Skip to main content
Log in

Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Aerenchyma formation after 7 days of waterlogging in commercial potting mixture can be a reliable, fast, and widely utilized approach for the selection of waterlogging tolerant barley genotypes. One major QTL for aerenchyma formation after 7 days of waterlogging treatment was identified and the newly developed markers explained 44 % of the phenotypic variance. This QTL can now be effectively used in barley breeding programs.

Abstract

Waterlogging is one of the important limiting conditions for crop yield and productivity. The main feature of waterlogged soils is oxygen deprivation, due to slow gas diffusion in water. Decreased oxygen content in waterlogged soils leads to the oxygen deficiency in plant tissues, resulting in reduced energy availability for plants. Rapidly induced aerenchyma formation is critical to maintaining adequate oxygen supply and overall waterlogging tolerance in barley. In this study, we have proved that quantifying aerenchyma formation after 7 days of waterlogging in commercial potting mixture can be a reliable, fast, and widely utilised approach for the selection of waterlogging tolerant barley genotypes, which is supported by measurements of redox potential (an indicator of anaerobic conditions). This protocol was also used to identify quantitative trait loci (QTL) in a doubled haploid population of barley from the cross between Yerong (tolerant) and Franklin (sensitive) genotypes. The QTL for aerenchyma formation and root porosity were at the same location as the waterlogging tolerance QTL. Seven new markers were developed and added onto this region on chromosome 4H. One major QTL for aerenchyma formation after 7 days waterlogging treatment explained 44.0 % of the phenotypic variance. This successful QTL for aerenchyma formation can be effectively used in the marker assisted selection to improve waterlogging tolerance in barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armstrong W (1979) Aeration in higher plants, vol 7. Advances in Botanical Research. London

  • Bailey-Serres J, Colmer TD (2014) Plant tolerance of flooding stress—recent advances. Plant Cell Environ 37(10):2211–2215. doi:10.1111/pce.12420

    PubMed  Google Scholar 

  • Broughton S, Zhou G, Teakle N, Matsuda R, Zhou M, O’Leary R, Colmer T, Li C (2015) Waterlogging tolerance is associated with root porosity in barley barley (Hordeum vulgare L.). Mol Breed 35(1):1–15. doi:10.1007/s11032-015-0243-3

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196. doi:10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  Google Scholar 

  • de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481. doi:10.1016/j.tplants.2007.08.012

    Article  PubMed  Google Scholar 

  • Evans DE (2004) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • Fiedler S, Vepraskas MJ, Richardson JL, Donald LS (2007) Soil redox potential: Importance, field measurements, and observations. In: Advances in Agronomy, vol Volume 94. Academic Press, p 1–54. doi:10.1016/S0065-2113(06)94001-2

  • Garthwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct Plant Biol 30:875–889

    Article  Google Scholar 

  • Huang X, Shabala S, Shabala L, Rengel Z, Wu X, Zhang G, Zhou M (2014) Linking waterlogging tolerance with Mn2+ toxicity: a case study for barley. Plant Biol 17:26–33. doi:10.1111/plb.12188

    Article  PubMed  Google Scholar 

  • Li H, Vaillancourt R, Mendham N, Zhou M (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genom 9:401. doi:10.1186/1471-2164-9-401

    Article  Google Scholar 

  • Malik AI, Islam AKMR, Colmer TD (2011) Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): evaluation of four H. marinum–wheat amphiploids. New Phytol 190(2):499–508. doi:10.1111/j.1469-8137.2010.03519.x

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize × teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223

    Article  Google Scholar 

  • Mano Y, Omori F (2009) High-density linkage map around the root aerenchyma locus Qaer1.06 in the backcross populations of maize Mi29 × teosinte “Zea nicaraguensis”. Breeding Science 59(4):427–433

    Article  CAS  Google Scholar 

  • Mano Y, Takeda K (2012) Accurate evaluation and verification of varietal ranking for flooding tolerance at the seedling stage in barley (Hordeum vulgare L.). Breed Sci 62(1):3–10. doi:10.1270/jsbbs.62.3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, Bird RM, Loaisiga CH (2006) Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281(1–2):269–279. doi:10.1007/s11104-005-4268-y

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, Bird RM, Loaisiga CH, Takahashi H (2007) QTL mapping of root aerenchyma formation in seedlings of a maize × rare teosinte “Zea nicaraguensis” cross. Plant Soil 295(1–2):103–113. doi:10.1007/s11104-007-9266-9

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Kindiger B, Takahashi H (2008) A linkage map of maize maize × teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Mol Breed 21(3):327–337. doi:10.1007/s11032-007-9132-8

    Article  CAS  Google Scholar 

  • Muhlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E, Karpinski S (2007) Lysigenous aerenchyma formation in Arabidopsis is controlled by lesion simulating disease1. Plant Cell 19:3819–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • P de San Celedonio R, Abeledo LG, Miralles D (2014) Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 378(1–2):265–277. doi:10.1007/s11104-014-2028-6

    Article  Google Scholar 

  • Pang J, Zhou M, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55(8):895–906. doi:10.1071/ar03097

    Article  Google Scholar 

  • Raskin I (1983) A method for measuring leaf volume, density, thickness, and internal gas volume. HortScience 18:698–699

    Google Scholar 

  • Reddy KR, Patrick WH Jr (1976) Effect of frequent changes in aerobic and anaerobic conditions on redox potential and nitrogen loss in a flooded soil. Soil Biol Biochem 8(6):491–495. doi:10.1016/0038-0717(76)90091-2

    Article  CAS  Google Scholar 

  • Semagn K, Beyene Y, Warburton M, Tarekegne A, Mugo S, Meisel B, Sehabiague P, Prasanna B (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genom 14(1):313

    Article  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setter TL, Burgess P, Waters I, Kuo J (1999) Genetic diversity of barley and wheat for waterlogging tolerance in Western Australia. Paper presented at the Australian Barley Technical Symposium

  • Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190(2):289–298. doi:10.1111/j.1469-8137.2010.03575.x

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Barcelo J, Poschenrieder C (2014) Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ 37(10):2216–2233. doi:10.1111/pce.12339

    CAS  PubMed  Google Scholar 

  • Thomson CJ, Armstrong W, Waters I, Greenway H (1990) Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant Cell Environ 13:395–403

    Article  Google Scholar 

  • Unger IM, Motavalli PP, Muzika R-M (2009) Changes in soil chemical properties with flooding: a field laboratory approach. Agric Ecosyst Environ 131:105–110. doi:10.1016/j.agee.2008.09.013

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Kyazma BV (2009) MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species Kyazma BV. Wageningen, Netherlands

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48(2):391–407. doi:10.2135/cropsci2007.04.0191

    Article  Google Scholar 

  • Zhang X, Shabala S, Koutoulis A, Shabala L, Johnson P, Hayes D, Nichols D, Zhou M (2015) Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant Soil 394(1–2):355–372. doi:10.1007/s11104-015-2536-z

    Article  CAS  Google Scholar 

  • Zhou M (2010) Improvement of plant waterlogging tolerance. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer-Verlag, Heidelberg, Germany, p 267–285. doi:10.1007/978-3-642-10305-6_13, #Springer-Verlag

  • Zhou M (2011) Accurate phenotyping reveals better QTL for waterlogging tolerance in barley. Plant Breed 130(2):203–208. doi:10.1111/j.1439-0523.2010.01792.x

    Article  CAS  Google Scholar 

  • Zhou MX, Li HB, Mendham NJ (2007) Combining ability of waterlogging tolerance in barley. Crop Sci 47(1):278–284. doi:10.2135/cropsci2006.02.0065

    Article  Google Scholar 

  • Zhou M, Johnson P, Zhou G, Li C, Lance R (2012) Quantitative trait loci for waterlogging tolerance in a barley cross of Franklin × YuYaoXiangTian Erleng and the relationship between waterlogging and salinity tolerance. Crop Sci 52(5):2082–2088. doi:10.2135/cropsci2012.01.0008

    Article  Google Scholar 

  • Zhou G, Zhang Q, Tan C, XQ Zhang, Li C (2015) Development of genome-wide InDel markers and their integration with SSR, DArT and SNP markers in single barley map. BMC Genom 16(1):1–8. doi:10.1186/s12864-015-2027-x

    Article  Google Scholar 

  • ZoBell CE (1946) Studies on redox potential of marine sediments. AAPG Bull 30(4):477–513

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council Linkage grant (LP120200516) and Grains Research & Development Corporation (GRDC) of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixue Zhou.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Communicated by L. Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhou, G., Shabala, S. et al. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance. Theor Appl Genet 129, 1167–1177 (2016). https://doi.org/10.1007/s00122-016-2693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2693-3

Keywords

Navigation