Skip to main content

Advertisement

Log in

Maximizing genetic differentiation in core collections by PCA-based clustering of molecular marker data

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Developing genetically diverse core sets is key to the effective management and use of crop genetic resources. Core selection increasingly uses molecular marker-based dissimilarity and clustering methods, under the implicit assumption that markers and genes of interest are genetically correlated. In practice, low marker densities mean that genome-wide correlations are mainly caused by genetic differentiation, rather than by physical linkage. Although of central concern, genetic differentiation per se is not specifically targeted by most commonly employed dissimilarity and clustering methods. Principal component analysis (PCA) on genotypic data is known to effectively describe the inter-locus correlations caused by differentiation, but to date there has been no evaluation of its application to core selection. Here, we explore PCA-based clustering of marker data as a basis for core selection, with the aim of demonstrating its use in capturing genetic differentiation in the data. Using simulated datasets, we show that replacing full-rank genotypic data by the subset of genetically significant PCs leads to better description of differentiation and improves assignment of genotypes to their population of origin. We test the effectiveness of differentiation as a criterion for the formation of core sets by applying a simple new PCA-based core selection method to simulated and actual data and comparing its performance to one of the best existing selection algorithms. We find that although gains in genetic diversity are generally modest, PCA-based core selection is equally effective at maximizing diversity at non-marker loci, while providing better representation of genetically differentiated groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471

    Article  Google Scholar 

  • Banfield JD, Raftery AE (1993) Model-based gaussian and non-gaussian clustering. Biometrics 49:803–821

    Article  Google Scholar 

  • Bataillon TM, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417

    PubMed  CAS  Google Scholar 

  • Becquet C, Patterson N, Stone AC, Przeworski M, Reich D (2007) Genetic structure of chimpanzee populations. PLoS Genet 3:617–626

    Article  CAS  Google Scholar 

  • Bowcock AM, Ruizlinares A, Tomfohrde J et al (1994) High-resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Eckert AJ, van Heerwaarden J, Wegrzyn JL et al (2010) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185:969–982

    Article  PubMed  CAS  Google Scholar 

  • Fraley C (1998) Algorithms for model-based Gaussian hierarchical clustering. SIAM J Sci Comput 20:270–281

    Article  Google Scholar 

  • Fraley C, Raftery AE (1999) MCLUST: software for model-based cluster analysis. J Classif 16:297–306

    Article  Google Scholar 

  • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631

    Article  Google Scholar 

  • Franco J, Crossa J, Diaz J et al (1997) A sequential clustering strategy for classifying gene bank accessions. Crop Sci 37:1656–1662

    Article  Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864

    Article  Google Scholar 

  • Franco J, Crossa J, Desphande S (2009) Hierarchical multiple-factor analysis for classifying genotypes based on phenotypic and genetic data. Crop Sci 50:105

    Article  Google Scholar 

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. Genetic manipulation: impact on man and society, pp 161–170

  • Goldstein DB, Linares AR, Cavallisforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471

    PubMed  CAS  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G et al (2001) MSTRAT: an algorithm for building germ plasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  PubMed  CAS  Google Scholar 

  • Hellenthal G, Stephens M (2007) msHOT: modifying Hudson’s ms simulator to incorporate crossover and gene conversion hotspots. Bioinformatics 23:520–521

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338

    Article  PubMed  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–269

    Google Scholar 

  • Jansen J, van Hintum T (2007) Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theor Appl Genet 114:421–428

    Article  PubMed  CAS  Google Scholar 

  • Johnstone IM (2001) On the distribution of the largest eigenvalue in principal components analysis. Ann Stat 29:295–327

    Article  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data. An introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Abdool A, Huang CH (2009) PCA-based population structure inference with generic clustering algorithms. BMC Bioinform 10(Suppl 1):S73

    Article  Google Scholar 

  • Manel S, Berthoud F, Bellemain E et al (2007) A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Mol Ecol 16:2031–2043

    Article  PubMed  CAS  Google Scholar 

  • McVean G (2009) A genealogical interpretation of principal components analysis. PLoS Genet 5:e1000686

    Article  PubMed  Google Scholar 

  • Milligan GW, Cooper M (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50:159–179

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283

    Article  Google Scholar 

  • Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76:379

    PubMed  CAS  Google Scholar 

  • Odong TL, van Heerwaarden J, Jansen J, van Hintum TJ, van Eeuwijk FA (2011a) Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theor Appl Genet 123:195–205

    Article  PubMed  CAS  Google Scholar 

  • Odong TL, van H J, Jansen J, van H TJL, van E FA (2011b) Statistical techniques for defining reference sets of accessions and microsatellite markers. Crop Science 51:2401

    Article  Google Scholar 

  • Ohta T (1982) Linkage disequilibrium with the island model. Genetics 101:139

    PubMed  CAS  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigen analysis. PLoS Genet 2:e190

    Article  PubMed  Google Scholar 

  • R, DCT (2009) R: a language and environment for statistical computing

  • Reif JC, Melchinger AE, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1–7

    Article  Google Scholar 

  • Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767

    PubMed  CAS  Google Scholar 

  • Rogers DJ, Tanimoto TT (1960) A computer programming for classical plants. Science 132:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic-markers. P Natl Acad Sci USA 90:10623–10627

    Article  CAS  Google Scholar 

  • Sillanpää MJ (2010) Overview of techniques to account for confounding due to population stratification and cryptic relatedness in genomic data association analyses. Heredity 106:511–519

    Article  PubMed  Google Scholar 

  • Thachuk C, Crossa J, Franco J et al (2009) Core Hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinform 10:243

    Article  Google Scholar 

  • Tishkoff SA, Reed FA, Friedlaender FR et al (2009) The genetic structure and history of Africans and African Americans. Science 324:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Tracy CA, Widom H (1994) Level-spacing distributions and the airy kernel. Commun Math Phys 159:151–174

    Article  Google Scholar 

  • Van Heerwaarden J, Ross-Ibarra J, Doebley J et al (2010) Fine scale genetic structure in the wild ancestor of maize (Zea mays ssp. parviglumis). Mol Ecol 19:1162–1173

    Article  PubMed  Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs WH et al (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092

    Article  PubMed  Google Scholar 

  • Van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. Bioversity International

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Carmen de Vicente, former leader of subprogram 5 of the Generation Challenge Program (GCP), for providing financial support (GCP 4008.23) and guidance. We thank Diego Ortega Del Vecchyo for contributing software and three anonymous reviewers for comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost van Heerwaarden.

Additional information

Communicated by G. Bryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Heerwaarden, J., Odong, T.L. & van Eeuwijk, F.A. Maximizing genetic differentiation in core collections by PCA-based clustering of molecular marker data. Theor Appl Genet 126, 763–772 (2013). https://doi.org/10.1007/s00122-012-2016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-2016-2

Keywords

Navigation