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Abstract
Key message  Exploitation of data from a ryegrass breeding program has enabled rapid development and imple-
mentation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain.
Abstract  Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to 
predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy 
of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding 
populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large refer-
ence population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a 
breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are 
a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date 
over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target popula-
tions have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict 
observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous 
years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with 
broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for 
seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by 
previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of 
individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption 
in ryegrass improvement programs.

Introduction

Perennial ryegrass (Lolium perenne L.) is the most impor-
tant temperate pasture species on a global basis and plays a 
dominant role as the primary feed-base in dairy systems in 
northern Europe, Australia, New Zealand and other regions. 
Ryegrass displays the desirable characteristics of high forage 
yield and nutritive quality and superior tolerance to grazing. 
However, only limited genetic gain has been obtained over 
the past century, with estimates of 0.25–0.6% annual genetic 
improvement for dry matter production (Wilkins and Hum-
phreys 2003; Woodfield 1999). Several aspects of ryegrass 
biology have contributed to this problem, such as an obligate 
outbreeding reproductive habit and associated high levels of 
genetic diversity, which have limited the fixation of desir-
able gene variants; a prevalence of target agronomic traits 
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under complex genetic control with substantial environmen-
tal modification (and so typically of low-to-moderate herit-
ability); and shortcomings of current phenotypic assessment 
methodology. Ryegrasses are cultivated as genetically het-
erogeneous populations in a pasture sward, and agronomic 
performance is evaluated on a sward-specific basis. How-
ever, such assessment is not appropriate for individual plants 
that are the target of selection in the early stages of breeding 
programs, which are typically grown under spaced or semi-
spaced conditions in order to identify elite genotypes as 
parents for synthetic varietal production. Moreover, limited 
correlation has been observed between biomass yield esti-
mates from spaced plants and corresponding sward-based 
performance (Wang et al. 2016a, b).

Significant incremental development of genomic 
resources for perennial ryegrass, such as expressed sequence 
tags (ESTs), genome survey sequences, transcriptome col-
lections and most recently, whole-genome sequences (Saw-
bridge et al. 2003; Farrell et al. 2014; Byrne et al. 2015) has 
permitted the development of sequence-tagged molecular 
genetic marker systems such as simple sequence repeats 
(SSRs) and single nucleotide polymorphisms (SNPs) (For-
ster et al. 2008). These and other marker systems have been 
used for trait-dissection studies, largely based on biparen-
tal mapping populations (Shinozuka et al. 2012), in con-
cert with increasingly detailed phenotypic measurements. 
However, individual marker-trait associations are of highly 
restricted value for application in breeding programs, due to 
the genetic complexity of traits and heterogeneous nature of 
populations. In contrast, genomic selection, which exploits 
a large number of genome-wide-distributed sequence poly-
morphisms in linkage disequilibrium with causal gene vari-
ants, has high potential for implementation in the breeding 
of species such as perennial ryegrass (Hayes et al. 2013). 
The value of such an approach has been verified by compre-
hensive simulation analysis of a current commercial breed-
ing program (Lin et al. 2016).

Genomic selection allows prediction of the phenotypic 
performance of selection candidates based only on geno-
type data, after marker effects are estimated in a reference 
population that has been subjected to both genotypic and 
phenotypic evaluation (Meuwissen et al. 2001). In the con-
text of ryegrass breeding, this may permit prediction of 
the in-sward performance of individual plants (as selec-
tion candidates) from a reference population of genotyped 
populations/varieties grown as swards. As such a process 
has not previously been feasible, dramatic improvements 
in selection accuracy and genetic gain within breeding pro-
grams are expected (Lin et al. 2016). In addition, selec-
tion candidates do not require phenotypic assessment in 
order to estimate genetic potential, which is currently 
performed over a period of several years in pasture plant 
breeding programs. Genomic breeding values can hence 

be calculated at the seedling stage, which greatly reduces 
the generation interval and consequently increases genetic 
gain. However, a number of factors that influence the accu-
racy of genomic selection, such as reference population 
size, trait heritability and genetic diversity of breeding 
populations must be considered.

The global genetic diversity of perennial ryegrass is large 
(Pembleton et al. 2016) and so would require an extensive 
reference population. Diversity within a single breeding pro-
gram should be lower, due both to sub-selection of founder 
genotypes from a broader range of germplasm, and the 
cyclic nature of many programs, such that individuals from 
pre-existing elite varieties are often chosen as parents for 
a next round of top-crosses. As a consequence, the genetic 
relationship between selection candidates and breeding pro-
gram-specific reference populations would be expected to 
increase over time. Active breeding programs cumulatively 
generate extensive phenotypic data covering the genetic and 
phenotypic diversity of their germplasm, but this informa-
tion has historically been used in isolation within each year 
or generation to select the best performing plants or popula-
tions. However, the data also represent a potential resource 
for the development of breeding program-specific reference 
populations for genomic selection. Genotypic data obtained 
from retained biological materials, such as leaf tissue or 
seeds, can be combined with the phenotypic data to estab-
lish a reference population from which marker effects can be 
estimated. This approach also offers a significant advantage 
in terms of timely implementation, as de novo construction 
and characterisation of reference populations is a logistically 
complex and time-consuming process.

Although a number of studies that describe genomic pre-
diction accuracies in ryegrass have recently been published, 
none have demonstrated the ability to predict seasonal bio-
mass yield consistently across a series of seasons and years. 
Fè et al. (2016) explored genomic selection for seed produc-
tion related traits, forage quality and crown rust resistance 
in commercial germplasm achieving moderate correlations 
between average phenotypes and GEBVs in the range of c. 
0.2–0.56. Fè et al. (2015) considered the trait of heading 
date, and using a cross-validation scheme achieved correla-
tions between average phenotype and GEBVs ranging from 
0.52 to 0.9. Grinberg et al. (2016) used data from previous 
generations (containing parental genotypes) to predict the 
performance of derived half-sib populations using genomic 
best linear unbiased prediction (GBLUP) and machine 
learning models. Although prediction accuracies for nutri-
ent quality components (such as water-soluble carbohydrate 
content) were moderate (0.454–0.598), those for more com-
plex traits such as biomass yield, which was predicted only 
as total (not seasonal) yield, ranged from − 0.013 to 0.275, 
and was highly variable between different training popula-
tions and years.
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Recently, Lin et al. (2016) simulated implementation of 
genomic selection within a commercial ryegrass breeding 
program (that of New Zealand Agriseeds [NZA]) to estimate 
the levels of prediction accuracy and resulting genetic gain 
for key breeding targets such as biomass yield and persis-
tency. Prediction accuracies of 0.17 and 0.19 for sward/plot-
based persistency and yield, respectively, were obtained, 
while a higher value (0.7) was obtained for the simpler trait 
of flowering time. Based on these results, the genetic gain 
expected from genomic selection was calculated to be up to 
sixfold greater than for standard phenotypic selection. Phe-
notypic data are available from the same program, extending 
over 15 years of breeder’s plot trials, in addition to retained 
seeds from each derived synthetic population. The present 
study was therefore based on a combination of genotypic 
data from pooled samples of each population with the his-
torical phenotypic data to provide genomic predictions of 
performance in successive cycles. This process has demon-
strated the potential for exploiting such data for rapid imple-
mentation of genomic selection and achieving moderate-to-
high prediction accuracies for key agronomic traits.

Materials and methods

Phenotypic data

Phenotypic data from sward-based trials of diploid ryegrass 
synthetic populations for yield and heading date were 
recorded for the period from 1997 to 2014. Two trials for 
biomass yield were sown annually and phenotypically 
assessed over a 2-year period at the premises of NZA at 
Courtenay, Christchurch, New Zealand. Each trial entailed 
assessment of 20–25 synthetic populations, sown as 6 m2 
plots, with threefold replication, for a total of 772 synthetic 
populations over the 18-year period. Trials were structured 
in order to simulate on-farm management conditions, yield 
cuts being generally performed every 1–2 months, when 
plants reached the three-leaf stage of growth. Three broadly 
adopted commercial cultivars (Bronsyn, Alto and Trojan) 
were commonly used as reference varieties across each trial 
and year, either individually or in combination. Trials from 
1997 to 2008, 2006 to 2011 and 2011 to 2014 used Bronsyn, 
Alto and Trojan, respectively.

Yield data were analysed as a two-stage process using 
residual maximum likelihood (REML) methods imple-
mented with the software package ASReml v3 (Gilmour 
et al. 2009). Each cut for yield (across the 2 years) was allo-
cated to one of 5 seasonal periods, as defined by the New 
Zealand forage value index for the South Island (Chapman 
et al. 2012). These were autumn (March, April and May), 
winter (June and July), early spring (August and Septem-
ber), late spring (October and November), and summer 

(December, January and February), based on the period with 
the highest number of growth days, along with average yield 
across all periods. Yield trials were analysed in a randomised 
incomplete block design for each period, with block fitted 
as a random effect to adjust for spatial variation and syn-
thetic population as a fixed effect. The best linear unbiased 
estimate (BLUE) of seasonal phenotypic performance for 
each population was accompanied with a weight (using the 
quantifier !TWOSTAGEWEIGHTS), which is a function of 
replication and error variance and represents the degree of 
uncertainty of the BLUEs (Smith et al. 2001). Following 
individual within-trial analyses, BLUEs for the 1997–2008 
interval were scaled, within each trial, relative to the BLUE 
value for Bronsyn set as zero. Best linear unbiased predic-
tors (BLUPs) for 1997–2008, including the weights from 
the previous BLUE analysis, were then calculated, and sub-
sequently the difference in performance between Bronsyn 
and Alto was calculated and used to scale all trials from 
2006 to 2011 relative to the BLUE value for Bronsyn set as 
zero. This process was repeated for the 2006–2011 interval 
in order to calculate the difference in performance between 
Trojan and Bronsyn, permitting scaling relative to Bronsyn 
for 2011–2014. All scaled BLUEs from 1997 to 2014 were 
then combined into a single BLUP analysis (for each sea-
son), including the weights, to calculate final predictions of 
the performance for each synthetic population relative to 
Bronsyn, here on termed adjusted phenotypic values.

Phenotypic data from heading date trials spanned the 
interval from 2002 to 2012, from a smaller set of synthetic 
populations, the majority of which overlapped with those 
used in the yield trials. Trials for heading date were sown 
as 1 m rows, with threefold replication. Heading date was 
defined as number of days elapsed since 1st September at 
which 50% of plants within the synthetic population were 
in flower. Similar to the biomass yield trial analysis, a two-
stage process was performed for the heading date trials, 
with Bronsyn as a common reference cultivar from 2002 to 
2008, and cultivar Bealey from 2004 to 2012, here on termed 
adjusted phenotypic values.

Genotypic data

Seed batches from 714 of the 861 trialled synthetic popula-
tions (772 from yield trials, 568 from heading date trials) 
were available for genotyping. Synthetic populations were 
typically derived from 4 to 6 parent synthetic crosses over 
an 18-year breeding period. Seeds from each population 
were germinated on filter paper. A single leaf was harvested 
from each of sixty germinants and used for pooled RNA 
extraction using RNAeasy (QIAGEN, Hilden, Germany) fol-
lowing manufacturer’s instructions. Purified RNA was then 
processed for genotyping-by-sequencing as described by 
Malmberg et al. (2017). RNA-Seq libraries were sequenced 
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on a HiSeq 2000 or 3000 platform (Illumina, San Diego, 
California, USA) to generate approximately 60 million reads 
(30 million paired) per synthetic population. Sequence reads 
were aligned to the perennial ryegrass transcriptome assem-
bly described by Shinozuka et al. (2017) using BWA-mem 
(Li and Durbin 2009), and a total of 127,000 variants were 
called using samtools mpileup v1.3.1 (Li et al. 2009) and 
bcftools v1.3.1. Allele frequency of the reference nucleotide 
at variant sites for each sample was calculated with in-house 
scripting using the allele Depth (AD) field in the resulting 
vcf file. Loci for which more than 50% of the synthetic popu-
lations displayed fewer than 100 reads were deemed unreli-
able and were removed. Subsequently, SNPs predicted from 
less than 40 reads were re-coded as missing data, which 
was then imputed using custom in-house scripts, based on 
the method of linkage disequilibrium k-nearest neighbours 
imputation (LD-kNNi), as described by Money et al. (2015) 
which was adapted in-house to impute allele frequencies 
rather than bi-allelic genotypic states. Parameters for impu-
tation were 11 nearest neighbours (k) and 17 closest (LD) 
loci.

Genomic prediction

Genomic prediction accuracy was explored by calculating 
GEBVs for all synthetic populations within each year, using 
only those that were trialled in previous years as the refer-
ence population, henceforth described as forward genomic 
prediction. Yield in the first and second year of production 
was treated as the same trait. Accuracy was calculated as 
the correlation between predicted GEBVs and observed 
phenotypes without further adjustment. For biomass yield, 
as the field trials were assessed for 2 years, the synthetic 
populations sown in the previous year to that of those being 
predicted were excluded from the reference population, in 
order to ensure a conservative estimate of prediction accu-
racy. Additionally, the effects of separation periods between 
comparator populations of 2 and 3 years were assessed. 
To reduce any bias arising from large differences in refer-
ence population size, the additional gaps of 2 and 3 years 
were only compared for accuracy of prediction from 2004 
onwards. At each iteration of the reference population, when 
cycling across prediction years, SNP loci were filtered to 
retain only those where the variance across samples (in the 
reference population) for the called allele frequencies was 
> 0.01. After filtering, a genomic relationship matrix was 
calculated following the method of Yang et al. (2010), where 
the bi-allelic genotypic classes (0, 1, 2) were replaced with 
twice the allele frequency of the reference allele (i.e., 100% 
reference was re-coded as ‘2’). Therefore, genotypes could 
take on a real number ranging from 0 to 2. As two distinct 
genetic backgrounds within the breeding program were 
known to exist from consideration of pedigree data (data not 

shown), cluster analysis of genomic relationships through 
partitioning around medoids with the pamk function in the 
R package fpc (Hennig 2015) was implemented to geneti-
cally define the two main clusters. Cycling across each year, 
cluster analysis was re-performed on only the respective 
reference and prediction synthetic populations (independ-
ent of the whole dataset). The cluster with the most sam-
ples originally assigned to the original main cluster 1 was 
labelled as Group A, and similarly the cluster with the most 
samples originally assigned to main cluster 2 was labelled 
Group B. Any additional smaller clusters were labelled as 
‘unassigned’ and were excluded from genomic prediction. 
If the number of samples in the group specific reference 
population was less than 50, the group was excluded from 
genomic prediction assessment. The groups were then inde-
pendently assessed for genomic prediction accuracy, as well 
as in combination (global). Genomic predictions were cal-
culated using the BayesA model as proposed by Meuwissen 
et al. (2001) and implemented using the R package BGLR 
(Pérez and de los Campos 2014);

where y is the trait of interest (i.e., BLUPs for biomass or 
heading date of the respective synthetic varieties), u is the 
population trait mean, 1

n
 is a vector of ones, n, the number 

of records, X is a matrix of genome-wide distributed SNP 
makers coded as the reference allele frequency, v is a vector 
of random SNP effects estimated from the reference popula-
tion where each SNP effect is v

i
∼ N(0, �2

v
i

) , and e ∼ N(0, �2

e
) 

is a vector of residual errors. The variance of each SNP i, �2

v
i

 

was sampled from an inverted Chi-square distribution using 
the default degrees of freedom and the scaling parameter 
determined by BGLR from a trait heritability calculated as 
the mean of the within-trial heritability of the reference 
population for the relevant trait. The error variance �2

e
 was 

also sampled from an inverted Chi-square distribution with 
default BGLR parameters.

Fitting of BayesA genomic prediction models and estima-
tion of marker effects were performed with 12,000 iterations, 
discarding the first 2000 as burn-in. Genomic prediction 
accuracy was calculated as the correlation between adjusted 
phenotypic values and predicted GEBVs. To mitigate the 
error in the correlation resulting from poor data distribu-
tion due to the small numbers of predicted GEBVs in some 
years/groups, the correlation was bootstrapped. Bootstrap-
ping was performed for each season and year by sampling 
from the predicted GEBVs and corresponding adjusted 
phenotypic values, with replacement, the same number of 
complete records and recalculating the correlation. This 
bootstrapping process was repeated 10,000 times. Adjusted 
phenotypic values were also regressed on all predicted 
GEBVs, for each season, to calculate the bias in genomic 

y = u1
n
+ Xv + e
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prediction, represented by the slope coefficient. The ideal 
slope coefficient of 1 represents no bias in the prediction of 
GEBVs, while slope coefficients greater than one represent 
under-prediction.

Results

Phenotypic data and heritability

The number of biomass-specific harvests per seasonal period 
(across the 2 years) ranged from 1 to 5, 1 to 3, 1 to 4, 3 to 7 
and 2 to 7 for autumn, winter, early spring, late spring and 
summer, respectively. Across all trials and seasons, pheno-
typic values adjusted for spatial effects were calculated. Her-
itability estimates for biomass yield were calculated based 
on the variance components computed from the within-trial 
REML analyses and were highly variable between trials, 
years and seasons, ranging from 0.05 to 0.81, with a mean 
of 0.42 (Online Resource 1).

Winter, which on average had the least number (1) of 
harvests within each year, was equal with early spring (1.2 
harvests/year) for the highest mean heritability value of 0.55, 
followed by autumn, late spring and summer, with values of 
0.43, 0.41 and 0.26, respectively. In contrast, the heritability 
of heading date was consistently high, varying between 0.65 
and 0.93 with a mean of 0.86.

Genotype data

On average 55 million sequencing reads were obtained for 
each synthetic population, with a mean mapping percentage 
of 91%. Removal of SNP loci with more than 50% missing 
data obtained a remaining set of 54,569, for which the mean 
missing data level was 12%. Missing data were imputed with 
an expected accuracy (calculated as the correlation between 
true and imputed genotype) of 90%, based on simulation of 
additional missing data (data not shown). Further filtering 
for variation in both the training and prediction populations 
in 1999 resulted in 28,573 segregating polymorphisms for 
genomic prediction, increasing across the years to 29,766 in 
2014, likely due to novel genetic variation as new synthetic 
populations were added to the reference population.

Clustering of genetic backgrounds

Clustering of synthetic populations based on genomic rela-
tionship identified two distinct genetic backgrounds, des-
ignated groups A and B (Fig. 1). Group A contained 475 
(78%) of the 714 genotyped samples, of which 467 and 299 
had biomass yield and heading date data, respectively. Group 
B was represented by 239 synthetic populations (22%) of 
which 233 and 163 had biomass yield and heading date data, 

respectively. The proportion of predicted synthetic popula-
tions in each group varied according to year. However, a 
general trend of increased inclusion of Group B individuals 
over time was observed, from a minimal level prior to 2005 
(Fig. 2).

Accuracy of genomic predictions for biomass yield

Global accuracy across groups

The average forward genomic prediction accuracy for mean 
annual biomass yield across both groups A and B (in the 
absence of clustering, referred to as ‘global’) was 0.310 
(Table 1). For individual seasons, the average prediction 
accuracy ranged from 0.205 in late spring to 0.589 in early 
spring. Although summer displayed the largest standard 
deviation across years, late spring was the most variable 
seasonal period relative to prediction accuracy, while early 
spring was the least variable (Table 1).

Accuracy within groups

Clustering based on genomic relationships, and consequent 
prediction independently within the two groups, resulted 
in an accuracy of forward genomic predictions for aver-
age annual biomass yield of 0.348 and − 0.041 in Groups 
A and B, respectively (Table 2). Additionally, the accuracy 
was higher for each individual period (apart from early 
spring), when only using Group A synthetic populations 
(Table 2). The average accuracy in Group A by 2014 for 
autumn, winter, early spring, late spring and summer was 
0.348, 0.255, 0.577, 0.240 and 0.297, respectively. Across 
most years clustering of Group A provided improvements in 
average seasonal prediction accuracy over global prediction 
(Fig. 3). Those years where no improvement was observed 
were typically characterised by already moderate global 
prediction accuracies (Fig. 3). Group B had highly vari-
able and low prediction accuracy across years (Fig. 3). The 
mean seasonal accuracy for autumn, winter, early spring, 
late spring and summer was − 0.052, − 0.028, 0.208, 0.119 
and 0.007, respectively. Apart from average (1.03) meas-
urements, minor bias in the prediction of GEBVs in Group 
A was observed in autumn (1.11), moderate bias in early 
spring (1.19) and late spring (1.24), with values being under-
predicted, while summer (0.87) and winter (0.62) showed an 
over-prediction bias. Global prediction had minor over-pre-
diction bias in average (0.94) and late spring (0.90), moder-
ate over-prediction bias in autumn (0.76), summer (0.74) and 
winter (0.533) while early spring (1.11) had minor under-
prediction bias.

In addition to the standard 1-year gap between refer-
ence and prediction populations, gaps of 2 or 3 years were 
also assessed (from 2004 onwards) to assess the impact on 
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prediction accuracy when the reference population becomes 
further distanced from the selection candidates (Online 
Resource 2). For a 2-year gap annual average biomass and 
the equivalent values for all of the seasons, remained rela-
tively (< 0.05 unit change) unaffected for both global and 
Group A prediction. When a 3-year gap was evaluated, all 
values for global prediction remained relatively unaffected, 
apart from later spring (reduction of 0.05), while Group A 
prediction had reductions in early spring, late spring and 
summer, of 0.07, 0.10 and 0.06, respectively.

Accuracy of genomic predictions for heading date

The genomic prediction accuracy across years for head-
ing date was consistently high in the absence of grouping, 
achieving a rolling average of 0.76 by 2012 (Table 3). The 
lowest level of accuracy (0.69) was observed when pre-
dicting the 2009 trial. Clustering of samples into Group A 
provided no significant benefit to heading date prediction 
accuracy, as average accuracy only increased to 0.78 when 

Group A alone was used. However, a reduction to 0.661 
in average prediction accuracy for Group B was observed. 
Minimal prediction bias was observed for heading date, for 
both global and Group A prediction with a slope coefficient 
of 1.16, while under-prediction bias was observed in Group 
B (1.92).

Discussion

Factors affecting accuracy of genotypic analysis

This study has demonstrated the ability to efficiently geno-
type ryegrass synthetic populations (which are composed 
of distinct individuals that are heterozygous at multiple 
genomic loci) using the transcriptome-based genotyping-
by-sequencing method of Malmberg et al. (2017). A num-
ber of studies have employed different depths of sampling 
within populations to accurately represent the genetic 
diversity within a variety/population and relationships 

Fig. 1   Heatmap of genomic relationships illustrating the distinct clustering of two genetic backgrounds, Group A and Group B
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between. Most recently, Pembleton et al. (2016) demon-
strated that 48 or more individual samples per ryegrass 
variety/population are required for such studies. As a con-
sequence, a larger number (60 or more germinants per syn-
thetic population) were harvested and subjected to pooled 
RNA extraction in the present study. For each synthetic 

population, allele frequency information for c. 127,000 
SNP loci was generated, of which c. 55,000 loci were reli-
ably called with sufficient depth across the majority of 
synthetic populations. Of these, c. 46% were found to be 
sufficiently polymorphic across synthetic populations to 
be informative in genomic selection models.

Fig. 2   Reference population size across each prediction year for 
global biomass (grey solid line), Group A biomass (blue solid 
dashed), Group B biomass (green round dotted), global heading 

date (grey double line), Group A heading date (blue hollow dashed), 
Group B heading date (green square dotted)

Table 1   Global forward 
genomic prediction accuracy 
for biomass across years and 
seasons

Year Global prediction

Average AUT​ WIN ESP LSP SUM

1999 0.264 0.287 0.154 0.791 0.018 0.131
2000 0.259 0.221 0.351 0.310 − 0.114 0.265
2001 0.363 0.357 0.276 0.636 − 0.016 0.590
2002 0.616 0.557 0.374 0.790 0.052 0.446
2003 0.282 0.359 0.299 0.737 0.158 0.395
2004 0.246 0.266 0.292 0.588 0.466 0.431
2005 0.035 0.211 0.018 0.582 0.273 − 0.104
2006 0.159 0.118 0.167 0.011 0.220 0.280
2007 0.352 0.485 0.292 0.576 0.149 0.374
2008 0.214 − 0.007 0.425 0.726 0.108 0.003
2009 0.363 0.416 0.200 0.492 0.532 0.309
2010 0.575 0.339 0.114 0.659 0.206 0.405
2011 0.159 − 0.049 0.053 0.667 0.515 0.472
2012 0.423 0.051 0.054 0.682 0.137 − 0.071
2013 0.496 − 0.100 0.271 0.514 0.346 0.381
2014 0.155 0.259 0.270 0.661 0.222 0.178
Mean 0.310 0.236 0.226 0.589 0.205 0.280
SD 0.160 0.190 0.122 0.196 0.187 0.202
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Effects of population structure on accuracy 
of genomic prediction

Both population structure and distant genomic relation-
ships between members of reference populations and selec-
tion candidates have the potential to negatively impact on 
genomic prediction accuracies. Two sub-populations or 

groups were identified within germplasm of the commercial 
breeding program, of which the first (group A) accounted for 
c. 67% of the overall dataset. Although Group B, correspond-
ing to accessions of European origin, was generally only a 
minor component of the trialled varieties, the degree of dif-
ferentiation between the two groups was sufficient enough to 
reduce prediction accuracies for biomass in later years when 

Table 2   Groups A and B forward prediction accuracy for biomass across seasons and years

Year Group A prediction Group B prediction

Average AUT​ WIN ESP LSP SUM Average AUT​ WIN ESP LSP SUM

1999 − 0.035 0.547 0.312 0.207 − 0.051 − 0.032
2000 0.372 0.268 0.482 0.376 − 0.217 0.298
2001 0.396 0.550 0.213 0.636 − 0.119 0.439
2002 0.498 0.584 0.259 0.647 0.096 0.655
2003 0.397 0.555 0.463 0.748 0.336 0.512
2004 0.241 0.327 0.153 0.655 0.589 0.376
2005 0.304 0.317 0.128 0.684 0.329 − 0.017 − 0.257 0.392 0.025 0.431 0.050 − 0.292
2006 0.218 0.530 0.355 0.109 0.296 0.548 − 0.299 − 0.405 − 0.150 0.215 − 0.254 − 0.112
2007 0.592 0.631 0.598 0.806 0.345 0.318 − 0.435 − 0.186 − 0.483 0.176 − 0.300 − 0.161
2008 0.035 0.201 0.424 0.759 0.250 − 0.060 0.524 − 0.524 0.280 0.368 0.030 − 0.310
2009 0.393 0.314 0.269 0.534 0.392 0.371 0.325 0.596 − 0.572 − 0.275 0.639 0.978
2010 0.554 0.390 − 0.026 0.646 0.164 0.402 − 0.486 − 0.974 0.322 − 0.402 0.233 − 0.901
2011 0.170 − 0.036 − 0.008 0.651 0.461 0.300 − 0.151 0.317 − 0.077 0.083 0.387 0.249
2012 0.349 0.200 0.125 0.594 0.058 − 0.041 0.334 0.207 − 0.011 0.452 0.341 0.219
2013 0.565 − 0.159 0.139 0.456 0.438 0.234 0.091 − 0.302 0.278 0.364 0.381 0.188
2014 0.521 0.513 0.197 0.718 0.469 0.442 − 0.053 0.359 0.104 0.673 − 0.314 0.216
Mean 0.348 0.358 0.255 0.577 0.240 0.297 − 0.041 − 0.052 − 0.028 0.208 0.119 0.007
SD 0.185 0.227 0.176 0.197 0.231 0.224 0.348 0.502 0.308 0.333 0.331 0.492

Fig. 3   Individual year global (grey solid bars) Group A (blue diagonal stripe bars) and Group B (green horizontal stripe bars) average seasonal 
biomass accuracy. Moving global average and heritability across years is represented by the yellow (solid) and black (dashed) lines, respectively
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Group B varieties were more commonly used. Removal of 
Group B from the dataset generally resulted in an improve-
ment in accuracy for Group A and in some seasons reduced 
variation between years. The reduced prediction accuracy 
is probably due to an insufficient reference population size 
for Group B, both in total and over successive years. This 
effect is likely to be alleviated in the future, as more Group 
B varieties are trialled and added to the reference popula-
tion. This result, however, demonstrates the desirability of 
prior knowledge of genetic diversity and structure within 
breeding programs when applying genomic selection, which 
when absent may lead to poor prediction accuracies, incor-
rect selection decisions and consequent reduced genetic 
gain. Genetic clustering algorithms, as demonstrated in this 
study, will identify any such structure, and which varieties 
are likely to be vulnerable to such effects until adequate ref-
erence populations are developed. For highly diverse spe-
cies such as perennial ryegrass, large commercial breeding 
programs will initially require reference populations that are 
specific to multiple genetic backgrounds. Depending on how 
such germplasm pools are maintained over time, and levels 
of introgression between pools, a single reference popula-
tion may ultimately be consolidated and provide adequate 
accuracy across all genetic backgrounds.

Accuracy of genomic prediction for biomass yield

Moderate levels of prediction accuracy were achieved for 
biomass yield in global and Group A varieties across all 
seasons for a majority of years, when using a BayesA model. 
A GBLUP genomic prediction model was also implemented, 
but revealed no significant differences when compared to 
the BayesA result (unpublished data). In general, average 
annual biomass was predicted with accuracy values above 
0.2 (apart from for 2005, 2006, 2011 and 2014 for global, 

and 1999, 2008 and 2011 in group A), and a rolling aver-
age accuracy of 0.31 and 0.35 was obtained after 16 years 
of predictions for global and Group A, respectively. These 
values are similar to that reported by Annicchiarico et al. 
(2015) for cross-population biomass prediction accuracy in 
Lucerne, another outbreeding forage species. Moderate pre-
diction bias was observed for Group A biomass yield, rang-
ing from under-prediction in early spring and late spring to 
over-prediction in winter and summer. Although prediction 
bias was observed in some seasons, this would only have a 
detrimental impact on selection if plants with GEBVs were 
compared with plants with breeding values obtained from 
other methods or datasets, such as pedigree based values. 
However, this is not the proposed method for implementa-
tion of genomic selection in ryegrass, which is for breeding 
values of all synthetic populations to be genomically pre-
dicted, similar to that demonstrated (Lin et al. 2016). Pre-
diction bias can also negatively impact selection accuracy 
if seasonal biomass predictions are combined in a across 
season selection; however, this can be accounted for by 
incorporating correction factors into a selection index.

As observed in previous studies (Muranty et al. 2015), 
prediction accuracies generally followed the order of her-
itability across seasons, with the highest accuracies (0.59, 
average) observed in early spring, and a lower accuracy 
(0.28, average) observed in summer. Although late spring 
assessments displayed relatively high heritability, this was 
the seasonal period that showed the second least accurate 
predictions. Ryegrass is known to exhibit an interaction 
effect between heading date and spring biomass yield traits 
(Sampoux et al. 2011), which may have affected the predic-
tion accuracy. Although BayesA models were explored that 
included heading date as a fixed effect factor, no signifi-
cant improvement in accuracy was observed (unpublished 
data). In the present study, whole biomass harvests were 

Table 3   Forward genomic 
prediction accuracy for heading 
date across years

Moving average is calculated as the average of current and all prior years

Year Global prediction Group A prediction Group B prediction

Accuracy Moving average Accuracy Moving average Accuracy Moving average

2003 0.806 0.806 0.776 0.776
2004 0.741 0.774 0.809 0.793 0.325 0.325
2005 0.800 0.783 0.886 0.824 0.524 0.425
2006 0.746 0.773 0.732 0.801 0.225 0.358
2007 0.802 0.779 0.815 0.804 0.519 0.398
2008 0.792 0.781 0.810 0.805 0.797 0.478
2009 0.692 0.769 0.776 0.801 1.000 0.565
2010 0.713 0.762 0.747 0.794 0.964 0.622
2011 0.742 0.759 0.651 0.778 0.950 0.663
2012 0.780 0.761 0.804 0.781 0.643 0.661
Mean 0.761 0.781 0.661
SD 0.040 0.062 0.285
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assigned to the period with most days of growth, although 
a significant proportion may have occurred in an adjacent 
period. The interaction effect, when combined with timing 
of previous harvest (which would vary across trials), would 
have at least partially determined which seasonal periods 
were allocated harvests that related to heading date-induced 
spring growth. Such variation may have contributed to the 
lower prediction accuracies characteristic of late spring 
measurements. New technologies for non-destructive phe-
notypic measurement of forage yield (such as normalised 
difference vegetation index) may provide a deeper under-
standing of mechanisms controlling spring biomass yield, 
so accurately assigning daily/weekly growth rates to specific 
seasons, rather than aggregating whole biomass harvests into 
the seasonal period with most days of growth.

Although average prediction accuracy values for each 
season were positive and moderate in magnitude, poor or 
negative values were observed for some years. It must be 
acknowledged that the reference population is constructed 
from phenotypic data across a series of years, which conse-
quently represents a variety of temporally distinct seasonal 
environments with the possibility of G x E interactions. Con-
sequently, the derived genomic equations and subsequent 
predictions are likely to represent average performance 
across various environments, and so correlations may have 
been reduced for years or seasons characterised by atypical 
environments. In these circumstances, the genomic predic-
tions may still provide a true representation of performance 
in a standard year/environment. Phenotypic selection over 
years/seasons for which the environment was atypical may 
have led to reduced or even negative genetic gain.

The observation of moderate accuracy across seasons 
and years not only demonstrates the general ability to 
apply genomic selection to commercial perennial ryegrass 
breeding, but also potential for genomic selection of varie-
ties with specific biomass growth profiles across seasons. 
Home-grown forage is the lowest cost feed source for dairy 
farms in both Australia and New Zealand, and utilisation 
of this resource provides much of the competitive ability 
of these nations on the international dairy market (Chap-
man et al. 2009). Close matching of the growth curve of 
pasture crops, such as ryegrass, to the feeding requirements 
of grazing dairy cattle can provide significant economic and 
production benefits to farmers, through reduced reliance on 
supplementary feeding over summer, autumn and winter, 
and diminished excess pasture production and related man-
agement costs over late spring (Chapman et al. 2009; de 
Klein 2001; Rawnsley et al. 2013; Stewart and Hayes 2011). 
Combination of the seasonal biomass prediction equations 
with recently developed economic values for seasonal bio-
mass (Chapman et al. 2012) will enable the effective imple-
mentation of economic value selection indexes to assist in 
breeding and selection decisions.

In order to assess the optimal rate of update for the ref-
erence population (and consequently the prediction equa-
tion), in order to maintain moderate prediction accuracies, 
increased intervals of 2 and 3 years were compared to 
the standard 1-year gap. Although reduced accuracy was 
observed for both late spring and summer, the impact was 
generally limited across seasons, such that average seasonal 
biomass prediction accuracy remaining unchanged. This is 
probably due to the length of time that elapses between trial-
ling of a synthetic population and synthesis of a new derived 
population. Although elite varieties will be recycled into 
the breeding program as new parents at various stages, at 
least 3–6 years will elapse before any derivative is trialled. 
Consequently, even with a 3-year gap, parental genotypes or 
closely related genotypes will be present within the reference 
population.

Accuracy of genomic prediction for heading date

Prediction accuracy for heading date was consistently high 
across years, with a mean value of 0.76. Although effects of 
genetic background on biomass prediction accuracy were 
observed, much smaller effects were observed for heading 
date. Heading date is known to be under the control of a 
smaller subset of genes (Fè et al. 2015), as compared to 
biomass yield, which is assumed to be under complex con-
trol from a large number of genes, each of small individual 
magnitude. Due to the simpler genetic control of heading 
date, the ability to predict marker effects that explain this 
genetic variance across different germplasm pools and with 
smaller reference populations is enhanced. This is further 
supported by the minimal prediction bias observed for head-
ing date, indicating that the magnitude of estimated marker 
effects closely matches the true effects. The BayesA model 
fitted in the present study assumes that each marker/gene 
has an effect on the phenotypic trait of interest, which does 
not accurately reflect the known genetic architecture of the 
heading date trait. Nonetheless, the BayesA model effec-
tively predicted heading date with high accuracy, close to 
that expected based on an average heritability of 0.86. The 
ability of BayesA to effectively predict flowering date in 
other species has previously been reported (Li et al. 2015; 
Tayeh et al. 2015) and is probably due to the ability of the 
model to shrink marker effects towards zero if they do not 
explain components of phenotypic variance.

Phenotypic selection for traits of lower genetic complex-
ity such as heading date and also awning, leaf width and 
length and growth habit, is currently required to achieve 
registration of Plant Breeders Rights/Plant Variety Rights, 
under distinctiveness, uniformity and stability (DUS) stand-
ards (Wang et al. 2016a, b). However, compared to biomass 
yield, these traits have minimal (if any) direct impact on 
agronomic performance and instead limit genetic gain 
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by increasing the length of the breeding cycle (through a 
requirement for additional evaluation trials) and hindering 
direct agronomic selection (Wang et al. 2016a). Until sys-
tems are altered to allow registration based on genotypic pro-
file, genomic selection (as demonstrated for heading date) 
may permit selection for discriminatory characteristics at 
the same time as more important agronomic traits, with-
out requiring additional lengthy and laborious trials which 
impose negative impacts on genetic gain.

Conclusions

The NZA commercial breeding program was recently simu-
lated in order to explore the potential for implementation of 
genomic selection (Lin et al. 2016). This process obtained 
genomic prediction accuracies of 0.19 and 0.71 for bio-
mass yield and heading date, respectively, within the range 
obtained here from empirical data. The simulation exercise 
additionally modelled the potential genetic gain from adop-
tion of genomic selection based on the estimated accuracies. 
A twofold-to-threefold rate of increase was reported, due 
both to reduced duration of the generation cycle and the 
ability to select individual spaced plants for sward-based 
performance (under competition with other plants), the latter 
being problematic for conventional breeding practice. The 
observed high degree of concordance between empirical and 
simulated prediction accuracies for the same breeding pro-
gram design provides high confidence for beneficial change 
in genetic gain by twofold-to-threefold through adoption of 
genomic selection.

The present study has demonstrated the development of a 
ryegrass reference population based on synthetic population 
(population genotypes) rather than individual genotypes. 
The genotypic data are not restricted to specific individual 
plants in the original trials, but instead relates to the syn-
thetic population, that can be trialled over additional envi-
ronments. Consequently, multi-environment phenotypic 
performance data can be gathered and combined with the 
original genotypic data to develop genomic prediction equa-
tions for a broad range of environments.

The outcomes of this study have validated the use of his-
torical data for rapid implementation of genomic selection in 
existing breeding programs, rather than de novo design and 
assembly of reference and selection populations, so permit-
ting substantial savings in terms of time and resource costs. 
However, this approach should be seen not as an alternative, 
but as complementary, to de novo design programs, which 
offer the benefits of a broader capture of judiciously selected 
initial germplasm, capacity to evaluate both individual plants 
and sward-based populations and the opportunity to imple-
ment more accurate and sensitive methods for phenotypic 

assessment, particularly those based on real-time automated 
in-field sensor technologies (Badenhorst et al. 2017).
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