable. The matrix � was for simplicity derived from 
the Pearson correlation between the GEBVs of the involved 
traits in order to test the computational least demanding 
option suited to large datasets generated in applied breed-
ing programmes:

where �2
GEBVi

 and �2
GEBVj

 are the variance of the GEBVs for 
traits involved in the respective index, and �GEBV on the off-
diagonal genetic represents the covariance between both 

(11)������� = �� − ���

(12)������� = �� − ���

(13)� = �−1�

(14)���� =

(

�2
GEBVi

�GEBV
�GEBV �2

GEBVj

)
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traits. The according genomic selection indices can be as 
well interpreted in terms of deviations from the regression 
line; though in contrast to the phenotypic indices, they are 
representing residuals from a regression of the GEBVs from 
grain yield, protein content, and protein yield against each 
other. The presented methods for a simultaneous selection 
of grain yield and protein content were finally tested with 
the models for phenotypic, genomics-based, and genomics-
assisted selection in a forward prediction across years as 
described in the previous section (Fig. 1).

Breeding strategies and selection gain

The prediction accuracy of phenotypic selection and all 
genomic models was assessed by the correlation between 
genomic estimated breeding values as well phenotypic 
records from preliminary yield trials with the observed 
phenotypic values for the agronomic traits and the selection 
indices in the validation populations divided by the square 
root of the heritability. For this purpose, a genomic herit-
ability was estimated for each trait and resampling of the 
validation populations in 2013–2016 by

where �2
P
 is the phenotypic variance of investigated trait 

and �2
e
 the error variance obtained from a GBLUP model 

that only contained phenotypic data from the validation 
population. Aside from assessing the prediction accuracy, 
it was of further interest to investigate how these estimates 
would translate into a response to selection across years. 
The 10–50% best performing lines among the 100 selec-
tion candidates of each resampling step were therefore 
selected according to grain yield, protein content, protein 
yield as well as the above-described phenotypic and genomic 
selection indices. For this purpose, the predicted average 

(15)h2
GEN

= (�2
P
− �2

e
)∕�2

p

performance of the selected fraction of lines for each indi-
vidual trait was estimated by:

where �i is the average trait performance of an entire valida-
tion population, �Seli

 is the average trait performance of the 
selected lines, and h2

GENi
 is the genomic heritability of the ith 

trait. Selection decisions were subsequently verified by the 
average line performance across the multi-environment trials 
in the validation year by:

where RReli
 is the predicted relative response to selection 

for the ith trait, �i is the population mean of the validation 
population in the validation year, and 𝜇̂Seli

 is the predicted 
mean of the selected population of best performing lines. 
Although selection decisions were based on various meth-
ods, the main interest was the assessment of the direct or 
indirect response to selection for grain yield, protein con-
tent, and protein yield. Finally, a combined breeding strat-
egy was tested by splitting selection decisions of the 10% 
best performing lines into two halves, with the first half of 
lines (5%) being selected with a protein content index and 
the other half with a grain yield index resulting in a broad 
range for all involved traits among the selected candidates. 
Combining both strategies corresponded thus to an evalua-
tion of genomic breeding when developing both high-protein 
genotypes with acceptable yield potential as well as high-
yielding varieties with sufficient protein content that is com-
mon in wheat breeding for offering a portfolio of varieties 
from multiple quality classes to farmers.

Results

Models for genomics‑assisted line breeding

The prediction accuracy for grain yield using the phenotypic 
data from preliminary yield trials was low (r = 0.25) and 
was vastly surpassed by the one for genomics-based selec-
tion (r = 0.45) (Table 1). The inverted situation was though 
observed for the highly heritable protein content where 
phenotypic selection had a prediction accuracy of r = 0.60, 
while a genomics-based selection strategy could merely 
achieve r = 0.53. A large improvement could be achieved 
by including prior information from preliminary yield trials 
into the prediction models, which resulted in a genomics-
assisted selection with an average prediction accuracy of 
r = 0.47 for grain yield that surpassed the prediction accu-
racy for phenotypic selection by 88%. Similar results were 
obtained for the protein content, where the employment of 

(16)𝜇̂Seli
= 𝜇i + h2

GENi

(

𝜇Seli
− 𝜇i

)

(17)RReli
=
(

𝜇̂Seli
− 𝜇i

)

∕𝜇i

Fig. 2   Illustration of the concepts for a simultaneous selection of 
grain yield and protein content on the 415 lines from 2010 to 2012 
that were used as a training population for genomic prediction. The 
overall population averages for grain yield, protein content, and pro-
tein yield are indicated by the dashed lines, while isolines of equal 
protein yield are represented by solid grey lines. The concepts include 
selections based on grain protein deviations (a–c), grain yield devia-
tions (d–f), high protein index (g–i), high yield index (j–l), and the 
protein yield (m–o). The 10% best performing lines according to each 
method are highlighted in colour, and their population average is dis-
played by a cross, which corresponds to the respective selection dif-
ferential ΔS for grain yield (GY), protein content (PC), and protein 
yield (PY). Regression lines display the negative correlation between 
grain yield and protein content (r = − 0.47) and the positive correla-
tion between protein yield and grain yield (0.53) as well as protein 
content (r = 0.11) (color figure online)

◂



1752	 Theoretical and Applied Genetics (2019) 132:1745–1760

1 3

genome-wide marker data to improve the phenotypic data 
from preliminary yield trials gave an accuracy of r = 0.69, 
which surpassed the best previous method, i.e. phenotypic 
selection by 15%.

Multi‑trait selection for grain yield and protein 
content

The phenotypic and genomic prediction models were sub-
sequently assessed for their potential in achieving the goal 
of conducting a simultaneous selection for grain yield and 
protein content. For this purpose, the four restriction indices 
as well as protein yield were subsequently tested in a for-
ward prediction for testing their merit in presence of strong 
genotype-by-environment interaction when predicting across 
years as well as the influence of genetic relationships when 
predicting across subpopulations derived from sets of dif-
ferent crosses. Phenotypic selection with protein yield data 
from preliminary yield trials and genomics-based selection 
methods had a positive prediction accuracy for both protein 

content and grain yield (Table 1). It was, moreover, evident 
that phenotypic selection with restriction indices and phe-
notypic variance–covariance matrix was far from optimal 
to target the protein content/grain yield trade-off as, e.g., 
the grain protein deviation still showed a negative corre-
lation of r = − 0.37 with yield which was merely slightly 
higher than when directly using the protein content for 
prediction (rPC;GY = − 0.38). Additionally, all investigated 
restriction indices had a lower prediction accuracy when 
aiming to improve the protein yield by phenotypic selection 
in preliminary yield trials in comparison with genomics-
based selection (− 94%), which expended even more for a 
genomics-assisted selection approach (− 105%). Genomics-
assisted selection based on protein yield per se was further-
more superior than using restriction indices both in an early 
generation phenotypic selection or genomic-assisted selec-
tion. The difference in accuracy with a genomics-assisted 
selection on protein yield per se and the genomic selection 
indices was relatively large both for the grain protein devia-
tions (− 50%) and grain yield deviations (− 49%) indices. 

Table 1   Comparison between 
different selection methods for 
a simultaneous selection of 
yield and quality in terms of 
prediction accuracy across years 
for grain yield (GY), protein 
content (PC), protein yield 
(PY), and the restriction indices 
for a simultaneous selection of 
protein content and grain yield

Prediction of the indices was based on a genomic variance–covariance matrix for genomics-based and 
genomics-assisted selection, while phenotypic selection and validation was based on a phenotypic variance 
covariance matrix
a Restriction index for holding grain yield stable and increasing the protein content
b Restriction index for holding protein content stable and increasing the grain yield
c Restriction index for holding grain yield stable and increasing the protein yield
d Restriction index for holding protein content and increasing the protein yield

Predictor trait Method Prediction accuracy

GY PC PY IndexGPD IndexGYD IndexHP IndexHY

Grain yield Phenotypic 0.25 − 019 0.10 − 0.10 0.23 − 0.12 0.15
Genomics-based 0.45 − 0.37 0.12 − 0.23 0.34 − 0.24 0.28
Genomics-assisted 0.47 − 0.41 0.10 − 0.28 0.35 − 0.29 0.23

Protein content Phenotypic − 0.38 0.60 0.20 0.56 − 0.10 0.54 − 0.03
Genomics-based − 0.38 0.53 0.12 0.48 − 0.14 0.45 − 0.10
Genomics-assisted − 0.50 0.69 0.16 0.62 − 0.18 0.59 − 0.11

Protein yield Phenotypic 0.00 0.20 0.20 0.26 0.17 0.21 0.13
Genomics-based 0.18 0.13 0.33 0.25 0.32 0.22 0.30
Genomics-assisted 0.13 0.19 0.36 0.30 0.31 0.26 0.29

Indexa
GPD Phenotypic − 0.37 0.58 0.19 0.55 − 0.07 0.52 − 0.03

Genomics-based − 0.17 0.41 0.22 0.43 0.05 0.39 0.07
Genomics-assisted − 0.34 0.60 0.24 0.58 − 0.03 0.55 0.01

Indexb
GYD Phenotypic 0.22 − 0.14 0.10 − 0.06 0.22 − 0.09 0.15

Genomics-based 0.30 − 0.08 0.23 0.05 0.33 0.01 0.28
Genomics-assisted 0.21 0.00 0.24 0.11 0.30 0.08 0.25

Indexc
HP Phenotypic − 0.30 0.53 0.22 0.52 − 0.02 0.48 0.01

Genomics-based 0.00 0.31 0.33 0.39 0.21 0.36 0.22
Genomics-assisted − 0.08 0.41 0.35 0.48 0.19 0.44 0.20

Indexd
HY Phenotypic 0.25 − 0.16 0.11 − 0.07 0.25 − 0.11 0.17

Genomics-based 0.26 0.02 0.32 0.16 0.35 0.13 0.32
Genomics-assisted 0.26 0.02 0.32 0.15 0.36 0.12 0.32
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The high protein and yield indices showed on the other hand 
much more subtle difference with a prediction of protein 
yield per se that amounted to − 3% and − 15%, respectively. 
The high protein index was furthermore accompanied by 
a strong adjustment for grain yield (r = − 0.08) in com-
parison with predictions based on protein content per se 
(rPC;GY = − 0.50), but still achieved an adequate prediction 
accuracy for protein content (r = 0.41) that was though again 
smaller than by pure genomics-assisted selection on protein 
content (r = 0.69). Forward prediction with the complemen-
tary high yield index resulted analogously in a comparably 
low accuracy for yield (r = 0.26) and protein yield (r = 0.32) 
due to the generally lower prediction accuracy for grain yield 
(r = 0.47) as well as the large negative trade-off with the 
protein content (rGY;PC = − 0.41).

This large trade-off was also reflected by the response 
to genomic-assisted selection for grain yield at a selection 
intensity of 10% which amounted to 2.0%, which was albeit 
associated with a severe loss in quality by reducing protein 
content relatively by − 2.3% (Fig. 3a). Selecting with the 
high yield index was able to prevent this loss by keeping the 
protein content stable (ΔPC = 0.5%) and at the same time 

giving a large response for grain yield (ΔGY = 1.2%) and 
protein yield (ΔPY = 1.1%) (Fig. 3b). Response to genom-
ics-assisted selection with the grain yield deviations gave 
similar results for grain yield (ΔGY = 1.0%); the selection 
response for protein content (ΔPC = − 0.1%) and protein 
yield (ΔPY = 0.5%) was though markedly smaller (Online 
Resource 2). The response for genomics-assisted selection 
was furthermore much higher than the one from phenotypic 
selection when aiming at the selection of high-yielding 
lines and holding the protein content stable, and this clear 
difference could likewise be observed for a breeding strat-
egy that aimed to increase the protein content and preserve 
an acceptable yield potential (Fig. 3d). The higher predic-
tion accuracy of genomics-assisted selection (r = 0.69) in 
comparison with phenotypic selection (r = 0.60) for the 
protein content also inflated the trade-off with grain yield 
and hampered the effectiveness of the according restric-
tion indices (Table 1); despite the adjustment, a negative 
response to grain yield was still present using grain pro-
tein deviation (ΔGY = − 1.4%) as well as the high protein 
index (ΔGY = − 0.3%) at a selection intensity of 10%. How-
ever, the response to protein yield was still higher with 

Fig. 3   Response to selection for grain yield, protein content, and pro-
tein yield based on grain yield per se (a) and the high yield index (b); 
protein content (c) per se and the high protein index (d) as depend-

ant variables in genomic-assisted (closed circles) forward predictions 
and for phenotypic selection with preliminary yield trial data (open 
circles)
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genomic-assisted selection (ΔPY = 1.1%) than by phenotypic 
selection (ΔPY = 0.4%).

Complementing breeding strategies with genomic 
selection indices

The restriction indices that achieved a genetic improvement 
for the protein content or grain yield and at the same time 
hold the other trait stable were largely independent from 
each other, which could be confirmed by the low predic-
tion abilities when, e.g., predicting grain yield deviations 
by grain protein deviations (Table 1). Hence, both breed-
ing strategies are complementary and in order to develop 
a portfolio of varieties from multiple quality classes with 
acceptable yield potential, the parallel usage of the respec-
tive selection indices and the overall response to selection 
by such a strategy were finally investigated. For this purpose, 
half of the 10% best performing lines were selected with an 
index aiming at a superior yield potential, while maintain-
ing the protein content and the other half with the analogous 
index for identifying lines that combine high protein content 
with an acceptable grain yield. Using data from preliminary 
yield trials for coming to such a combined selection decision 
with grain protein and yield deviations gave some positive 
response to protein content (ΔPC = 2.3%) and protein yield 
(ΔPY = 0.1%) led though on average to reduction in grain 
yield (ΔGY = − 1.9%) (Fig. 4a).

Notice that the usage of grain protein and yield devia-
tions as well as the high protein and yield indices in a 

phenotypic selection based on data from preliminary yield 
trials achieved merely a marginal reduction in the protein 
content/grain yield trade-off, which was also evident by 
regarding the prediction ability for these indices in a phe-
notypic selection (Table 1). On the other hand, large dif-
ferences between the different indices and concepts were 
observed in genomics-based and genomic-assisted selection, 
in which a combination of high yield and protein indices 
gave a +47% higher relative response to selection for protein 
yield that was accompanied by a threefold higher response 
to grain yield in comparison with grain protein and yield 
deviations (Fig. 4b).

Discussion

This study concentrated on different breeding methods to 
achieve a simultaneous response to selection for grain yield 
and protein content in conventional and genomics wheat 
breeding. The merit of various prediction models for an early 
generation genomic and phenotypic selection was firstly 
compared among each other. These methods were subse-
quently used to assess the potential and limits of different 
concepts for addressing the well-known negative trade-off 
between grain yield and protein content, which substantially 
influences the overall response to selection as revealed in the 
forward prediction across multiple years in the investigated 
applied wheat breeding programme.

Fig. 4   Mean and standard deviations of the response to selection for 
grain yield (GY), protein content (PC), and protein yield (PY) for 
phenotypic, genomic-based and genomics-assisted selection with 
grain yield and protein deviations (a) as well as high yield and protein 
indices (b) obtained from replicated forward predictions of 2013–

2016. The response to selection when selecting the 10% best perform-
ing lines by either method is displayed, where half of lines (5%) being 
selected with a protein content index and the other half with a grain 
yield index
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Model extensions for genomic‑assisted line 
breeding

The implementation of genomic selection into the breed-
ing scheme of a conventional line breeding programme 
showed high potential and performed sustainably better for 
grain yield than phenotypic selection based on one single 
plot of a given year as conducted in preliminary yield trials. 
Classical phenotypic selection even with low-quality data 
can nevertheless outperform genomic selection as seen for 
highly heritable protein content, whereas selection on seem-
ingly high-quality phenotypic data obtained from multiple 
trials might on the other hand be less suitable than genomic 
selection to reliably identify lines with high potential across 
many environments and years (Belamkar et al. 2018). One 
reason for this observation could be that the presence of 
genotype-by-environment interaction causes a continuous 
shift back and forwards with regard to the actual selection 
goal when using pure phenotypic selection as it most times 
takes merely the observed performance in the current year 
into account (Gaynor et al. 2017). Combining the advantage 
of phenotypic selection based on preliminary yield trials 
with prior information about line performance and genom-
ics-based selection that utilizes data from multiple years in 
a genomics-assisted selection resulted in higher prediction 
abilities and also increased their stability with 31% and 20% 
smaller standard deviations for protein content and grain 
yield, respectively. Genomics-assisted selection performed 
furthermore in more than 75% of cases better than either 
pure phenotypic or genomics-based selection, and recy-
cling the once obtained marker data by modelling genomic 
relationship in multi-environment trials has the potential to 
improve phenotypic data especially for low heritable traits 
or costly to phenotype traits that are only assessed in few 
trials such as quality-related traits (Fiedler et al. 2017; Hayes 
et al. 2017; Kristensen et al. 2018). According simulations 
suggested that the relative advantage of integrating genomic 
selection into a conventional breeding scheme in the form 
of a two-stage genomic-assisted selection in F5 preliminary 
yield trials followed by F6 multi-environment trials was 
54% for grain yield, 7% for protein content, and 32% for 
protein yield in response to selection when compared with 
two-stage phenotypic selection using data from the particu-
lar wheat breeding programme of this study (unpublished 
data). Notwithstanding, there is even more upward poten-
tial in genomic breeding by routinely planning crosses with 
marker data combined with an earlier crossing of the most 
promising parents to shorten generation cycles (Lehermeier 
et al. 2017; Osthushenrich et al. 2017; Müller et al. 2018) as 
well as fast recurrent genomic selection schemes in a two-
part strategy with a rapid population improvement cycle and 
a separate variety development part (Gaynor et al. 2017; 
Gorjanc et al. 2018).

Genomic predictions for finding and creating 
outliers

One major aspect when integrating genomic selection either 
in conventional breeding scheme or following a two-part 
breeding strategy is though the simultaneous selection for 
multiple traits, which is readily feasible if traits show favour-
able genetic correlations such as dough quality and protein 
content in bread and spelt wheat (Battenfield et al. 2016; 
Rapp et al. 2017) but a lot more challenging with traits dis-
playing unfavourable correlations such as the well-known 
trade-off between grain yield and protein content (McNeal 
1982; Simmonds 1995) that was more detailed investigated 
in the second half of this study. Potential causes for this 
relationship are a dilution effect of nitrogen allocated to 
an increasing number of kernels conferring higher grain 
yields (Acreche and Slafer 2009) as well as the competition 
between carbon and nitrogen for energy (Munier-Jolain and 
Salon 2005). Although a strong negative genetic correla-
tion is frequently observed between grain yield and protein 
content in wheat (Laidig et al. 2017; Thorwarth et al. 2018), 
environmental influences can extensively alter the magni-
tude of this negative relationship (Oury and Godin 2007) 
making it necessary to test genotypes in multi-environment 
trial networks to enable a simultaneous selection of both 
traits (Oury et al. 2003).

Testing in multi-environment trial networks is though 
only feasible in advanced generations with relatively few 
pre-selected genotypes making a marker-assisted selection 
in early generations an attractive alternative approach. The 
implementation of a successful marker-assisted selection 
requires first of all elucidating the underlying trait genetic 
architecture, and numerous marker loci have been identi-
fied causing the trade-off between grain yield and protein 
content either due to pleiotropy or close linkage of causal 
QTL rendering an independent improvement difficult 
(Blanco et al. 2012; Wang and Cui 2012; Bogard et al. 
2013; Zhao et al. 2017). Nevertheless, some QTL have 
been described that increase the protein content independ-
ent or with a marginal impact on grain yield (Blanco et al. 
2012; Wang and Cui 2012), amongst them the prominent 
Gpc-B1 gene from wild emmer (Uauy 2006; Tabbita et al. 
2017) that has also been introgressed into elite durum and 
bread wheat backgrounds (Brevis and Dubcovsky 2010; 
Eagles et al. 2014). Although some genetic improvement is 
feasible by using these identified QTL in a marker-assisted 
selection its potential will be limited due to the focus on 
rather low number of loci leading to the fast fixation of 
favourable alleles. Hence, genomic selection that targets 
many loci both with minor and major effect might be more 
suitable to achieve a higher response to selection in the 
long-term. Using a large number of genome-wide distrib-
uted markers for such an approach would nevertheless 
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encompass both loci that show favourable effect, i.e. 
improvement in either protein content or grain yield with-
out a negative effect on other traits but also unfavourable 
loci that potentially cause the protein content/grain yield 
trade-off.

Addressing this issue, a desired gain index (Pesek and 
Baker 1969) for genomic selection was employed restrict-
ing either the protein content or grain yield and in this way 
preferably increase the allele frequency of favourable loci 
that confer an increase in grain yield or protein content with-
out negatively influencing the respective other trait. Aside 
from largely targeting these loci, holding the population 
average for one of the traits stable also eased the identifica-
tion of lines with favourable allele combinations that pos-
sess an elevated grain yield with average protein content 
and increased protein yield even in the presence of strong 
negative genomic correlation between protein content and 
grain yield. Preliminary investigations using cross-validation 
with these genomic selection indices did not show any ben-
efit of multivariate models to derive variance–covariance 
matrices that contain this genomic correlation for calcu-
lating appropriate index weights. Furthermore, no added 
value was observed of using a closely related method that 
derives genomic selection indices by multiplying the vec-
tor of genomic estimated breeding values with the genomic 
relationship matrix (Ceron-Rojas et  al. 2015), while a 
Smith–Hazel index aiming to maximize the net merit (Smith 
1936; Hazel 1943) did not lead to desired gain, i.e. main-
taining grain yield or protein content but favoured one trait 
at cost of the other. Accordingly, it can be recommended 
to focus on genomic selection indices that correspond to 
deviations from regression line when conducting a simul-
taneous selection for grain yield and protein content and 
for finding the desirable outliers from the common trend, 
although it should be noticed that other methods such as 
using the multi-optimization framework by setting optimal 
compromise solutions or from the Bayesian decision theory 

have also shown great promise (Akdemir et al. 2018; de 
Villar-Hernández et al. 2018).

Identification of these outliers is of high interest to breed-
ers, and especially, the grain protein deviation has received 
large attention (Monaghan et al. 2001) and has even become 
a major criterion for variety registration in France (F. 
Löschenberger pers.comm.). It is, moreover, associated with 
post-anthesis nitrogen uptake in bread (Bogard et al. 2010; 
Latshaw et al. 2016) and durum wheat (Suprayogi et al. 
2011) (Table 2). This suggested that selecting genotypes that 
show superior performance in the genomic selection index 
based on grain protein deviations potentially enables an indi-
rect selection for a difficult to phenotype trait, which might 
lead to an indirect genetic improvement for this important 
component of nitrogen-use efficiency in a genomic breeding 
approach. The underlying genetic base of these deviations 
from the regression line is furthermore highlighted by a 
larger grain protein deviation of hybrid wheat in compari-
son with line varieties (Thorwarth et al. 2018) that might 
also be influenced by a different root architecture to improve 
nitrogen uptake (Cormier et al. 2016; Hawkesford 2017) and 
supposedly causes a larger yield stability for some genotypes 
(Mühleisen et al. 2014; Liu et al. 2017). Accordingly, several 
QTL related to grain protein deviation have been mapped in 
wheat amongst others in the proximity of major genes like 
Ppd-D1 regulating photoperiodic sensitivity and the semi-
dwarfing genes Rht-B1 and Rht-D1 (Cormier et al. 2014; 
Guttieri et al. 2017) with some candidate genes being identi-
fied (Habash et al. 2007; Li et al. 2011). Notwithstanding, 
polygenic inheritance with a genetic architecture of many 
small to medium effect loci renders the reliable identifica-
tion of genotypes with large positive grain protein deviation 
difficult in the framework of genotype-by-environment inter-
action making variety testing in multi-environment trials 
necessary (Oury and Godin 2007), which can additionally 
be supported by prediction models that characterize environ-
ments with respect to nitrogen stress (Ly et al. 2017). No 

Table 2   Phenotypic correlation of protein yield and the presented selection indices with post-anthesis nitrogen uptake and remobilization as well 
as protein content and grain yield in wheat

Performance estimates as reported by Bogard et al. (2010) and Latshaw et al. (2016) were used to derive the respective selection indices, while 
for durum, wheat values were averaged over the three environments reported by Suprayogi et al. (2011). The respective correlation coefficients 
obtained from the individual studies were subsequently averaged over all three studies
a Restriction index for holding grain yield stable and increasing the protein content
b Restriction index for holding protein content stable and increasing the grain yield
c Restriction index for holding grain yield stable and increasing the protein yield
d Restriction index for holding protein content and increasing the protein yield

Protein yield Indexa
GPD Indexb

GYD Indexc
HP Indexd

HY

Nitrogen remobilization 0.37 0.19 0.43 0.17 0.43
Nitrogen uptake 0.34 0.43 0.22 0.45 0.23
Protein content 0.27 0.73 0.00 0.72 0.00
Grain yield 0.54 0.00 0.73 0.00 0.72
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large benefit was though seen for genomic breeding using 
grain protein deviations as a selection index in this study 
when employing the basic GBLUP model in a forward pre-
diction across years, especially with respect to compensate 
the protein content/grain yield trade-off. Hence, the response 
to selection for total seed nitrogen yield given by protein 
yield was relatively seen substantially lower with grain pro-
tein deviations than by utilizing the high protein index that 
aimed to maximize protein yield by the protein content while 
holding grain yield stable. The latter index had additionally a 
marked advantage both in genomic and phenotypic selection 
in early generations, while it likewise had some relationship 
with post-anthesis nitrogen uptake (Table 2).

A genetic improvement in post-anthesis nitrogen uptake 
seems thus to be possible by selecting lines outstanding in 
the grain protein deviation and high protein indices, whereas 
the obtained results indicated that selecting lines with supe-
rior performance in the grain yield deviation and high yield 
indices will lead to a more pronounced gain in nitrogen 
remobilization that could also be a desirable trait when 
breeding for adaption to regions with dry conditions in late 
season limiting post-anthesis nitrogen uptake (Hawkesford 
2014). The compensation of the above-described dilution 
effect by lines with high protein yield caused by grain yield 
while maintain protein content suggested furthermore a dif-
ferent genetic control of grain yield deviations (Rapp et al. 
2018), while a genomic breeding approach showed consid-
erable advantage for achieving a high total seed nitrogen 
yield and nearly completely removed the negative trade-off 
in this study. The mentioned negative correlation between 
grain or seed yield and protein content in wheat has been 
observed in many small-grain cereal species and legumes 
(Simmonds 1995; Munier-Jolain and Salon 2005) and breed-
ing for a high protein yield either via grain yield or pro-
tein content might also constitute useful concepts for the 
genetic improvement in other crops like soybean (Kurasch 
et al. 2017). Both represent complementary selection strate-
gies exploiting the principle that protein yield is correlated 
both with nitrogen uptake and remobilization each causing 
a superior total seed nitrogen yield (Cormier et al. 2013). 
Although no totally clear differentiation between both traits 
is feasible with the here presented genomic selection indices, 
the results from this and other studies (Bogard et al. 2010; 
Suprayogi et al. 2011; Latshaw et al. 2016) indicate that the 
presented restriction indices might aim at a more directed 
improvement in specific traits related to nitrogen-use effi-
ciency than selecting on protein yield per se. Selection indi-
ces constitute thus valuable tools to support selection deci-
sions either in genomic or conventional breeding schemes 
in order to ease the identification of genotypes with desir-
able trait combination among several thousands of selec-
tion candidates with respect to yield, quality, tolerances, 

and resistances. This will facilitate the development of new 
varieties with potentially higher nutrient use efficiency that 
are, moreover, well adapted to changing growing conditions, 
which represents one of the major columns of agricultural 
plant production comprising plant breeding, physiology, 
protection, and agronomic practices (Bodin Dresbøll and 
Thorup-Kristensen 2014; Hellemans et al. 2018).

Conclusions

This study investigated the potential and limits of a simul-
taneous selection for grain yield and protein content in 
genomic wheat breeding. Model extensions for genomic 
selection enabled an increase in the prediction accuracy 
for the individual traits as well as the employed genomic 
selection indices, particularly by combining phenotypic 
and genomic information for a genomics-assisted selection 
approach in preliminary yield trials. Genomic selection 
indices that corresponded to deviations from the common 
regression of the involved traits were most promising for 
handling the observed strong negative phenotypic and 
genomic correlations, especially when aiming to maximize 
protein yield either via an elevated grain yield or protein 
content while holding the population average for the other 
respective trait stable. Forward prediction across years 
employing these concepts revealed that a strong response 
to selection for protein yield, i.e. total seed nitrogen con-
tent could be achieved by genomic breeding combining 
both selection strategies, which suggested that it is feasible 
to develop varieties that combine superior yield potential 
with comparably high protein content, thus utilizing avail-
able nitrogen resources more efficiently.
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