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Abstract More accurate and precise phenotyping strate-

gies are necessary to empower high-resolution linkage

mapping and genome-wide association studies and for

training genomic selection models in plant improvement.

Within this framework, the objective of modern pheno-

typing is to increase the accuracy, precision and throughput

of phenotypic estimation at all levels of biological orga-

nization while reducing costs and minimizing labor

through automation, remote sensing, improved data inte-

gration and experimental design. Much like the efforts to

optimize genotyping during the 1980s and 1990s, design-

ing effective phenotyping initiatives today requires multi-

faceted collaborations between biologists, computer sci-

entists, statisticians and engineers. Robust phenotyping

systems are needed to characterize the full suite of genetic

factors that contribute to quantitative phenotypic variation

across cells, organs and tissues, developmental stages,

years, environments, species and research programs. Next-

generation phenotyping generates significantly more data

than previously and requires novel data management,

access and storage systems, increased use of ontologies to

facilitate data integration, and new statistical tools for

enhancing experimental design and extracting biologically

meaningful signal from environmental and experimental

noise. To ensure relevance, the implementation of efficient

and informative phenotyping experiments also requires

familiarity with diverse germplasm resources, population

structures, and target populations of environments. Today,

phenotyping is quickly emerging as the major operational

bottleneck limiting the power of genetic analysis and

genomic prediction. The challenge for the next generation

of quantitative geneticists and plant breeders is not only to

understand the genetic basis of complex trait variation, but

also to use that knowledge to efficiently synthesize twenty-

first century crop varieties.

Introduction

Agriculture faces tremendous challenges in the decades

ahead. The FAO predicts that population and income

growth will double the global demand for food by 2050,

effectively increasing competition for crops as sources

of bioenergy, fiber and for other industrial purposes

(http://www.fao.org). Compounding the pressure for

increased agricultural output are looming threats of water

scarcity, soil fertility constraints, and climate change.

Addressing these problems will require innovative

approaches to both the agronomic and the genetic com-

ponents of crop production systems. More sustainable

management of renewable soil and water resources, in

concert with more efficient utilization of genetic diversity

will be key to achieving the necessary gains in productivity
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(Bakker et al. 2012; Frison et al. 2011; Cai et al. 2011;

Pypers et al. 2011; McCouch et al. 2012).

Genetic diversity provides the basis for all plant

improvement. Historically, plant breeders have sought to

understand the nature of genetic variation by evaluating the

performance of breeding populations over years and loca-

tions. Using replication and sophisticated experimental

designs, they obtained useful insights about trait herita-

bility, the influence of environment, the breeding value of

different parents, and strategies for selecting genetically

superior offspring in the field. With the dawn of the

genomics era, emphasis began to shift toward the evalua-

tion of genetic diversity directly at the DNA level. This

approach is of interest to geneticists for the evolutionary

and functional insights it brings, and to plant breeders as a

source of tools for improving the power and efficiency of

selection. Parallel investments in genotyping and pheno-

typing have generated datasets that can be associated with

each other to address both basic and applied questions.

Geneticists are interested in the nature and origin of

mutations and their functional significance in the context of

both qualitative and quantitative traits. Plant breeders

embrace genomics as a way to document and protect the

genetic composition of plant varieties, trace pedigree

relationships, identify and select valuable mutations, and

gain insight into the nature of genotype by genotype

(G9G) and genotype by environment (G9E) interactions.

The ultimate goal of genomics research in plant breeding is

to contribute to improving the efficiency, effectiveness and

economy of cultivar improvement.

As biology moves from a data-starved and largely

observational discipline to a data-rich science capable of

prediction, it follows the path of physics and engineering

that came before. The tremendous innovation in genomics

technology over the last two decades has been driven by

multi-faceted collaborations between chemists, biologists

and engineers, and today, costs continue to decline while

accuracy and throughput continue to increase (Elshire et al.

2011; Tung et al. 2010). Correlated with the downward

trend in the cost of sequencing is the expanded use of high-

resolution genotyping in plant species that were previously

ignored by the genomics community, a sampling of which

include cassava, common bean, pea, sunflower, cowpea,

and grain amaranth (Bachlava et al. 2012; Ferguson et al.

2011; Hyten et al. 2010; Maughan et al. 2011; Smýkal et al.

2012; Varshney et al. 2009; Varshney et al. 2010). In

addition to offering new insights into diverse germplasm

resources, high-throughput genotyping and next-generation

sequencing (NGS) make it possible to efficiently leverage

genetic information across species. The power of whole-

genome sequencing as a unifying force in biology has

motivated the development of diversity panels and large

mapping populations in many crop species to facilitate trait

dissection and gene discovery (Atwell et al. 2010; Huang

et al. 2010; McCouch et al. 2012; Yu et al. 2008; Zhao

et al. 2011a; Neumann et al. 2011; Pasam et al. 2012). It

has also catalyzed new thinking about how to manipulate

the genetic variation that exists in elite gene pools (Chen

et al. 2011; Thomson et al. 2011; Trebbi et al. 2011).

With the deluge of low-cost genomic information on

important crop species, a fundamental change in research

emphasis is needed to address the shortage of high-quality

phenotypic information. At this time, phenotyping has

replaced genotyping as the major operational bottleneck

and funding constraint of genetic analyses. Unlike geno-

typing, which is now highly mechanized and essentially

uniform across organisms, phenotyping is still a cottage

industry, species-specific, labor intensive, and inevitably

environmentally sensitive. Further, while sequence varia-

tion is theoretically finite, and thus all sequence variants

could conceivably be discovered for a given crop species,

there is no expectation that the phenome will ever be fully

characterized (Houle et al. 2010). The phenome of an

organism is dynamic and conditional, representing a com-

plex set of responses to a multi-dimensional set of endog-

enous and exogenous signals that are integrated over the

evolutionary and developmental life history of an individ-

ual. Phenotypic information can be envisioned as a con-

tinuous stream of data that changes over the course of

development of species, a population or an individual in

response to different environmental conditions. While it can

be associated with genomic information to understand the

components of phenotypic variation that are due to genetics,

with increasing availability of high-density genotypic

information, understanding genotype–phenotype relation-

ships is becoming more dependent on the availability of

high-quality phenotypic and environmental information.

Over the next two decades, the development of pheno-

typing strategies will almost certainly mirror innovations in

genotyping technology that have occurred over the last

20 years, characterized by increasing automation and

throughput (Rafalski and Tingey 1993; Perlin et al. 1995;

Sheffield et al. 1995; Weber and Broman 2001). As the

science of phenotyping evolves, emphasis will increasingly

be placed on generating information that is as accurate

(able to effectively measure traits and/or performance

characteristics), precise (small variance associated with

replicated measurement), and as relevant as possible, while

keeping costs within reasonable limits. If developments in

genotyping offer a roadmap for where phenotyping is going

in the future, these objectives will be reached based on new

forms of automation and collaborations between biologists,

engineers and computer scientists.

The purpose of this review is to outline considerations

related to the future of phenotyping as the basis for asso-

ciation mapping and gene discovery as well as for
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developing predictive genomic selection (GS) models for

crop improvement.

Association between phenotype and genotype

The central challenge of modern genetic analysis is to

understand the biological determinants of quantitative

phenotypic variation. To date efforts in the plant genetics

community have done well at identifying genes underlying

traits controlled by one or a few loci with large effects.

This is particularly true in the major crop species where

genetic analyses have identified the biochemical basis of

many important phenotypes (particularly, resistance to

biotic and abiotic stress) and have also been the driving

force behind the development of tools for marker-assisted

selection in crop improvement (Foolad and Panthee 2012;

Jin et al. 2010; Paux et al. 2010; Robbins et al. 2010).

However, understanding complex trait variation has proven

frustratingly difficult, as the genetic architecture of these

important traits often involves many loci of small effect

that may interact with each other as well as with the

environment (Buckler et al. 2009; Collard and Mackill

2008; Schuster 2011). To discriminate such small effects, a

combination of technologies and statistical methods are

now being employed. NGS technologies have provided an

economically feasible way to survey genetic variation with

a resolution that is now limited more by the linkage dis-

equilibrium (LD) in a particular mapping population than

by marker density. This phenomenon has motivated the

assembly of large panels of genetic diversity as well as the

creation of large inter-mated populations to manipulate LD

and facilitate the association of genotype with phenotype

(Huang et al. 2011; Morris et al. 2013; Yu et al. 2008; Zhao

et al. 2011a). These large and diverse populations aim to

increase the recombination frequency and the frequency of

rare alleles in order to enhance the power to infer the

effects of individual loci. This also highlights the need for

careful population design and advocates for the inclusion

of admixed lines that may provide statistically useful

observations of allele effects in diverse genetic

backgrounds.

Phenotyping for genomic selection

The emphasis on precision-phenotyping represents a sig-

nificant change for breeders engaged in variety develop-

ment who have traditionally favored simplicity, speed, and

flexibility over sensitivity, precision and accuracy. This is

because, historically the advantages of the latter could not

be translated into economically relevant genetic gain in a

breeding context. We argue that this paradigm is beginning

to change with the potential to integrate GS into a variety

development program. As the cost and efficiency of

obtaining genomic information on large numbers of indi-

viduals dips below the cost and efficiency of evaluating

populations phenotypically over years and environments,

the breeding community is alert to the idea that genomic

information can be leveraged to predict phenotypic out-

comes (Cabrera-Bosquet et al. 2012; Heffner et al. 2009;

Heslot et al. 2012). Further, the use of Bayesian models

facilitates the analysis of sparse data (where not all indi-

viduals or families are evaluated phenotypically in each

environment) and strongly suggests that there are cost-

effective experimental designs that can dramatically reduce

the amount of replication needed to extract meaningful

phenotypic performance indicators for a population (see

section on ‘‘Analysis, adjustment, and value extraction of

phenotypic data’’).

If the accuracy of genomic predictions is sufficient to

offset the time and expense required to evaluate the per-

formance of the breeding populations in the traditional

manner, and if GS demonstrates a clear increase in the rate

of genetic gain per cycle of selection, then breeders will

quickly adopt the most efficient strategy to accomplish

their goals. This may require staggered use of traditional

and precision-phenotyping, depending on the trait(s) and

the species under consideration. What is important is

breeders begin to reevaluate how a focused investment in

precision-phenotyping of a training population may be able

to minimize the requirement for costly, extensive pheno-

typing of large numbers of lines every generation in the

future. The purpose of this paper is to explore some of the

key dimensions of next-generation phenotyping that will

allow geneticists and breeders to productively interrogate

the complex ménage-à-trois between genotype, phenotype

and the environment as well as to develop models that

leverage genotypic information to predict phenotypic

outcomes.

Under a GS model, precision-phenotyping is most

important when evaluating a training population because

that dataset provides the basis for developing the statistical

model that is then used to predict phenotypic performance

in related members of a breeding population. The model is

derived from the relationship between phenotype, geno-

type, and G9E, where marker genotypes are treated as

random variables. GS is particularly useful when it can

save a generation or two of time-consuming and expensive

phenotyping, as only comparatively small training popu-

lations need be screened.

Genomic selection aims to model genome-wide SNP

variation without concern for identifying particular alleles,

loci or pathways or understanding how different alleles

contribute to the phenotype. Since the metric of success is

the ability to predict the performance of an adapted line or
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variety under relevant agronomic conditions, it is important

to consider phenotyping strategies that (1) estimate crop

performance under appropriate management conditions in

the field; (2) can evaluate performance across a population

of target environments; and (3) can generate useful data in

real time without a disproportionate investment in labor

and infrastructure. Despite the advantages of accelerating

the breeding cycle, the ability of GS models to accurately

predict phenotype is dependent on using prohibitively large

training populations when working with traits with low

heritability and complex inheritance (Calus et al. 2008;

Guo et al. 2012; Hayes et al. 2009; Heffner et al. 2010; Jia

and Jannink 2012; Kumar et al. 2012; Nakaya and Isobe

2012; Munoz et al. 2011; Resende et al. 2012; Zhao et al.

2011b; Zhong et al. 2009). This is due to the fact that G9E

interaction plays a major role in explaining field perfor-

mance, and GS is highly dependent on a prediction model

developed from a limited sampling of the environmental

variance. Recombination also disrupts phasing of markers

and leads to low accuracy of predictions as breeding gen-

erations are farther and farther removed from the training

population. Further research is needed to improve the

accuracy of prediction under GS models.

Phenotyping for QTL and gene discovery

In contrast to GS, phenotyping of a diversity panel for

genome-wide association studies (GWAS) or a bi-parental

mapping population for QTL analysis is designed to

interpret and dissect the genetic architecture of complex

traits and to understand how specific DNA variants con-

dition the inheritance of diverse phenotypes. Both forms of

linkage mapping are successful at implicating genomic

regions involved in complex trait variation, but cloning the

gene(s) underlying the QTL remains time-consuming and

resource intensive, even when the QTL explains a sub-

stantial proportion of the phenotypic variation (Bhatta-

charyya 2010; Fan et al. 2006; Krattinger et al. 2009; Li

et al. 2010; Liu et al. 2008; Saito et al. 2010). Bi-parental

populations are limited by the particular alleles present in

the parents, but they offer power for QTL dissection

because population structure is disrupted and genetic

background differences in the progeny are constrained.

Association mapping studies, on the other hand, generally

provide higher resolution of QTL for the same number of

lines and evaluate a wider array of alleles but are limited by

the inability to interrogate rare alleles or to dissect phe-

notypes that are perfectly correlated with population

structure (Manolio and Collins 2009; Price et al. 2006;

Pritchard and Cox 2002; Reich and Lander 2001). When

large numbers of markers are used for either QTL analysis

or GWAS, a multiple test correction is required to limit the

false discovery rate. With ever-improving approaches to

statistical modeling and improvements in the accuracy and

precision of phenotyping, both forms of linkage mapping

hold great promise for elucidating the genetic architecture

of complex traits and identifying the genes and specific

alleles underlying trait variation.

Sampling vs. controlling environmental variation

Different approaches to phenotyping are required for dif-

ferent purposes (Campos et al. 2004; Crouch et al. 2009;

Gordon and Finch 2005; Kloth et al. 2012; Masuka et al.

2012; Pieruschka and Poorter 2012). Plant breeders have

traditionally relied on large-scale replication of phenotypic

trials over years and locations to identify individual fami-

lies or populations that perform best in a target population

of environments (TPE). By modeling locations and years as

random effects, they were able to reliably extract genetic

signal from environmental noise and identify varieties with

broad or narrow zones of adaptation (Beavis 1998), though

the process was very time and labor consuming. Many

geneticists, on the other hand study phenotypic variation at

the cell or tissue-specific level using plants grown under

carefully defined environmental conditions, and evaluate

cascades of molecular events using biochemical and

‘‘omics’’ technology. The world of the plant breeder and

that of the molecular geneticist intersect at the level of the

plant, but the different scales of phenotyping make it

challenging to integrate the knowledge contributed by each

community into a unified and comprehensive view of the

genetic determinants of plant growth, development and

response to environment.

Under field conditions, it is often convenient to collapse

quantitative phenotypes into discrete categories to facilitate

manual data collection in real time and at reasonable cost.

This has been the practice for many years among breeders

and geneticists working with large, field-grown popula-

tions, and different communities of researchers have

developed standardized categorical scales or indices for

important whole-plant phenotypes that are easy to apply

(Clarke et al. 1992; De Boever et al. 1993; International

Rice Research Institute 1996; Kuhn and Smith 1977; Mo-

lina-Cano 1987; Yuan et al. 2004). For example, traits such

as flowering time or disease resistance are frequently

estimated using a visual assessment of ‘‘days to 50 %

flowering’’ in a row or plot, or ‘‘percent leaf area affected’’

on individual diseased plants. Historically, trait evaluation

using these indices was reliable enough to provide rea-

sonable data in the context of plant breeding. However,

new population designs (Yu et al. 2008) in combination

with high-density marker coverage have increased the

power to detect small-effect QTL and estimate their
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effects, even on whole-plant phenotypes. This suggests that

more rigorous, quantitative approaches to phenotyping are

likely to bring rewards. Further, when there is significant

variability in phenotypic scores collected by different

individuals, more objective phenotyping protocols are

desirable (Poland and Nelson 2010).

Recently, it has been argued that automated, high-

throughput, field-based organismal phenotyping techniques

involving remote sensing (such as near-infrared spectros-

copy mounted on agricultural harvesters to measure spec-

tral canopy reflectance with the aid of global positioning

system (GPS)-guided tractors) will enhance the precision

and accuracy of phenotyping without extracting plants

from the production environment (Cabrera-Bosquet et al.

2012; Houle et al. 2010; Montes et al. 2007; Tuberosa

2012; White et al. 2012). While these efforts can certainly

facilitate selection for enhanced performance in a target

zone of adaptation, one of the biggest challenges associated

with these automated, field-based technologies is the var-

iable nature of most natural environments.

To enhance the ability to screen for stress tolerance in

field-grown plants, scientists often use plant populations to

‘sample’ the degree of stress encountered in a TPE. Once

this has been ascertained, the TPE is used to evaluate the

relative performance of different populations over several

growing seasons. This requires significant up-front invest-

ment, as many different locations must be tested over

multiple years in order to make an accurate estimation.

Alternatively, breeders use ‘‘managed stress’’ as a way of

optimizing screening protocols for application to large

plant populations in the field. By managing the amount and

timing of water, fertilizer, pest control or soil amendments,

plants can be exposed to fairly reliable levels of stress

while experiencing normal temperature, day length, etc.,

over the course of the growing season. These approaches

work well if the genetic component of phenotypic variation

(heritability) is high, and if the differences among popu-

lations or individuals within a population are large. How-

ever, in cases where complex traits are conditioned by

many alleles with small effects, the error associated with

estimating the phenotype and the environmental variance

contributing to the observed phenotypic variation are likely

to dilute the relatively weak genetic signals and may pre-

clude their detection.

To partially overcome this problem, many researchers

have endeavored to take advantage of phenotyping strate-

gies based on analytical chemistry (i.e. gas chromatogra-

phy–mass spectroscopy, high performance liquid

chromatography, inductively coupled plasma spectroscopy,

etc.) or a wide range of -omics technologies (transcripto-

mics, metabolomics, ionomics, proteomics, etc.). These are

all highly automated and are important and useful due to

their high throughput and high accuracy. They are

generally used to analyze specific anatomical parts of a

plant at a particular time(s) in its development, and are best

used on plants grown under well-defined growing condi-

tions. Owing to the high cost per sample and the require-

ment for considerable technical expertise and

infrastructure, these techniques may not be available to

everyone and it may not be economically feasible to survey

large numbers of field-grown plants. Thus, it often makes

sense to first screen a population under controlled condi-

tions with minimal replication and once a hypothesis about

the genetic control of a trait of interest is formulated, it can

be tested in a focused way in the field, or simply used to

eliminate a large proportion of a population prior to

undertaking field evaluation.

Screening populations under controlled conditions is

also appropriate when the controlled environment is nec-

essary to impose a particular form of stress or to permit

growth of plants under specific conditions that cannot be

replicated in the field. Controlled environments have been

successfully used to inoculate plants with a particular strain

of a pathogen, or to impose a particular abiotic stress such

as aluminum toxicity without the natural coupling with

phosphorus deficiency, or high CO2 in combination with a

critical night time temperature. Use of multi-step strategies

involving both controlled and field environments are often

the best way to maximize the extraction of useful genetic

information while minimizing the expense and time

involved (Fernie and Schauer 2009; Rafalski 2010).

Drought tolerance as an illustration

While a complete survey of advances in drought pheno-

typing is beyond the scope of this review (see Mir et al.

2012 for a detailed overview of this topic), drought toler-

ance offers a compelling example of a combined approach

of leveraging both controlled and uncontrolled phenotyp-

ing designs to enhance genetic analysis. The onset of water

deficit and its impact on plant performance is a dynamic

process that occurs across space and time. Under field

conditions the inability to obtain standardized and consis-

tent drought stress contributes to a loss in heritability and

presents a challenge for both selection and mapping

experiments (Berger et al. 2010). Many different approa-

ches have been used to apply defined levels of drought

stress in an effort to understand the nature of this complex

trait, ranging from chemically manipulating osmotic bal-

ance in hydroponics (Rengasamy 2010; Tavakkoli et al.

2010) to conveyer systems in glasshouses with digitally

controlled irrigation systems (Granier et al. 2006; Jansen

et al. 2009; Neumann 2013; Pereyra-Irujo et al. 2012) to

the use of rainout shelters in the field (Czyczyło-Mysza

et al. 2011; Dodig et al. 2012; Zhu et al. 2011a).
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Measurements of drought tolerance likewise range from sur-

veys of root system architecture (Ibrahim et al. 2012; Landi

et al. 2010; Lopes et al. 2011; Steele et al. 2007; Zhu et al.

2011b; Clark et al. 2011) to physiological metrics related to

water status (Bartlett et al. 2012a, b; Blum 2009; Gilbert et al.

2011; Ogburn and Edwards 2012; Tucker et al. 2011) to

spectral imaging of shoot tissue (Berger et al. 2010; Goltsev

et al. 2012; Liu et al. 2011; Zia et al. 2012) to simply evaluating

yield under stress in the field (Bennett et al. 2012; Bernier et al.

2007; Ghimire et al. 2012; Golabadi et al. 2011; Messmer et al.

2009; Rehman et al. 2011; Swamy et al. 2011; Venuprasad

et al. 2012; Vikram et al. 2011). Screening can be done using

in-house facilities (growth chambers, green houses) or out-

sourced to a phenotyping facility such as the Jülich Plant

Phenotyping Centre—JPPC (Jülich, Germany; http://www.fz-

juelich.de/ibg/ibg-2/EN/About_us/organisation/JPPC/JPPC_

node.html9), the Leibniz-Institut für Pflanzengenetik und

Kulturpflanzenforschung—IPK (Gatersleben, Germany; http://

www.ipk-gatersleben.de/), the Plant Accelerator� (University

of Adelaide, Australia; http://www.plantaccelerator.org.au/), or

the High Resolution Plant Phenomics Center—HRPPC

(CSIRO Plant Industry, Canberra Australia; http://www.plant

phenomics.org/HRPPC). The two former facilities are part of

the larger European Plant Phenomics Network (http://

www.plant-phenotyping-network.eu/) and the latter two are

part of the Australian Plant Phenomics Facility (http://www.

plantphenomics.org.au/). Each system presents its own

advantages and disadvantages, but collectively they empower

the researcher to investigate plant response to drought in ways

that are more comprehensive than any one design can offer.

These approaches are most often utilized for linkage mapping

and gene discovery, and once QTL or candidate genes are

identified, they can be validated for practical application by

evaluating specific germplasm, genetic stocks or breeding

populations under managed drought conditions in the field (Ali

et al. 2010; Cavanagh et al. 2008; Huang et al. 2012; Kholová

et al. 2010; Saisho and Takeda 2011; Venuprasad et al. 2011;

Yadav et al. 2011). If validated, lines carrying the genes or

QTLs of interest will be useful for elucidating the molecular

mechanism(s) involved in the component trait(s), and will also

be of immediate value as donor material for breeding with elite

germplasm.

Examining the relationship between phenotypic varia-

tion under controlled environments and that observed

under field conditions offers valuable insights that can be

used to iteratively improve controlled environment phe-

notyping techniques so they are more predictive of plant

performance in the field (Table 1; Fig. 1). Ultimately, the

choice of phenotyping approach will depend on the inten-

tion of the researcher, the size of the population in question

[e.g. less than ten individuals for precise physiological

experiments, to a moderate number of lines (200–400) for

mapping studies or GS training populations, or a large

number of lines (400–1,000?) for association studies], the

heritability of the phenotype, the tractability of the phe-

notype to controlled environment testing, and resource

availability.

Development of technology and phenotyping tools

The creative use of technology and careful development of

tools to automate processes without sacrificing predictive

power will be critical as next-generation phenotyping

platforms are developed. This can be a real challenge as

many experimental techniques in plant physiology,

molecular biology and breeding can be restrictive and

require specialized protocols that are often difficult to

standardize. The integration of these approaches will be

necessary to fully interrogate the genetic landscape of

complex traits. Standardized phenotyping systems are not

feasible for all research questions, but with thorough con-

sideration and clearly defined objectives, many techniques

can be harnessed to investigate specific traits under high-

throughput settings.

In recent years, automation, imaging, and software

solutions have paved the way for many high-throughput

phenotyping studies. Semi-automated systems have been

successfully applied to investigate various components of

plant growth and development, and can be used to help

tackle basic research questions when combined with

genetic mapping strategies (Famoso et al. 2010). Addi-

tionally, automated systems have allowed researchers to

reduce the labor needed to manage and perform large-scale

growth screens in laboratory, greenhouse and field envi-

ronments (Nagel et al. 2012).

Aside from mechanization, digital imaging has emerged

as a cornerstone to capturing quantitative phenotypic

information under most automated or semi-automated

approaches. Imaging has allowed many aspects of plant

Table 1 Factors to consider when evaluating if a field-based or

environmentally controlled phenotyping platform is most appropriate

Controlled conditions Field conditions

Minimizes environmental variation and

increases heritability

Maximizes relevance to

breeders and farmers

Increased precision of critical

measurements

Characterizes the range of

environmental variation

Maximizes information from a

minimum of replicates

Evaluates over time as well as

space

Decreases cost through automation and

standardization

Estimates

genotype 9 environment

interaction

Develop hypotheses to be tested on a

targeted set of lines in the field

Refine hypothesis and develop

new screening protocols
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Azucena
(upland rice variety)

              IR64
(lowland rice variety)

A 

B

Fig. 1 The choice of phenotyping under controlled conditions vs.

field environments depends greatly on the purpose of phenotyping,

heritability of the trait, and logistical considerations of data collection.

a High-clearance tractor measuring the height, temperature, and

spectral reflectance of young cotton plants. Such a system is

reasonably high-throughput and can measure canopy traits with high

accuracy and precision. These traits typically have high heritability

and are considered component phenotypes of yield under drought

stress (reprinted from White et al. 2012, copyright 2012, with

permission from Elsevier). b Ten-day time course of root system

growth in three dimensions of two divergent varieties of rice from

Clark et al. (2012). Roots are notoriously difficult to phenotype in the

field and root architecture in particular. This phenotype lends itself

well to controlled conditions as the logistics of evaluating roots are

more tractable, and it permits the exploration of otherwise un-

surveyable phenotypes such as center of mass and dynamic tracking

of architecture development over time (copyright American Society

of Plant Biologists)

Theor Appl Genet (2013) 126:867–887 873

123



development, function, and health to be monitored, mea-

sured and tracked in ways previously unattainable using

conventional metrics. Large image data sets, however,

require novel software solutions in order to process and

extract meaningful estimates of phenotypic variation. Most

image analysis tools for plant phenotyping incorporate

predefined processing and analysis procedures into semi-

automatic or automatic routines in order to quantify mul-

tiple phenotypes from single images or groups of images.

In its essence, high-throughput phenotyping means

integrating and optimizing a phenotyping process in a way

that makes it as efficient and controlled as possible. In

considering efficiency, several questions and decisions

arise related to the accuracy, precision, automation, and

adaptability of various stages of the phenotyping process,

from growth techniques to experimental design and man-

agement practices to data capture and analysis strategies.

The accuracy and precision of the treatment and mea-

surement process is a fundamental concern during any

experimental procedure. During phenotyping studies where

multiple individuals and replicates from different genetic

backgrounds are evaluated across batches, effectively

controlling the accuracy and precision of the phenotyping

system will have direct impacts on the outcome of the

analysis. Accuracy and precision are intimately interre-

lated, where accuracy represents how close the process or

measurement is to the absolute truth and precision repre-

sents the repeatability or variance of the measurement

process. Accuracy is important when there is variation

across individual genotypes during mapping experiments.

For instance, Clark et al. (2011) characterized the root

systems of a rice bi-parental recombinant inbred line (RIL)

population, and found that one parental genotype had

dense, highly branched root systems while the other had

long, sparse root systems. In order to clearly capture these

differences, a system needed to be designed that could

correctly quantify both types of root systems in order to

properly assess their relationship and further analyze var-

iation within the progeny. Comparison and validation

studies with known standards, such as the use of comple-

mentary imaging modalities or other quantification soft-

ware, can help evaluate the accuracy of a system.

Precision is critical when individual genotypes have

multiple replicates that are evaluated across several bat-

ches. Presuming that the replicates share similar charac-

teristics, the measurement system must be able to quantify

the features in a repeatable way to prevent unpredictable

system noise from masking the true similarities/differences

between the genotypes. While there are statistical approa-

ches for accounting for unwarranted variability in silico,

efforts to improve the precision of data collection will only

serve to enhance the statistical power of any analysis per-

formed. The key to maintaining precision throughout a

phenotyping activity is to employ stable instrument designs

that can effectively control precision, such as the fixed

lighting and camera setups used in the root systems in

studies cited previously.

Unfortunately, there will always be trade-offs between

the maintenance of accuracy, precision, and the ultimate

throughput of the phenotyping approach. As throughput

and standardization increase, it necessitates a drop in

accuracy and precision that must be carefully monitored in

order to maintain the economic feasibility of the data

collection. It is not always straightforward to properly

balance these trade-offs, but through iterative design and

testing, phenotyping tools can be established to satisfy

research objectives and meet resource constraints.

The level of automation employed by a phenotyping

approach is counter-balanced not only by trade-offs with

accuracy and precision, but also with adaptability.

Increasing automation improves throughput and reduces

labor costs, but also results in more specialized designs that

have less adaptability and predictive power, and are prone

to errors from non-standard individuals. This principle is

illustrated well when image analysis involves batch pro-

cessing many photographs using predefined algorithms and

commands. It is fairly obvious that batch processing is

invaluable during large-scale phenotyping experiments

where thousands of images can be generated daily, but this

also means that the software must rely on a rigid set of

constraints. The quality of the images is usually not a

problem during high-throughput phenotyping where the

imaging process is standardized, but if any individuals

deviate from pre-specified growth assumptions of the

measurement algorithm, unpredictable and misleading

measurement errors can arise. Even with automated anal-

ysis algorithms that have been thoroughly tested, it is

necessary for the experimenter to manually check and

validate the system outputs regularly. Along those same

lines, incorporating user-guided processes into the pheno-

typing pipeline can also provide a useful compromise that

improves the flexibility while maintaining the efficiency

needed to perform large experiments (Clark et al. 2012; Le

Bot et al. 2010; Lobet et al. 2011).

Most phenotyping tools that have been developed by

research groups in the public and private sector are inte-

grated in a way that makes them easy to disseminate and

use, but sometimes this convenience can limit the range of

their functionality to other studies. While this has precip-

itated the release of a number of software programs

available for the extraction of phenotype data from images

(Table 2), the highly specific nature of individual pheno-

types also motivates the development of in-house tools

ideally suited to the analysis at hand. Although it is not a

simple task, implementing modular designs will help

increase flexibility of phenotyping in the future. The
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ImageJ analysis tool is a good example of the successful

incorporation of modular designs in the software realm

(Schneider et al. 2012). This image processing software

allows users to create and share custom-developed plugins

that expand the functionality of the software and make it

applicable to wide range of research disciplines. Modular

concepts have proven quite successful for the high-

throughput phenotyping of notoriously difficult phenotypes

such as root system traits. A notable example is GiaRoots,

a software program that allows users to incorporate their

own processing and algorithms into the automated analysis

routines as a way of overcoming the limitations imposed by

more integrated approaches (Galkovskyi et al. 2012).

Access, storage, and management of phenotypic data

It is clear then, that much of next-generation phenotyping

will be done at the intersection of the fields of biology,

engineering, and computer science. Progress in developing

technology in these disciplines that empowers next-gener-

ation phenotyping strategies is moving forward rapidly.

However, congruent with the progress in the capability to

collect high-throughput phenotypic data, is the growing

problem of managing these data sets in ways that empower

value extraction. Retrofitting a lab to handle the rapid

influx of phenotype data could require significant invest-

ment in facilities, device control systems and computa-

tional resources.

For experiments that are only measuring a few traits on a

panel of germplasm, setting up a local (customized) phe-

notyping system in-house might be practical; but in such

cases, a laboratory information management system (LIMS)

or local database may be needed to manage the high vol-

umes of phenotypic information. Generally, there are no

‘off the shelf’ solutions that can be applied universally, so

some computer expertise will be needed for data manage-

ment. Even so, organizing that information into a ‘‘phe-

nome’’ is challenging because of the continuous, multi-

faceted, and interpretive nature of what a phenotypic

observation is, contrasted with the ‘‘discrete’’ nature of

genotypic data, which can be abstracted into a single

alphabetical character (National Science Foundation 2011).

Beyond the technologies used to run, collect and digest

large-scale phenotypic evaluations, the field of phenomics

faces similar bottlenecks that genomics has been grappling

with as the drop in cost of DNA sequencing outpaces the

cost of hard drive data storage (Stein 2010). Though there

is ample exploration that can be done on genomic data

alone, for many plant researchers, associating and enrich-

ing genotype data with phenotypic manifestations contex-

tualized by the field environment is a vital part of gaining

true biological insight and solving agronomic problems.

The storage of phenotype data at this scale has become a

sub-discipline on its own and some projects are dealing

with it quite well. There are many public databases that

have been working to organize and collate plant phenotype

data (Lai et al. 2012; Table 3), but most only have the

current capacity to present free-text phenotypic descrip-

tions of mutants, e.g. SoyBase (Grant et al. 2010) and

MaizeGDB (Schaeffer et al. 2011). Some crop databases

have tried to move beyond this paradigm by including

functionality for the management of phenotypic measure-

ments, predominantly from either managed field trials or

GWA studies [e.g. T3 Triticeae Toolbox (http://triticeae

toolbox.org), Panzea (Canaran et al. 2008), and Gramene’s

diversity module (Chen et al. 2010)]. They are also among

a number of projects preparing for an increasing amount of

association data emerging from the marriage of powerful

genomic information with next-generation phenotyping.

One effort is NCBI’s dbGAP (Mailman et al. 2007), which

was created as a public repository for phenotypes, geno-

types and the associations between them. Currently, how-

ever, dbGAP only accepts human data.

There are a few database projects that specialize spe-

cifically in plant phenomics data, and deserve to be high-

lighted. The first example of these is PHENOPSIS DB

(Juliette et al. 2011), which mainly houses information

regarding the growth response of Arabidopsis thaliana to

various environmental conditions. The database is popu-

lated with phenotype information extracted from images

and measurements collected automatically in specialized

growth chambers. The collaborative international network

for ionomics ( http://www.ionomicshub.org; Baxter et al.

2007) is a second example that hosts ICP-mass spectrom-

etry ionomics data for thousands of Arabidopsis, rice, and

yeast samples with the goal to facilitate the understanding

of response mechanisms in plants to various nutrient

availabilities and/or abiotic toxicities.

Additionally, there are other efforts in human and mouse

genomics research that could serve as useful models for

continued development in the plant phenomics domain.

Mouse genomics informatics (MGI), (http://www.infor

matics.jax.org) comprise several database projects,

including the mouse genome database (MGD), (Eppig et al.

2012) and houses a variety of tools for searching and

browsing large phenotype data sets. PhenomicDB is

another, multi-species (primarily human, mouse, fruit fly,

and yeast) resource designed to empower ‘‘comparative

phenomics’’ (Kahraman et al. 2005). The nutritional phe-

notype database (Van Ommen et al. 2010) is a third, which

focuses on human nutritional phenotype data. The DbNP

even goes a step further than most databases by empha-

sizing the importance of the characterization and unifica-

tion of experimental designs and allows for finer grained

storage and searching protocol parameters. The DbNP
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project recently announced that it will further expand the

scope of the resource to include management of environ-

mental plant studies (http://www.dbnp.org).

One important feature shared among many current dat-

abases organizing phenotype data is the use of controlled

vocabularies known as ‘ontological terms’. Ontologies are

sets of defined keywords that can be used as tags to qualify

and describe features related to biological data points and

data sets. Such ontological terms can be used to describe

traits, genes, environments, or taxonomy. As an example,

one might use the hierarchy of terms ‘‘growth and devel-

opment C shoot development C inflorescence develop-

ment C flower development C flowering time C days to

flower’’ to describe formally what is colloquially referred

to as simply ‘‘flowering time’’. While this is an arguably

simple example, it is not difficult to imagine the com-

plexity that ensues when trying to use ontologies to

describe complicated molecular pathways. Usage of

ontologies is a critical step toward making diverse and

rapidly growing collections of biological data searchable,

and accessible to computational algorithms. The Open

Biological and Biomedical Ontologies Foundry (OBO

foundry) (Smith et al. 2007) has emerged as an important

centralized repository for plant and animal ontological

collections, with the goal of increasing standardization and

maximizing interoperability between ontologies. For plant

data the most commonly used ontologies include the plant

ontology (PO), (Avraham et al. 2008; Jaiswal et al. 2005)

the plant trait ontology (TO), plant environment ontology

(EO), and the phenotypic quality ontology (PATO).

Unfortunately, all research groups do not universally

adopt usage of these community standards and without a

critical mass of ‘‘buy-in’’, their benefits cannot be fully

realized. Also a great deal of time and resources go into the

curation and maintenance of ontologies and projects rely

on term-based grant funding, which is not always reliable.

In order to meet the demand imposed by the upscaling

of phenotypic data production, sophisticated computational

methods will need to be employed. Phenotype data is

complex and highly context sensitive, and crucial infor-

mation can potentially be lost when data descriptions are

flattened down to only a few ontology terms. As a way of

dealing with this complexity, some groups have been

exploring the potential of the Semantic Web (Lee et al. 2001)

to expand the dimensionality of stored biological data in order

to more effectively mine the enormous volume of descriptive

data available in the literature (Vision et al. 2011). The

Phenoscape project (http://kb.phenoscape.org; Mabee et al.

2012) has been working on developing semantical search

algorithms capable of linking biological data by relationships

between ontological terms and by similarities found between

free-text descriptions. Data are characterized as statements of

fact, where there is a subject (e.g. ‘‘a floret’’), a predicate (e.g.T
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‘‘has the color’’) and an object (e.g. ‘‘white’’). Capturing

phenotypic metadata using this approach adds some of the

necessary dimensionality for unlocking biological meaning

using linguistic and intuitive tool sets.

Analysis, adjustment, and value extraction

of phenotypic data

Independent of the effort involved to both collect and

appropriately manage high-throughput phenotype data, the

data sets themselves are only as valuable as the analyses

that can be performed on them. Great care must be taken to

make accurate inferences from the data in order to cor-

rectly characterize the genotype–phenotype relationship.

Correct estimations of genetic gain from selection, for

example, depend heavily on accurate estimates of herita-

bility and the covariance among phenotypes (Dickerson

1955). Because none of these parameters are directly

observable, they must be estimated from data using a

variety of statistical models.

While the methods for measuring phenotypic data are

becoming more sophisticated and the ability to catalog and

query data across experimental designs is becoming more

achievable, the precision of such data will always be lim-

ited by inherent biological noise. This biological noise is

unavoidable and is even present under the most controlled

experimental conditions. These fluctuations can be local,

affecting single organisms, or more general, influencing the

whole experiment and modifying the phenotypes for the

whole replicate population. Furthermore, where automation

is impractical, and a team of researchers is employed to

conduct the experiment, individual bias can skew obser-

vations, even in cases where subjective criteria are not

directly used to measure the phenotypes. These problems

are further compounded by the environmental variability

that inconsistently affects phenotypic observation over

both space and time. Unpredictable environmental condi-

tions can also lead to a fair amount of missing data, which

in turn will limit the statistical power to make inferences

about the genotypic contribution to the phenotype. In

addition to biological and environmental noise, variable

assay quality can introduce further uncertainty and must be

accounted for in any statistical models that are used to

estimate parameters of interest.

Linear models have long been the mainstay of quanti-

tative-genetic experiments, and are the most commonly

applied statistical approach to understanding phenotypic

variation. Traditionally, these models are fit using a variety

of maximum-likelihood approaches (Lynch and Walsh

1997; Sorensen and Gianola 2002). These approaches are

popular because they are fast and easy to use, and their

long history has resulted in a wide availability of user-

friendly software. However, maximum-likelihood methods

have a number of serious limitations. Fundamentally,

maximum-likelihood model fitting yields point estimates of

parameters, ignoring the inherent uncertainty in their val-

ues. Parameters are then tested for statistical significance

based on a threshold (typically the 5 % cut-off) and are

excluded from further analysis if they are not ‘‘significant’’.

Finally, these statistical tests rely on restrictive assump-

tions about the distributions of model parameters. These

constraints of maximum-likelihood model fitting affect

experimental designs and data acquisition procedures, as

well as biasing the resulting associations. More pointedly,

these estimates perform well only when measurements are

extensively replicated and normally distributed. Therefore,

a great variety of procedures for data normalization and

detection of outliers are necessary in order to meet the

assumptions of the model. Unfortunately, these methods

are often poorly motivated from a statistical point of view

because they involve arbitrary thresholds for data exclu-

sion. Despite these drawbacks, the speed and prevalence of

maximum-likelihood methods make them useful as

exploratory data analysis tools even in cases where the

resulting estimates are not expected to be robust.

The Bayesian approach to statistical inference is funda-

mentally different and overcomes many of the limitations

imposed by a maximum-likelihood approach. Instead of

arriving at single most likely point estimates of parameters,

the goal of Bayesian inference is to describe distributions of

random variables of interest, taking into account uncertainty

in all the other model parameters. This perspective on

inference is thus much more in line with biological reality

and should be preferable when dealing with phenotype data

that have been contextualized by both the genotype and the

environment. The drawback of Bayesian inference is its

computational complexity. Historically, this complexity has

been the disadvantage that held back widespread applica-

tions of Bayesian statistics. However, with the dramatic

increase in computer power, it is now feasible to apply this

approach to inference even when the data sets are large and

multi-faceted. Furthermore, computer packages that make

model building and analysis relatively simple and accessi-

ble to researchers without a programming background are

starting to make an appearance (Lunn et al. 2009; Plummer

2003). Bayesian formulations of the standard quantitative-

genetic models have been extensively studied (Sorensen

and Gianola 2002), but these models can be computation-

ally inefficient for large data sets. This is true for maximum-

likelihood as well, but because Bayesian estimation

involves the extra step of estimating full distributions rather

than just point estimates of parameters the computational

problems are particularly acute.

Appreciable improvements in computational stability

and efficiency can be achieved by re-formulating the
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standard linear models in a hierarchical framework (Gel-

man et al. 2003; Gelman and Hill 2007). This framework is

popular in the analyses of sociological data, and is now

achieving more currency in genetics (Greenberg et al.

2010; Lenarcic et al. 2012). The basic idea is that quanti-

tative-genetic experiments are inherently structured. For

example, when an inbred line is evaluated in a number of

environments, environmental effects can be nested within

genotypic effects. Such nesting improves computational

efficiency, increases power by incorporating data-driven

pooling of observations from replicates (Gelman et al.

2003; Gelman and Hill 2007; Greenberg et al. 2010), and

aids in biological interpretation of the results. Nesting

environmental effects within genotypes has the added

convenience of allowing the direct modeling of G9E

interactions simply by estimating the regression slopes as

they vary between inbred lines.

In cases where even modest numbers of outlier obser-

vations are present, Bayesian hierarchical models also

out-perform similar maximum-likelihood approaches

(Greenberg et al. 2010). Furthermore, it is straightforward

to expand hierarchical models to include non-normal data

(Gelman et al. 2003; Gelman and Hill 2007; Greenberg

et al. 2010), handle unbalanced designs (Gelman et al.

2003; Greenberg et al. 2010), incorporate variable assay

quality (Greenberg et al. 2010, 2011), account for outlier

observations without using arbitrary thresholds to exclude

them from the data (Greenberg et al. 2010, 2011; Lenarcic

et al. 2012), and interrogate phenotypic networks by

extending the analyses to multiple phenotypes through

multivariate modeling (Greenberg et al. 2011). Finally,

because the Bayesian approach integrates over the inherent

uncertainty in a system and borrows power across the

experiment through hierarchical modeling, it reduces the

need for extensive biological replicates, and therefore

maximizes the number of lines that can be evaluated in a

given study (Greenberg et al. 2010).

That being said, while Bayesian hierarchical models are

robust to many problems in experimental design and data

acquisition, it is still a good idea to follow best practices

when embarking on a quantitative-genetic experiment.

Certain problems, such as putting all replicates for a line in

a single block, lead to complete confounding of variables

that cannot be resolved by any statistical treatment.

Although it is possible to incorporate non-Gaussian data

into Bayesian models, these extensions are typically com-

putationally more expensive. For example, when modeling

categorical data, one attempts to estimate an underlying

continuous distribution that would yield the observed data

when coerced to being discrete. Converting quantitative

phenotypes (for example, the fraction of a plant tissue

affected by disease) to an index (susceptibility class) leads

to loss of information and an increase in model complexity.

Likewise, summarizing replicate observations and report-

ing only means can lead to either increased noise when

outliers are present or unwarranted precision. Such short

cuts were defensible in the past, when computational power

and storage capacity to handle large data sets was limited,

but this is no longer the case and the data should be

reported as ‘‘raw’’ as possible, and then modeled explicitly.

Germplasm development and distributed phenotyping

networks

Advances in phenotyping and genotyping technology, as

well as data storage, and computational capacity are

opening many new opportunities to extract meaningful

inferences from even noisy biological data. New statistical

models that account for biological uncertainty and estimate

values of direct interest, rather than those dictated by

computational convenience, promise to aid in the

achievement of this goal. However, the value of any pro-

gress that may be gained through the marriage of next-

generation phenotyping with modern genomic tools is

predicated on the availability of diverse germplasm and

genetically well-defined populations. Indeed associating

genotype with phenotype in ways that address hypothesis-

driven questions and empower crop improvement depends

on the availability of appropriate germplasm resources to

address specific questions.

The preservation of plant biodiversity in publicly

available, international germplasm collections is of central

importance to our quest to understand natural variation and

to utilize that variation to meet the future needs of the

planet. It is not unimaginable that we will be able to ge-

nomically characterize most of the accessions in the

world’s repositories of genetic resources, but the sheer size

of these collections, the broad range of adaptation they

represent, import–export restrictions, and the genetic

redundancy housed within their ranks presents a challenge

for direct phenotypic evaluation. Targeted subsets of this

variation need to be assembled so that available pheno-

typing resources can be efficiently used to evaluate them,

taking advantage of economies of scale wherever possible

(Glaszmann et al. 2010; McCouch et al. 2012). The

development of shared populations with publically avail-

able, high-resolution genotype data will be critical for

permitting the kind of distributed phenotyping necessary to

understand genotype–phenotype relationships (Valdar et al.

2006). Examples of research communities that have

developed these kinds of publicly shared germplasm

resources include rice (Zhao et al. 2011a), maize (Yu et al.

2008), wheat (Neumann et al. 2011) Arabidopsis (Atwell

et al. 2010), sorghum (Mitchell et al. 2008), barley (Pasam

et al. 2012) and many other species (Zhu et al. 2008). The
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availability of these resources makes it possible for mul-

tiple researchers to interrogate the same genetic materials,

phenotyping in environments and with technology and

analytical expertise that are uniquely available to different

research groups. Integrating such vast phenotypic datasets

on common germplasm resources in well-structured dat-

abases will permit high-end analysis not just of the phe-

notypes themselves, but also of complex correlated

phenotypic networks that represent a more accurate

depiction of biological reality.

Additionally, more genetically structured resources such

as chromosome segment substitution lines (Ali et al. 2010;

Lu et al. 2011; Wang et al. 2012; Fukuoka et al. 2010; Xu

et al. 2010; Zhang et al. 2011), multi-parent advanced

generation inter-cross (MAGIC) populations (Huang et al.

2011, 2012; Rakshit et al. 2012), and nested association

mapping (NAM) populations (Yu et al. 2008) will permit

the interrogation of natural variation in elite genetic

backgrounds that may be intractable otherwise. These

genetically structured populations partition the variation in

ways that facilitate the identification of exotic alleles that

may have a significant impact on a phenotype of interest,

but only when introgressed into the elite background. They

also expedite the subsequent use of these resources as

parents in a breeding program, helping expand the range of

genetic variation available in an elite gene pool and

opening up new opportunities to utilize natural variation to

drive crop improvement.

Conclusions

Ever since the first published QTL analysis (Sax 1923),

genetics as a discipline has endeavored to shed light on the

complexities of phenotypic variation. For most of recent

memory, progress in understanding the genetic architecture

of complex traits has been driven by improvement in

genotyping technology. As a clear picture of the genome

emerges, a renewed focus on understanding the nature of

phenotypes will be necessary for continued advancement.

We have discussed the role of phenotyping in gene

discovery and crop improvement through both GWAS and

GS, and we have attempted to understand the complexities

incumbent on the association of genotype with phenotype

under variable environmental conditions. We considered

strategies that permit the collection of phenotypic data in

quantitative ways as well as the development of modular

technologies to accommodate the changing needs and

opportunities of phenotyping in the future. We have pon-

dered on the best practices for storing, cataloging, man-

aging, and disseminating this information within a

community, and suggested how this data might be com-

bined with cutting edge statistical analysis to leverage

increased computing capacity (Fig. 2). To conclude, we

consider where some of the current deficiencies lie and

highlight a few questions that still need answers.

Genotyping, while closing in on understanding the full

extent of allelic variation in major crop species, is still

years away from delivering on the quest to catalogue the

world’s collection of DNA variants for an entire species.

This requires assembly of multiple de novo reference

genomes and re-sequencing of thousands of diverse lines to

identify all of the SNPs, copy number variants, and other

forms of DNA and epigenetic variation within a gene pool.

As that information is generated, researchers will seek to

annotate the functional significance of the SNPs and

insertion/deletion polymorphisms, and design databases

that can host this information and make it accessible and

query-able for the research community. This is a real

challenge because many functional variants do not fall

within gene models, but are found as inter-genic regulatory

elements or may condition gene expression through epi-

genetic pathways that contribute to quantitative phenotypic

variation (Ding et al. 2012; Loehlin et al. 2010; Salvi et al.

2007; Zhou et al. 2012; Zhu and Deng 2012). This chal-

lenge also highlights the value of positional cloning to

verify the functional nucleotide polymorphisms (FNP)

rather than taking a candidate gene approach, as the FNP

may not be found within a gene model at all. Additionally,

for many years to come, the identification and character-

ization of rare alleles will remain a priority, despite the fact

that both GWAS and GS have little power to detect their

contributions to phenotypic variation.

Algorithms for optimizing signal-to-noise ratios in

phenotypic experiments, pipelines for identifying GWAS

peaks and extracting meaningful lists of candidate genes

underlying those peaks are needed to help standardize

association mapping studies. Functional annotation of QTL

alleles and correspondence to the germplasm samples in

which they are found would help link genetic research with

breeding applications. Better tools for SNP haplotype

visualization and management of high-volume SNP data

need to be integrated into software platforms to facilitate

the identification of functionally relevant SNPs that can be

used for marker-assisted selection and as fixed variables in

genomic prediction. As more and more phenotype data are

collected and databased, tools to facilitate our under-

standing of intersecting phenotypic networks will shed

light on the complex relationships within and between

phenotypes (Yin and Struik 2008). This information will

provide important insights about selection trade-offs and

phenotypic correlations that are relevant to variety devel-

opment and plant breeding.

Major questions about phenotypic variation, which we

currently have limited capacity to answer, include: How

does variation in regulatory elements manifest itself in the
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phenotype? Which environmental variables act as signals

that regulate these genes and how do different allelic

variants recognize those signals? What is the role of epis-

tasis and epigenetics in determining phenotypic variation,

or in phenotypic plasticity?

Approaching many of these questions will require more

refined strategies of collecting and managing phenotype

data. Many of the considerations that need to be addressed

before making decisions about defining a phenotyping

approach include: How easy is it to evaluate the pheno-

type? How quantitative is that measurement? Can the

process be automated? If so, does it make economic sense

to do so? What value would automation bring? What

indirect factors will influence the phenotypic

Fig. 2 When combined with high-throughput genotyping on shared

germplasm resources, and done in geographically distributed collab-

orative networks, next-generation phenotyping can empower both

gene discovery and crop improvement. Central to that capacity is the

careful and judicious use of modular technologies and managed

environments. The use of standardized ontologies and Bayesian

analysis then create a controlled vocabulary for describing the data

and provide a way to integrate results across experiments by

accounting for the unique signatures of biological noise generated

by environmental covariates
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measurement? Can they be quantified? How much storage

capacity do I need to maintain the raw or processed phe-

notypic data? How will the data be organized so that it is

both query-able and understandable? What data processing

needs must be considered before the phenotype is biolog-

ically meaningful? Do I have the skills in-house or

appropriate collaborators in place to realize a sophisticated

analysis of the data? Answers to these questions will

depend entirely on the purpose and intention of collecting

phenotypic data to start with, and of course the nature of

the phenotype itself.

The phenotype of an organism is fundamentally a

manifestation of a genotype’s interaction with the envi-

ronment. With increased allocation of funding and intel-

lectual investment over the next decade, advances in

phenotyping will enhance our ability to associate that data

with the genotypic and environmental variables to simul-

taneously and synergistically drive gene discovery efforts

aimed at understanding the genetic basis of quantitative

phenotypic variation and fuel the development of genomic

prediction models for crop improvement. As these two

drivers of genetic analysis feed into each other, not only

will tremendous gains be made in comprehending the

biology of plants, but we will also ensure continued

advancement in crop improvement aimed at meeting the

demands of a growing population.

Acknowledgments The authors would like to acknowledge Lukas

Mueller of the Boyce Thompson Institute for Plant Research and SOL

Genomics Network (SOL; http://solgenomics.org), Dave Matthews of

USDA-PWA and the Triticeae Toolbox (http://triticeaetoolbox.org),

Jean-Luc Jannink of the USDA-ARS for valuable discussion and

insight, Michael Gore of the USDA-ARS for helpful review of the

manuscript, and Cheryl Utter for help with formatting.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Ali M, Sanchez PL, Yu S, Lorieux M, Eizenga GC (2010)

Chromosome segment substitution lines: a powerful tool for

the introgression of valuable genes from wild species of Rice

(Oryza spp.). Rice 3:218–234

Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR,

Amtmann A (2009) EZ-Rhizo: integrated software for the fast

and accurate measurement of root system architecture. Plant J

57:945–956
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Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford
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