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in three F2:3 populations identified 33 KRN quantitative 
trait loci (QTLs) representing 21 QTLs common to several 
population/environments. The majority of these common 
QTLs that displayed a large effect were additive or partially 
dominant. We found 70  % KRN-associated genomic loci 
were mapped in KRN QTLs identified in this study, KRN-
associated SNP hotspots detected in NAM population and/
or previous identified KRN QTL hotspots. Furthermore, 
the KRN of inbred lines and hybrids could be predicted by 
the additive effect of the SNPs, which was estimated using 
inbred lines as a training set. The prediction accuracy using 
the top KRN-associated tag SNPs was obviously higher 
than that of the randomly selected SNPs, and approxi-
mately 300 top KRN-associated tag SNPs were sufficient 
for predicting the KRN of the inbred lines and hybrids. The 
results suggest that the KRN-associated loci and QTLs that 
were detected in this study show great potential for improv-
ing the KRN with genomic selection in maize breeding.

Abstract 
Key message  Maize kernel row number might be dom-
inated by a set of large additive or partially dominant 
loci and several small dominant loci and can be accu-
rately predicted by fewer than 300 top KRN-associated 
SNPs.
Abstract  Kernel row number (KRN) is an important yield 
component in maize and directly affects grain yield. In 
this study, we combined linkage and association mapping 
to uncover the genetic architecture of maize KRN and to 
evaluate the phenotypic predictability using these detected 
loci. A genome-wide association study revealed 31 associ-
ated single nucleotide polymorphisms (SNPs) represent-
ing 17 genomic loci with an effect in at least one of five 
individual environments and the best linear unbiased pre-
diction (BLUP) over all environments. Linkage mapping 
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Introduction

Maize kernel row number (KRN) per ear is one of the most 
important yield components and is a breeding goal for the 
improvement of maize inbred lines. A better knowledge 
of the genetic architecture of KRN is required to establish 
breeding programs. However, current knowledge about the 
genetic control of the maize KRN was mainly obtained 
from genetic assays of inflorescence mutants. For exam-
ple, thick tassel dwarf 1 (td1) (Bommert et  al. 2005) and 
fasciated ear 2 (fea2) (Taguchi-Shiobara et al. 2001; Bom-
mert et  al. 2013) are involved in meristem maintenance. 
The ramosa mutants can increase the indeterminacy of 
lateral organs, which transforms the determinate spikelet-
pair meristems into branches (Bortiri et  al. 2006; Galla-
votti et al. 2010; Satoh-Nagasawa et al. 2006; Sigmon and 
Vollbrecht 2010). Suppressor of sessile spikelets 1 (Sos1) 
controls meristem determinacy to produce single instead of 
paired spikelets in the inflorescence, thereby decreasing the 
KRN in the ear (Wu et al. 2009). The dominant Corngrass1 
(Cg1) mutant encodes two tandem zma-miR156 genes and 
leads to a small ear lacking an ordered kernel row and 
unbranched tassel (Chuck et al. 2007).

However, KRN in natural population displays a quanti-
tative variation that is controlled by numerous QTLs. In the 
last 20 years, more than one hundred QTLs have been iden-
tified by linkage mapping (Veldboom and Lee 1994; Austin 
and Lee 1996; Ribaut et al. 1997; Yan et al. 2006; Lu et al. 
2011a; Li et al. 2014). Despite the increasing accumulation 
of detected QTLs, the genetic architecture of the KRN has 
yet to be determined. In addition, the usefulness of these 
QTLs, which have mainly revealed the allelic variation 
between pairs of parents, is limited in maize breeding (Xu 
and Crouch 2008). Recently, association mapping is being 
increasingly used in plants to uncover genetic effects of 
diverse alleles within a diverse population (Rafalski 2010). 
However, the population structure and the detection of rare 
variants are two major challenges for association mapping 
(Visscher 2008). A powerful approach that combines link-
age analysis and association mapping has been developed 
to uncover the genetic architecture of complex quantitative 
traits in maize. For example, Brown et al. (2011) identified 
36 QTLs and 261 significant SNPs for the KRN in a nested 
association mapping (NAM) population by a jointing link-
age and genome-wide association study (GWAS).

Genome-wide genotyping also permits the improvement 
of the trait by genomic selection or whole-genome predic-
tion (WGP), similar to that achieved in cattle breeding. This 
approach shows a great potential for crop improvement 
(Lorenzana and Bernardo 2009; Jannink et al. 2010). Pre-
vious studies have demonstrated that the KRN can be pre-
cisely predicted by genome-wide SNPs using an additive 
model in bi-parent populations (Riedelsheimer et al. 2013; 

Guo et  al. 2013). However, an additive model using hun-
dreds of trait-associated SNPs cannot predict the KRN well 
in the NAM population (Brown et al. 2011). In this study, 
we employed an association panel and three designed F2:3 
populations to detect the loci involved in KRN variation, 
and used various marker sets (MSs) and training sets (TSs) 
to predict the KRN of maize inbred lines and hybrids. Our 
objectives were to dissect the genetic architecture of the 
KRN by GWAS and linkage mapping and to evaluate the 
predictability of WGP for the KRN of maize.

Materials and methods

Genome‑wide association study (GWAS)

Panel 1, which is composed of 513 inbred lines (Table S1, 
Yang et al. 2011, the detailed information of these lines can 
be accessed in http://www.maizego.org/Resources.html), 
was evaluated for the KRN in five environments, Ya’an 
(30°N, 103°E), Sanya (18°N, 109°E) and Kunming (25°N, 
102°E) in 2009 and Wuhan (30°N, 114°E) and Kunming 
(25°N, 102°E) in 2010, under a randomized block design 
with two replicates. At harvesting stage, 8–10 ears in each 
replicate were phenotyped for KRN. The average value of 
the two replicates was considered as phenotype of a given 
genotype, and average KRN in each environment was used 
to calculate the best linear unbiased prediction (BLUP) 
of KRN by the linear mixed models of the SAS software 
(SAS Institute Inc.). The average KRN in each environment 
and the BLUP results were then used for further research. 
The repeatability was calculated by H2 =  δg

2/(δg
2 +  δe

2/nr) 
(δg

2: genetic variance; δe
2: error; n: number of environments, 

and r: number of replicates).
The MaizeSNP50 Genotyping BeadChip was used for 

genotyping Panel 1 (Li et  al. 2012) and total of 48,962 
SNPs with minor allelic frequencies (MAF) ≥0.05 were 
obtained. Both generalized (GLM) and mixed linear model 
(MLM) under a controlling population structure (Q) and 
principal components analysis (PCA) (GLM, GLM + Q, 
GLM + PCA, MLM, MLM + Q and MLM + PCA) were 
applied to establish an association between the SNP and 
KRN using Tassel v. 3.0 (Yu et  al. 2006; Bradbury et  al. 
2007; Zhang et al. 2010). The Meff method was performed 
using SNPSpD package to estimate the number of inde-
pendent tests (Meff) for the 48962 SNPs of Panel 1 (Nyholt 
2004; Li and Ji 2005). The stringent significance thresh-
old was set to 0.05/Meff, which corresponds to a Bonfer-
roni correction on Meff tests. In other studies of dent and 
flint maize panels conducted with the same SNP markers, 
this procedure led to approximately a tenth of the initial 
number of markers (Rincent et  al. 2014). We therefore 
also considered 0.1N as a reference value for comparison. 

http://www.maizego.org/Resources.html
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Therefore, three less stringent thresholds, corresponding to 
0.1/Meff, 0.05/0.1 N and 0.10/0.1N, were also set (N total 
number of SNPs). All of kinship coefficient (K), popu-
lation structure (Q) and principal components analysis 
(PCA) used in GWAS were estimated in a previous study 
(Yang et  al. 2011) and top 10 axes of variations in PCA 
were employed in association analysis. The proportion of 
phenotype variance explained (PVE) by single SNP and all 
associated SNPs were estimated through a linear regres-
sion and corrected for population structure (Q matrix) 
as follow: R2 = 1 − RSS1/RSS0 (Xu 2003). RSS0 is the 
residual sum of squares of a liner regression by population 
structure to phenotype, and RSS1 is the residual sum of 
squares of a liner regression by population structure and 
SNPs (single SNP or all associated SNPs) to phenotype 
(Xu 2003).

Linkage mapping

Three F2:3 mapping populations were derived from 
NX531  ×  SIL8 (NS), TY6  ×  Mo17 (TM) and 
TY6  ×  W138 (TW) with 200, 188 and 284 families, 
respectively. NX531 and TY6 are two inbred lines with a 
high KRN, while SIL8, Mo17 and W138 have a low KRN. 
TY6, Mo17 and W138 were selected from Panel 1 based 
on the genotype at significant association sites. The num-
ber of favorable alleles at the significant association sites 
in TY6, Mo17 and W138 is listed in Table S3. Genome-
wide SSR markers, with 170 for NS, 199 for TM and 184 
for TW, were used to genotype the three linkage mapping 
populations, respectively. The F2:3 families of the NS were 
phenotyped at Xingtai (38°N, 115°E) in 2011; both the TM 
and TW were phenotyped at Xingtai and Wuhan (30°N, 
114°E) in 2012 using a randomized block design with three 
replicates. The broad-sense heritability was calculated 
by Hb

2 = δg
2/(δg

2 + δ2
ge/n + δe

2/nr) (δg
2: genetic variance; δ2

ge: 
genotype × environment variance; δe

2: error; n: number of 
environments; r: number of replicates). The linkage maps 
were constructed by MAPMAKER/EXP V3 (Lincoln et al. 
1992), and then QTL mapping was conducted under addi-
tive and dominant model using the composite interval map-
ping (CIM) algorithm in the Windows QTL Cartographer 
2.5 (Wang et al. 2012) with 5 cM as window size and the 
threshold LOD = 2.5. A physical region which was repeat-
edly detected for KRN QTL in different populations was 
assumed as one common QTL. Previous identified KRN 
QTLs (Austin and Lee 1996; Veldboom and Lee 1996; 
Upadyayula et  al. 2006; Yan et  al. 2006; Liu et  al. 2007; 
Ma et al. 2007; Tang et al. 2010; Tan et al. 2011; Lu et al. 
2011a) were collected and projected to the B73 RefGen_v2 
genome based on the physical location of flanking makers 

(Table S6). The frequency of QTL detected repetitively was 
calculated within a 10 Mb window size sliding every 5 Mb. 
A genomic region which was detected twice or more was 
defined as a KRN QTL hotspot.

Genomic prediction for KRN

To predict the KRN of the inbred lines and hybrids, we 
estimated the predictability by whole-genome prediction 
(WGP). First, the LD among 48,962 SNPs was estimated 
and was used to classify all of the SNPs to LD blocks 
based on the threshold r2 > 0.2. The SNP that was most sig-
nificantly associated with KRN in a given LD block was 
labeled as “tagSNP”, and all of the tagSNPs were pooled 
as a marker bank to sample the marker sets (MSs). Then, 
we performed a WGP using the ridge-regression best lin-
ear unbiased prediction (RR-BLUP) using various MSs, 
training sets (TSs) and validation populations (VPs) (Pie-
pho 2009; Endelman 2011). To compare effect of the MSs, 
we adopted two strategies to form the MSs and then to pre-
dict the KRN using 257 randomly selected lines (half of 
Panel 1) as TSs and both the remaining 256 lines in Panel 
1 and the 54 single-cross hybrids as VPs (Fig. 1a). These 
54 hybrids (Table S2) were produced by biparental cross-
ing among 24 inbred lines, and were phenotyped in 2013 
Xingtai (38°N, 115°E). In Strategy 1, five to 24 K tagSNPs 
(referred to as the Top tagSNPs) were selected according 
to decreasing by significance [−log(p value)]. In Strategy 
2, five to 24 K tagSNPs were randomly sampled from the 
marker bank by automatically incrementing 5 SNPs at the 
next sampling (Fig.  1a). The predictability of the same 
size of MS was determined by five repeated samplings. To 
evaluate the effect of the population structure on the WGP, 
we classified the lines in Panel 1 into two subpopulations: 
temperate lines and tropical/subtropical lines. Half of the 
lines of each subpopulation were randomly selected as TSs 
(temperate TS: Temp-TS; tropical/subtropical TS: Trop-
TS) and the remaining lines as VPs (temperate VP: Temp-
VP; tropical/subtropical VP: Trop-VP) (Fig. 1b). Moreover, 
we selected 300 Top tagSNPs as MS to evaluate the effect 
of the TS size. The size of the TSs was composed of ran-
domly selected 50, 100, 150, 200, and 257 lines in Panel 1. 
The 54 hybrids and randomly selected 256 lines from the 
remainders in Panel 1 were sampled as VPs (Fig. 1c). Each 
of the above-mentioned prediction procedures was repeated 
100 times. The KRN of the inbred lines that was evaluated 
in each five environments, the BLUP over environments 
and the KRN of 54 hybrids that were evaluated in 2013 at 
Xingtai were used as observed values. The correlation (r) 
between the predicted and observed KRN was calculated to 
evaluate the predictability.
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Results

Genome‑wide association study

The KRN phenotypes of Panel 1 were evaluated under 
five environments and showed a normal distribution rang-
ing from 9.3 to 19.7 rows per ear, with an average of 
13.3  ±  1.6 (Table S3). Importantly, the observed KRN 
values indicated high repeatability (93.87  %) (Table S3) 
with significant correlations (r =  0.69–0.85) among the 
five environments (Table S4). As in the study of Yang 
et al. (2011), Panel 1 can be divided into four subpopula-
tions: Tropical-subtropical (TST), Stiff Stalk (SS), Non-
stiff stalk (NSS), and Admix. The KRN of inbred lines 
in the SS (mid-value 14.0, ranging from 11.1 to 15.7), 
Admix (mid-value 13.6, ranging from 12.6 to 14.9) and 
NSS (mid-value 13.3, ranging from 12.3 to 14.2) was 
higher than that in TST (mid-value 12.8, ranging from 
11.8 to 13.6) (Figure S1), indicating the influence of 
population structure for KRN. About 8.04–26.77  % of 
KRN variances under different environments could be 
explained by population structure, indicating that popu-
lation structure might affect the association analysis of 
KRN (Table S3).

To determine the appropriate model for GWAS, six 
models (see “Materials and methods”) were evaluated 
in Panel 1. Compared with GLM model, the three MLM 
models showed a stronger control for Type I error (Fig-
ure S2). In previous studies, the MLM +  Q model was 

successfully applied for GWAS of quantitative traits in 
Panel 1 (Li et al. 2013; Wen et al. 2014). Therefore, this 
model was also chosen for GWAS in this study (Figure 
S2). The number of independent tests (Meff) for the 48962 
SNPs of Panel 1 was 48498.7, similar to total SNPs num-
ber. This result was different from the finding of Rincent 
et  al., who found a larger decrease in Meff compared to 
total SNPs number (2014). Genetic diversity in an asso-
ciation population likely influences the number of inde-
pendent tests. Thus, the estimation of independent tests 
for various genetic materials deserves further investiga-
tion. The 0.05/Meff level of Bonferroni corrected −log(p 
value) was 5.99 (Table  1), and the less stringent −log(p 
value) thresholds, corresponding to 0.1/Meff, 0.05/0.1N 
and 0.10/0.1N, were 5.69, 4.99 and 4.69, respectively 
(Table 1). Under the four thresholds 7, 7, 24 and 31 KRN-
associated SNPs were identified, respectively (Table  1). 
In consideration of possible over correction of the 
MLM + Q model and narrow KRN variation in Panel 1, 
the threshold −log(p value) 4.69 was used to identify a 
larger number of KRN-associated SNPs, thereby the 31 
KRN-associated SNPs were considered for further inves-
tigation. The proportion of phenotype variance explained 
(PVE) by individual SNP ranged from 2.45 to 10 %, and 
24 SNPs had a PVE >5  % (Table S5). In Panel 1, fre-
quency of the allele with positive effect at these 31 SNP 
sites ranged from 0.09 to 0.79 and was less than 0.3 for 
68  % of the sites. Interestingly, frequency of the allele 
with positive effect at the KRN-associated SNPs was 

Fig. 1   The pipelines of KRN 
prediction. a Prediction of 
the KRN in Panel 1 and the 
hybrids using top tagSNPs and 
randomly selected tagSNPs. 
b The effect of the population 
structure on genomic prediction. 
c The effect of the TS size on 
genomic prediction. MS marker 
set, TS training set, VP valida-
tion population, Temp temperate 
lines, Trop tropical/subtropical 
lines

Table 1   The number of KRN significant associated SNPs under four thresholds

Meff = 48498.7009 (the number of independent test); N = 48962 (the total SNPs number)
a  The Bonferroni correction thresholds were corrected by the Meff method (Nyholt 2004; Li and Ji 2005)

Thresholda −log(p value) Yaan (2009) Kunming (2009) Sanya (2009) Wuhan (2010) Kunming (2010) BLUP Total

0.1/0.1 N 4.69 5 8 18 3 1 7 31

0.05/0.1 N 4.99 4 7 13 3 0  4 24

0.1/Meff 5.69 0  2 6 0  0  0  7

0.05/Meff 5.99 0  2 5 0  0  0  7
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negatively correlated with phenotypic variation explained 
by these sites (r = −0.63, p  <  0.0001). Considering the 
criterion of LD with r2  >  0.2, the 31 SNPs belonged to 
17 LD blocks which represented 17 KRN-associated 
genomic loci (Table  2, Fig.  2) including 4 loci covered 
by more than one KRN-associated SNP and 13 loci sup-
ported by single KRN-associated SNP (Table  2, Table 
S5). A total 58.8 % (10/17) of KRN-associated genomic 
loci had a PVE >5  % (Table  2). Furthermore, multiple 
regressions indicated that 51.10–62.05  % of the pheno-
typic variation was explained by these 17 genomic loci 
in the five environments and the BLUP over all environ-
ments, respectively (Table S5).

Linkage analysis

Three F2:3 populations (NS, TM, and TW) were devel-
oped by crossing high KRN lines with low KRN lines 
to map the KRN QTLs. In each of the F2:3 mapping 

populations, ANOVA analysis also revealed significant 
genetic variation in the KRN among the F2:3 families. 
The KRN ranged from 10.2 to 17.4 in NS, 10.7 to 18.1 
in TM and 10.0 to 19.2 in TW (Table S3, Figure S1). 
Additionally, the KRN in the TM and TW populations 
at Wuhan were highly correlated with that at Xingtai 
(Table S3), and exhibited high broad-sense heritability 
with 88.39 % in TM and 78.03 % in TW (Table S3). The 
SSR markers (170 for NS, 199 for TM and 184 for TW) 
were used for the linkage and QTL mapping. A total of 
1836.7  cM-, 2277.7  cM- and 2258.9  cM-length genetic 
maps were constructed for the NS, TM and TW, with 
an average distance among the markers of 10.8, 11.4 
and 12.3 in NS, TM and TW, respectively. A total of 33 
QTLs were detected in the three linkage populations, 
7 in the NS, 13 in the TM and 13 in the TW (Table 3). 
Single QTL explained 2.3–28.4  % of phenotype vari-
ance (Table  3), and 94  % (31/33) of QTLs had a PVE 
>5 % (Table 3). About 63.6 % (21/33) of the QTLs were 

Table 2   Summary of the KRN-associated genomic loci by the GWAS in Panel 1

a  Genomic loci were referred by LD SNPs or neighbor SNPs
b  Associated SNPs number at each genomic locus
c  Chromosome of the KRN-associated genomic loci
d  The environments of associated loci detected, YA Yaan; KM Kunming; SY Sanya; WH Wuhan
e  The significant associated thresholds −log(p value) of the SNPs in each KRN-associated genomic loci could reach
f  The maximum phenotype variance explanation (PVE) of SNPs in each KRN-associated loci across five environments and BLUP
g  Co-localized QTLs detected in NS, TM and TW
h  Co-localize with previous identified QTLs, “*” represents co-localization with KRN-associated SNPs hotspots in NAM population (Brown 
et al. 2011); “#” represents co-localization with previous identified KRN QTL hotspots; & represents co-localization with previous identified 
QTLs (See “Materials and methods”)

Genomic locia SNP Numberb Chrc Envd Significant levele PVE (%)f Co-localized QTLsg Co-localization with 
previous locih

qKRN1 1 1 KM2010 4.69 4.75 qKRN1-2 * #

qKRN2 1 2 BLUP 4.69 2.45 #

qKRN3a 1 3 YA2009 4.69 4.50 &

qKRN3b 2 3 YA2009 4.99 8.16 qKRN3-2 * #

qKRN4a 1 4 WH2010 4.99 2.48 &

qKRN4b 4 4 KM&SY2009 4.99 9.30 qKRN4-1 &

qKRN4c 1 4 KM2009 4.99 5.72 &

qKRN4d 1 4 WH2010 4.99 3.89 &

qKRN4e 10 4 SY2009&BLUP 5.99 9.38 qKRN4-4 * #

qKRN4f 1 4 YA2009 4.99 4.50 * #

qKRN5 1 5 SY2009 4.69 9.66 * #

qKRN6a 1 6 SY2009 4.69 10.00 #

qKRN6b 1 6 SY2009 4.99 6.60 qKRN6-2 * #

qKRN6c 1 6 YA&KM2009 5.99 9.28 qKRN6-2 * #

qKRN9a 1 9 BLUP 4.99 7.00 * #

qKRN9b 2 9 KM2009 5.99 9.93 * #

qKRN10 1 10 WH2010 4.99 4.79
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additive or partially dominant, while 36.4  % (12/33) of 
the QTLs were completely dominant (Table 3). All domi-
nant loci also displayed largely additive effects. Further-
more, the 33 QTLs were clustered into 21 common QTLs 
based on the genomic locations of the flanking markers. 
Of the 21 common QTLs, 12 QTLs had a PVE >5  % 
and 6 QTLs had a PVE >10  % (Table  3). Five QTLs 
(qKRN4–3, qKRN4–4, qKRN5–1, qKRN5–4 and qKRN6–
2) were detected across two environments, and four 
QTLs (qKRN4–4, qKRN5–1, qKRN5–4 and qKRN10–1) 
were detected in two or more populations (Table 3).

Co‑localization between QTL and associated genomic 
loci for KRN

The flanking markers of common QTLs detected in this 
study were projected to the B73 RefGen_v2 to anchor 
the QTL physical location. We found that 61.3 % (19/31) 
of the KRN-associated SNPs or 35 % (6/17) of the KRN-
associated genomic loci (qKRN1, qKRN3b, qKRN4b, 
qKRN4e, qKRN6b and qKRN6c) co-localized with 5 com-
mon QTLs (Table 2; Fig. 2). Furthermore, 75 KRN QTLs 
and 261 KRN-associated SNPs that were identified in pre-
vious studies were collected and were then projected to the 
B73 RefGen_v2. This projection resulted in 22 KRN QTL 
hotspots and 50 KRN-associated SNPs hotspots (Fig.  2). 
A total of 65 % (11/17) KRN-associated genome loci fell 
into the KRN QTL hotspots, among these, five co-localized 
with QTL regions identified in previous studies (Fig.  2; 
Table 2). Nine KRN-associated genomic loci co-localized 
with KRN-associated SNP hotspots which were detected 
in NAM population (Fig.  2; Table  2). Resultantly, 70  % 
(12/17) KRN-associated genomic loci were cross-validated 

by linkage mapping QTLs in this study, as well as by KRN 
QTL hotspots and KRN-associated SNPs in earlier investi-
gations (Fig. 2; Table 2).

Genomic prediction for KRN

According to the LD value, 48,962 SNPs with MAF >5 % 
were grouped into 24,521 LD blocks which were rep-
resented by 24,521 tagSNPs to generate MSs (marker 
sets). Using the MS comprising of 17 SNPs, which repre-
sented 31  KRN-associated SNPs in the GWAS (Table  4), 
the prediction accuracies of the KRN were 0.48–0.60 for 
the inbred lines and 0.64–0.69 for the hybrids (Fig.  3a, 
b). When the MSs increased from 5 to 300 top tag-
SNPs, the prediction accuracies of the inbred lines and 
hybrids increased sharply and reached to the highest level 
(r = 0.78) (Fig. 3a, b; Table 4), while the prediction accu-
racies of the inbred lines decreased when more than 2 K 
top tagSNPs were used. In addition, the prediction accura-
cies also increased quickly when 5–200 randomly selected 
tagSNPs were used, increased slowly when the tagSNPs 
increased from 200 to 1 K (r < 0.35), and rapidly increased 
again when the randomly selected tagSNPs increased from 
1 K to 24 K (Fig. 3a; Table 4). These results suggest that 
the prediction accuracy of the randomly selected tagSNPs 
was lower than that of the top tagSNPs, and that a small 
subset of markers (approximately 300 top tagSNPs) might 
be required for the KRN prediction of the inbred lines; 
additional markers could not improve the predictability. 
For the KRN prediction of the hybrids, a higher prediction 
accuracy (r = 0.76) was observed when ~40 top tagSNPs 
were used and was maintained at a high level along with 
increasing the top tagSNPs (Fig.  3c; Table  4), indicating 

Fig. 2   The distribution of genetic loci for KRN detected in this 
study and previous studies. The X-axis represents chromosomes of 
maize, and the Y-axis represents the frequency of KRN QTL repeti-
tively detected on a certain genomic region by previous studies (Table 
S6). The black arrowhead points out the previous identified KRN 

QTL hotspot. Pentagons KRN-associated SNPs hotspots detected in 
the NAM population (Brown et al. 2011). The black stars and black 
boxes represent KRN-associated loci detected in GWAS and common 
QTLs detected in linkage mapping in this study, respectively
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that the KRN of the hybrids can be predicted by the addi-
tive effect of the SNPs which were estimated using inbred 
lines as a training set.

To evaluate the effect of both the TS and VP in the 
WGP, we compared the predictability of various combina-
tions between the TS and VP. First, when the TSs and VPs 
were divided by population structure (Temp-TS, Temp-
VP, Trop-TS and Trop-VP), the prediction accuracies 
increased sharply with the increasing number of the top 
tagSNPs from 5 to 300 and decreased with the increas-
ing number of the top tagSNPs from 1  K to 24  K. For 

the temp-VP or trop-VP, the prediction accuracies were 
almost the same when the temp-TS and trop-TS were 
used, respectively. Moreover, no matter whether the temp-
TS or trop-TS was used, the prediction accuracies were 
always higher for the temp-VP than for the trop-VP. Sec-
ond, with the increasing TS size, the accuracies increased 
slowly in the prediction of the inbred lines but increased 
quickly in the prediction of the hybrids (Figs.  1c,  3d), 
demonstrating that the TS size affects the predictability 
of whole-genome prediction, consistent with the report of 
Riedelsheimer et al. (2013).

Table 3   KRN QTLs those were detected in three F2:3 families

QTL Env Pop Chr Flanking  
markers

Genetic 
 interval cM

Physical  
interval Mb

LOD A D PVE (%) d/aa Gene  
action

qKRN1–1 2012 XT TM 1 umc2396-bnlg1025 36 24.4 7.83 0.73 −0.29 9.67 0.39 pd

qKRN1–2 2012 XT TW 1 umc1184-M1.108 12.7 37.6 2.77 −0.4 0.39 2.49 0.97 d

qKRN2–1 2010 XT NS 2 bnlg1537-prp2 27.9 24.3 6.07 0.56 0.06 8.82 0.11 a

qKRN3–1 2010 XT NS 3 phi37411-bnlg1325 30.7 4 6.68 0.55 0.04 8.44 0.07 a

qKRN3–2 2012 XT TW 3 umc2152-umc2048 22.4 9.9 4.87 0.41 −0.03 4.21 0.07 a

qKRN4–1 2012 XT TW 4 umc1117-umc1791 12.7 71.1 2.77 0.2 0.24 2.33 1.21 d

qKRN4–2 2012 XT TW 4 umc1346-umc1137 13.6 26.8 2.95 0.31 0.26 3.04 0.84 d

qKRN4–3 2012 WH TM 4 umc1329-umc1194 27.5 14.4 5.98 0.49 0.1 12.67 0.21 a

qKRN4–3 2012 XT TM 4 bnlg1137-umc1086 58.1 22.8 12.63 0.71 0.11 18.54 0.16 a

qKRN4–4 2012 XT TW 4 umc1194-umc2188 40.4 30.6 26.65 1.24 −0.09 26.05 0.08 a

qKRN4–4 2012 WH TW 4 umc1194-umc2188 54.3 30.6 11.8 0.91 −0.01 18.34 0.02 a

qKRN4–4 2010 XT NS 4 bnlg2162-umc1284 63.6 49.7 13.82 0.78 0.07 20.71 0.09 a

qKRN5–1 2012 WH TM 5 umc1097-umc2578 18 17.9 3.92 0.17 0.27 7.31 1.55 d

qKRN5–1 2010 XT NS 5 umc1365-umc1464 66.7 8.9 14.49 1.2 −0.17 28.43 0.14 a

qKRN5–1 2012 XT TW 5 umc2036-umc2578 39.1 13.2 8.51 0.36 0.34 7.71 0.93 d

qKRN5–1 2012 XT TM 5 umc1587-umc1056 19.5 21.5 4.25 0.41 −0.04 5.51 0.11 a

qKRN5–1 2012 WH TW 5 umc1894-umc1056 29.2 19.8 6.35 0.45 0.05 7.4 0.1 a

qKRN5–2 2012 WH TW 5 umc1056-umc1389 26.1 36.7 5.68 0.38 0.2 7.33 0.54 pd

qKRN5–3 2012 XT TM 5 umc1171-bnlg1306 38.3 38.7 8.32 0.78 −0.26 11.78 0.34 pd

qKRN5–4 2012 WH TW 5 umc1941-umc1072 14.1 19.2 3.06 0.46 −0.05 5.48 0.11 a

qKRN5–4 2012 XT TW 5 umc1941-umc1072 25.2 19.2 5.49 0.57 −0.14 6.71 0.25 a

qKRN5–4 2012 WH TM 5 bnlg1306-umc1072 17.2 2.6 3.74 0.6 −0.33 7.79 0.55 pd

qKRN5–4 2012 XT TM 5 bnlg1306-umc1072 11.9 2.6 2.58 0.66 −0.23 4.11 0.34 pd

qKRN6–1 2012 XT TW 6 umc1143-umc1595 45.6 91.9 9.91 0.53 0.18 8.44 0.34 pd

qKRN6–2 2012 XT TM 6 umc1020-umc1296 34 15.4 7.4 0.45 0.26 9.74 0.58 pd

qKRN6–2 2012 WH TM 6 umc1859-umc1248 20.8 14.8 4.53 0.24 0.4 9.96 1.66 d

qKRN7–1 2012 XT TM 7 mmc0171-umc1929 13.9 103.9 3.01 −0.29 0.5 3.34 1.71 d

qKRN7–2 2010 XT NS 7 umc1125-umc1407 12.7 3.4 2.76 0.26 0.27 4.46 1.03 d

qKRN7–3 2012 XT TM 7 umc1983-bnlg1022 12.5 23.5 2.71 −0.27 0.54 3.66 1.99 d

qKRN8–1 2010 XT NS 8 bnlg2181-umc2199 15.1 26.7 3.29 0.39 −0.57 5.39 1.47 d

qKRN9–1 2012 XT TM 9 umc1170-umc1037 12.6 6.1 2.74 −0.01 0.48 4.38 48 d

qKRN10–1 2010 XT NS 10 bnlg1526-umc1506 20.3 15.4 4.4 0.05 0.42 4.96 7.91 d

qKRN10–1 2012 WH TW 10 umc1995-umc1640 19.5 56 4.24 0.65 0.33 15.51 0.51 pd

ENV Environment, XT Xingtai, WH Wuhan, Pop population, Chr chromosome, A Additive effect, D Dominant effect, PVE phenotype variance 
that was explained, pd partial dominant effect, d dominant effect
a  The degree of dominance, d/a (dominant effect/additive effect) (Stuber et al. 1987)
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Discussion

Genetic architecture of the maize kernel row number

Since the first application of molecular marker technology 
in QTL mapping in the 1980s, numerous QTLs for agri-
culturally important traits have been identified in diverse 
populations. The QTLs for KRN have been widely assayed, 
and hundreds of QTLs have been identified (Veldboom 
and Lee 1994; Austin and Lee 1996; Ribaut et  al. 1997; 
Yan et  al. 2006; Lu et  al. 2011a; Li et  al. 2014). In gen-
eral, investigations using segregation populations that were 
derived from biparental cross, such as RILs, BCn, and DH, 
frequently identified only few major QTLs (~10  % PVE) 
and several minor QTLs due to limited allelic effect differ-
ences between the two parents. Evidence from the GWAS 
in the maize NAM population indicates that the flowering 
time (Buckler et al. 2009), resistance to southern leaf blight 
(Poland et al. 2011) and leaf architecture (Tian et al. 2011) 
are dominated by small additive QTLs with few genetic or 
environmental interactions. In this study, KRN of maize 
exhibited a high repeatability and a relatively narrow vari-
ation range, and was influenced by population structure in 
Panel 1. By GWAS, we found about 51.10–62.05 % KRN 
variance in Panel 1 was dominated by 17 genomic loci, 
of which 10 loci had a PVE >5 % (Table 2, Table S5). In 
Panel 1, frequency of positive allele of the KRN-associated 
SNPs ranged from 0.09 to 0.79, was negatively correlated 

with its PVE, and most of SNP sites (68  %) had a low 
frequency of positive allele (<0.3) (Table S5), suggesting 
that those SNPs with low frequency seem to have a large 
genetic effect for KRN. A similar result was also observed 
by Brown et al. (2011), who determined that those loci for 
inflorescence traits have larger effects than do the flower-
ing- and leaf trait-associated loci, and these large effect 
alleles had low frequency. This result indicated that favora-
ble alleles of the KRN-associated loci were held by a few 
inbred lines in Panel 1. As described by Yang et al. (2011), 
Panel 1 is composed of a set of elite inbred lines, including 
parental lines of high vigor hybrids, inbred lines utilizing 
in maize breeding program, and improving lines from the 
germplasm enhancement of maize project (GEM). A low 
frequency of positive allele at the KRN-associated SNPs 
in Panel 1 implicated that favorable KRN alleles have not 
yet been fully integrated into elite inbred lines. Therefore, 
those KRN-associated SNPs and QTLs detected in this 
study give us target loci for improving KRN of elite inbred 
lines of maize.

The consistency between the association loci from the 
GWAS and QTLs from linkage mapping provides a cross-
validation of the mapping results from the two approaches 
and also indicates the important loci for the KRN. In this 
study, three linkage mapping populations were used to 
validate the GWAS results. We found that ~70  % of the 
KRN-associated genomic loci detected in this study were 
cross-validated by KRN QTLs identified in the three F2:3 

Table 4   The prediction accuracies (%) using the top tagSNPs and randomly selected tagSNPs for the inbred lines and hybrids

Strategy 1 for Panel 1: using the top tagSNPs to predict the inbred lines in Panel 1; Strategy 1 for Hybrids: using the top tagSNPs to predict the 
hybrids; Strategy 2 for Panel 1: using the randomly selected tagSNPs to predict the inbred lines in Panel 1

SNP number Prediction 2009 (Yaan) 2009 (Kunming) 2009 (Sanya) 2010 (Kunming) 2010 (Wuhan) BLUP

17 Strategy 1 for Panel 1 53 60 59 48 49 57

Strategy 1 for Hybrids 64 65 69 59 64 68

Strategy 2 for Panel 1 9 10 15 9 14 13

300 Strategy 1 for Panel 1 73 71 78 66 70 77

Strategy 1 for Hybrids 71 69 67 75 69 71

Strategy 2 for Panel 1 27 26 33 22 31 31

1 K Strategy 1 for Panel 1 73 72 78 68 73 78

Strategy 1 for Hybrids 73 71 72 71 74 73

Strategy 2 for Panel 1 31 29 37 27 35 35

10 K Strategy 1 for Panel 1 68 66 72 61 68 73

Strategy 1 for Hybrids 73 69 73 77 75 77

Strategy 2 for Panel 1 46 44 50 40 47 50

20 K Strategy 1 for Panel 1 56 54 61 49 58 61

Strategy 1 for Hybrids 75 70 72 76 74 77

Strategy 2 for Panel 1 45 43 50 41 47 50

24 K Strategy 1 for Panel 1 56 53 61 49 57 60

Strategy 1 for Hybrids 73 70 72 76 74 78

Strategy 2 for Panel 1 55 53 61 49 57 61
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families, KRN QTLs hotspots observed in previous stud-
ies and KRN-associated SNP hotspots detected in NAM 
population (Fig.  2; Table  2). A total of 48  % of common 
QTLs were proved to be consistent with previously iden-
tified QTLs hotspots (Fig.  2). Integrating the KRN QTLs 
that were detected in the previous and present studies by 
linkage and GWAS, we found more than 40 loci, compris-
ing some of the large additive loci (>3 %) and many small 
additive loci (<3 %), which dominate the natural variation 
in the KRN in maize.

On the basis of the degree of dominance (d/a), QTLs that 
were detected in the linkage populations were divided into 
three types: additive, partial dominant, and dominant (Stu-
ber et al. 1987). Of the 33 QTLs that were detected in this 
study, 13 QTLs (39.4 %) were additive, 8 QTLs (24.2 %) 
were partially dominant and 12 QTLs (36.4  %) were 
dominant or overdominant. A total of 6 of the 13 additive 

QTLs (46.2 %) had a PVE >10 %, ranging from 12.67 to 
26.05 %, while 4 of the 12 partial dominant QTLs (33.3 %) 
had a PVE close to or greater than 10 %, ranging from 9.67 
to 15.51 %. Conversely, only one dominant QTL showed a 
PVE close to 10 % (Table 3), clearly indicating that QTL 
with additive and partial dominant effect play a major role 
in the genetic architecture of the KRN.

Whole‑genome prediction of the kernel row number

One of the objectives of the identification of genetic loci 
is to use those loci to guide the improvement of important 
traits in maize hybrid breeding. Brown et  al. (2011) sug-
gested that an additive model showed a low predictive abil-
ity for KRN in NAM. However, in this study, we found that 
the prediction accuracies of the KRN in the maize inbred 
lines and hybrids were higher (r = 0.66–0.78) than in the 

Fig. 3   Predictability using tagSNPs for the kernel row number. a 
Predictability of the top tagSNPs and randomly selected tagSNPs 
in the inbred lines. Continuous lines the prediction accuracies using 
5–24 K top tagSNPs (strategy 1); Dotted lines the prediction accura-
cies using 5–24 K randomly selected tagSNPs (strategy 2). b Predic-

tion accuracies using 5–24 K top tagSNPs for 54 hybrids. c Predic-
tion accuracies of 5–24  K top tagSNPs in different subpopulations 
using different training sets and validation populations. d Predictabil-
ity of different sizes of training sets using 300 top tagSNPs in inbred 
lines and hybrids
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NAM population (Brown et al. 2011) and were similar to 
the predictability in the DH and RIL lines (Riedelsheimer 
et  al. 2013; Guo et  al. 2013). Particularly, a high predict-
ability could be achieved by selecting a small subset of top 
tagSNPs (100–300 top tagSNPs). A similar conclusion was 
also observed in the NAM population for ear trait predic-
tion (Brown et al. 2011), demonstrating the importance of 
trait-associated loci (SNPs) for WGP. Earlier studies have 
suggested that the proportion of genetic variance that is 
explained by the SNPs is important for the accuracy of the 
WGP (Campos et al. 2010; Riedelsheimer et al. 2013). For 
17 of the 300 top tagSNPs that were detected in the GWAS, 
the prediction accuracies were 0.48–0.60 for the inbred 
lines and 0.64–0.69 for the hybrids. The predictability 
could be improved by 18 % by the other 283 top tagSNPs 
that failed to be detected in the GWAS. These results also 
support the hypothesis that the maize KRN in natural popu-
lation is controlled by some of large additive loci and many 
of minor additive loci. In addition, the additive model that 
was used in this study showed a high predictability for the 
KRN of inbred lines and hybrids, indicating that the KRN 
might be mainly controlled by additive loci.

Compared with the randomly selected tagSNPs, the 
top tagSNPs could effectively improve the prediction 
accuracy (Fig. 2a). Interestingly, when the number of top 
tagSNPs was increased to more than 1  K, the predict-
ability for the KRN of inbred lines in Panel 1 decreased 
to R2  <  0.65, which could be obtained by selecting just 
<50 top tagSNPs (Fig. 3a). This result demonstrates that 
a small subset of the trait-associated markers is required 
for the KRN prediction of inbred lines and randomly 
high-density SNPs as a marker set cannot improve the 
predictability in the WGP. A possible interpretation is that 
numerous neutral SNPs, which are not associated with a 
trait, cannot genetically improve the proportion of the var-
iance that is explained by SNPs. Therefore, a small sub-
set of top tagSNPs, which can effectively save cost and 
time, should be recommended for the WGP of the KRN in 
maize molecular breeding.

Both size of TS and relatedness between TS and VP, 
which strongly influence the accuracy of SNP effects, are 
important for predictability in genomic selection (Clark 
et al. 2012; Riedelsheimer et al. 2013). For natural popula-
tion, population structure is also a key factor for dissect-
ing genetic architecture (Rafalski 2010). Inbred lines in 
Panel 1 could be divided by the population structure and 
adaptiveness into temperate and tropical and subtropical 
lines. Although temperate lines and tropical and subtropi-
cal lines show high genetic divergence (Lanza et al. 1997; 
Lu et al. 2011b), the prediction accuracies for the temp-VP 
or trop-VP were almost the same no matter whether temp-
TS or trop-TS was used (Fig. 3c). However, the prediction 
accuracies for trop-VP were lower than that for temp-VP 

(Fig. 3d). Two main factors might result in the decline of 
predictive ability for trop-VP: (1) the rapid LD decay in 
tropical and subtropical lines attenuated the relationship 
between LD tagSNPs and causal variants, led to more false 
positive SNPs detected which, in turn, strongly reduced the 
predictive ability (Lu et al. 2011a; Campos et al. 2010). (2) 
The greater variability among tropical and subtropical lines 
relative to temperate lines (Lanza et al. 1997) might affect 
the accuracy of effects of causal variants. In addition, we 
found that the prediction accuracies were highly positively 
correlated with the TS size in this study (Fig. 3d), indicat-
ing a large sample of the TS is required for the WGP.

In conclusion, by GWAS in Panel 1, we identified 
31 KRN-associated SNPs which represented 17 KRN-
associated genomic loci. In the 17 KRN-associated loci, 
16 loci were validated by 21 common QTLs which were 
identified from three linkage populations (TM, TW and 
NS) and 22 KRN QTL hotspots identified in previous 
studies. Although none of variations in these loci were 
confirmed to be the causal variations for KRN, those Top 
tagSNPs from GWAS were successfully employed to pre-
dict KRN of inbred lines and hybrids using RR-BLUP. 
Moreover, we found a high predictability can be achieved 
through selecting hundreds of the Top tagSNPs in inbred 
lines and hybrids, suggesting the Top tagSNPs should be 
potential target loci for KRN improvement with genomic 
selection in maize breeding.
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