Skip to main content

Advertisement

Log in

Identification and mapping of a novel dominant resistance gene, TuRB07 to Turnip mosaic virus in Brassica rapa

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel dominant resistance gene, TuRB07, was found to confer resistance to an isolate of TuMV strain C4 in B. rapa line VC1 and mapped on the top of chromosome A06.

Abstract

The inheritance of resistance to Turnip mosaic virus in Brassica rapa was investigated by crossing the resistant line, VC1 with the susceptible line, SR5, and genotyping and phenotyping diverse progenies derived from this cross. Both a doubled haploid population, VCS3M-DH, an F2 and two BC1 (F1 × VC1 and F1 × SR5) populations were created. Population tests revealed that the resistance to the TuMV C4 isolate in B. rapa is controlled by a single dominant gene. This resistance gene, TuRB07 was positioned on the top of linkage group A06 of the B. rapa genome through bulk segregation analysis and fine mapping recombinants in three doubled haploid- and one backcross population using microsatellite markers developed from BAC end sequences. Within the region between the two closely linked markers flanking TuRB07, H132A24-s1, and KS10960, in the Chiifu reference genome, two genes encoding nucleotide-binding site and leucine-rich repeat proteins with a coiled-coil motif (CC-NBS-LRR), Bra018862 and Bra018863 were identified as candidate resistance genes. The gene Bra018862 is truncated, but the gene Bra018863 has all the domains to function. Furthermore, the analysis of structural variation using resequencing data of VC1 and SR5 revealed that Bra018863 might be a functional gene because the gene has no structural variation in the resistant line VC1 when compared with Chiifu, whereas at the other NBS-LRR genes large deletions were identified in the resistant line. Allelic differences of Bra018863 were found between VC1 and SR5, supporting the notion that this gene is a putative candidate gene for the virus resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32:195–204

    Article  CAS  PubMed  Google Scholar 

  • Brommonschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 13:1130–1138

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5:501–514

    Article  Google Scholar 

  • Cooley MB, Pathirana S, Wu HJ, Kachroo P, Klessig DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara A, Inukai T, Kim BM, Masuta C (2011) Combinations of a host resistance gene and the CI gene of Turnip mosaic virus differentially regulate symptom expression in Brassica rapa cultivars. Arch Virol 156:1575–1581

    Article  CAS  PubMed  Google Scholar 

  • Gomez P, Rodriguez-Hernandez AM, Moury B, Aranda MA (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol 125:1–22

    Article  Google Scholar 

  • Green SK, Deng TC (1985) Turnip mosaic-virus strains in cruciferous hosts in Taiwan. Plant Dis 69:28–31

    Article  Google Scholar 

  • Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Matsumoto S (2013) Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 8(1):e54745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes SL, Green SK, Lydiate DJ, Walsh JA (2002) Resistance to Turnip mosaic virus in Brassica rapa and B. napus and the analysis of genetic inheritance in selected lines. Plant Pathol 51:567–573

    Article  Google Scholar 

  • Hughes SL, Hunter PJ, Sharpe AG, Kearsey MJ, Lydiate DJ, Walsh JA (2003) Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor Appl Genet 107:1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Nellist CF, Barker GC, Walsh JA (2010) Turnip mosaic virus (TuMV) is able to use alleles of both eIF4E and eIF(iso)4E from multiple loci of the diploid Brassica rapa. Mol Plant Microbe Interact 23:1498–1505

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Sanchez F, Nettleship SB, Foster GD, Ponz F, Walsh JA (2000) The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Mol Plant Microbe Interact 13:1102–1108

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Walsh JA (1996) Pathotypic variation in Turnip mosaic virus with special reference to European isolates. Plant Pathol 45:848–856

    Article  Google Scholar 

  • Joshi RK, Nayak S (2011) Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants. Genet Mol Res 10:2637–2652

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Chandra-Shekara AC, Klessig DF (2006) Plant signal transduction and defense against viral pathogens. Adv Virus Res 66:161–191

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Inukai T, Suehiro N, Natsuaki T, Masuta C (2004) Fine genetic mapping of the TuNI locus causing systemic veinal necrosis by Turnip mosaic virus infection in Arabidopsis thaliana. Theor Appl Genet 110:33–40

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39

    Article  CAS  PubMed  Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG, de Haan P, Hille J (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Lee SA, Yang J, Kim J (2011) Developing stable progenies of xBrassicoraphanus, an intergeneric allopolyploid between Brassica rapa and Raphanus sativus, through induced mutation using microspore culture. Theor Appl Genet 122:885–891

    Article  PubMed  Google Scholar 

  • Lehmann P, Petrzik K, Jenner CE, Greenland A, Spak J, Kozubek E, Walsh JA (1997) Nucleotide and amino acid variation in the coat protein coding region of Turnip mosaic virus isolates and possible involvement in the interaction with the brassica resistance gene TuRB01. Physiol Mol Plant Pathol 51:195–208

    Article  CAS  Google Scholar 

  • Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Liu XP, Lu WC, Liu BX, Li SY, Li JL, Zhao ZY, Wang HJ, Wang CH (1990) A study on TuMV strain differentiation on cruciferous vegetables from ten regions of China: identification results with green’s methods. Virolog Sin 1:82–87

    Google Scholar 

  • Marone D, Russo MA, Laido G, De Leonardis AM, Mastrangelo AM (2013) Plant Nucleotide Binding Site-Leucine-Rich Repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS (2009a) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    Article  PubMed Central  PubMed  Google Scholar 

  • Mun JH, Yu HJ, Park S, Park BS (2009b) Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Genet Genomics 282:617–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Provvidenti R (1980) Evaluation of Chinese cabbage cultivars from Japan and the Peoples-Republic of China for resistance to Turnip mosaic-virus and Cauliflower mosaic-virus. J Am Soc Hortic Sci 105:571–573

    Google Scholar 

  • Qian W, Zhang SJ, Zhang SF, Li F, Zhang H, Wu J, Wang XW, Walsh JA, Sun RF (2013) Mapping and candidate-gene screening of the novel Turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). Theor Appl Genet 126:179–188

    Article  CAS  PubMed  Google Scholar 

  • Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, Moffett P (2008) The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell 20:739–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rusholme RL (2000) The genetic control of resistance to Turnip mosaic virus (TuMV) in Brassica. PhD Theis, University of East Anglia, Norwich

  • Rusholme RL, Higgins EE, Walsh JA, Lydiate DJ (2007) Genetic control of broad-spectrum resistance to Turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol 88:3177–3186

    Article  CAS  PubMed  Google Scholar 

  • Sacco MA, Mansoor S, Moffett P (2007) A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-mediated viral resistance. Plant J 52:82–93

    Article  CAS  PubMed  Google Scholar 

  • Sekine KT, Ishihara T, Hase S, Kusano T, Shah J, Takahashi H (2006) Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death. Plant Mol Biol 62:669–682

    Article  CAS  PubMed  Google Scholar 

  • Seo MS, Jin M, Lee SS, Kwon SJ, Mun JH, Park BS, Visser RG, Bonnema G, Sohn SH (2013) Mapping quantitative trait loci for tissue culture response in VCS3M-DH population of Brassica rapa. Plant Cell Rep 32(8):1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Stobbs LW, Shattuck VI (1989) Turnip mosaic-virus strains in Southern Ontario, Canada. Plant Dis 73:208–212

    Article  Google Scholar 

  • Suh SK, Gree SK, Park HG (1995) Genetics of resistance to five strains of Turnip mosaic virus in Chinese cabbage. Euphytica 81:71–77

    Article  Google Scholar 

  • Takahashi H, Miller J, Nozaki Y, Takeda M, Sukamto, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar SP (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to Cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667

    Article  CAS  PubMed  Google Scholar 

  • Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJC (2002) The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tao Y, Yuan FH, Leister RT, Ausubel FM, Katagiri F (2000) Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12:2541–2554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tornero P, Chao RA, Luthin WN, Goff SA, Dangl JL (2002) Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell 14:435–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18

    Article  CAS  PubMed  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA (1989) Genetic-control of immunity to Turnip mosaic-virus in winter oilseed rape (Brassica-Napus Ssp Oleifera) and the effect of foreign isolates of the virus. Ann Appl Biol 115:89–99

    Article  Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Jenner CE (2006) Resistance to Turnip mosaic virus in the Brassicaceae. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Germany, pp 415–430

    Chapter  Google Scholar 

  • Walsh JA, Rusholme RL, hughes SL, Jenner CE, Bambridge JM, Lydiate DJ, Green SK (2002) Different classes of resistance to Turnip mosaic virus in Brassica rapa. Eur J Plant Pathol 108:15–20

    Article  Google Scholar 

  • Walsh JA, Sharpe AG, Jenner CE, Lydiate DJ (1999) Characterisation of resistance to Turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet 99:1149–1154

    Article  CAS  Google Scholar 

  • Wang J, Lydiate DJ, Parkin IAP, Falentin C, Delourme R, Carion PWC, King GJ (2011) Integration of linkage maps for the amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. Bmc Genomics 12:101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Huoying C, Yuying Z, Hou R (2009) An AFLP marker linked to Turnip mosaic virus resistance gene in pak-choi. Afr J Biotechnol 8:2508–2512

    CAS  Google Scholar 

  • Weaver LM, Swiderski MR, Li Y, Jones JDG (2006) The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant J 47:829–840

    Article  CAS  Google Scholar 

  • Whitham S, Dineshkumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the Tobacco mosaic-virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Yoon JY, Green SK, Opena RT (1993) Inheritance of resistance to Turnip mosaic virus in Chinese cabbage. Euphytica 69:103–108

    Article  Google Scholar 

  • Yu FQ, Gugel RK, Kutcher HR, Peng G, Rimmer SR (2013) Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris. Theor Appl Genet 126:307–315

    Article  CAS  PubMed  Google Scholar 

  • Zhang FL, Wang M, Liu XC, Zhao XY, Yang JP (2008) Quantitative trait loci analysis for resistance against Turnip mosaic virus based on a doubled-haploid population in Chinese cabbage. Plant Breed 127:82–86

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Academy of Agricultural Science, RDA (PJ008673), and the Institute of Planning and Evaluation for Technology, MAFRA (60700-05-3-SB340), Korea.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mina Jin or Guusje Bonnema.

Additional information

M. Jin and S.-S. Lee contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, M., Lee, SS., Ke, L. et al. Identification and mapping of a novel dominant resistance gene, TuRB07 to Turnip mosaic virus in Brassica rapa . Theor Appl Genet 127, 509–519 (2014). https://doi.org/10.1007/s00122-013-2237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2237-z

Keywords

Navigation