Skip to main content

Advertisement

Log in

The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) contains an integrated linear plasmid-like element

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) was shown to contain a 9.6 kb element, LpCMSi, that is absent in the mitochondrial genome of fertile lines. LpCMSi contains the previously described chimeric gene orfC9, and three additional open reading frames (orfs) encoding a unique 45 kDa predicted protein of unknown function, a family B-like DNA polymerase (LpDpo), and a phage-type single subunit RNA polymerase (LpRpo). The latter two proteins shared significant similarity with DNA and RNA polymerases encoded by extrachromosomal linear mitochondrial plasmids of plants and fungi, and also to integrated plasmid-like sequences found in various plant and fungal mitochondrial genomes. Transcripts for both LpDpo and LpRpo were detected by RT-PCR in mitochondria of the CMS line. PCR-based investigations further revealed the presence of LpCMSi-like sequences in fertile L. perenne lines that are likely maintained as low-copy number extrachromosomal replicons. The absence of integrated forms of LpCMSi in the mitochondrial genome of fertile lines suggests that LpCMSi integration adjacent to the atp9 gene may be responsible, directly or indirectly, for the sterility phenotype of the CMS line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bernad A, Blanco L, Lazaro JM, Martin G, Salas M (1989) A conserved 3′–5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228

    Article  PubMed  CAS  Google Scholar 

  • Bernad A, Zabollos A, Salas M, Blanco L (1987) Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J 6:4219–4225

    PubMed  CAS  Google Scholar 

  • Brown GG, Zhang M (1995) Mitochondrial plasmids: DNA and RNA. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer, Dordrecht, pp 61–91

    Google Scholar 

  • Cahan PC, Kennell JC (2005) Identification and distribution of sequences having similarity to mitochondrial plasmids in mitochondrial genomes of filamentous fungi. Mol Gen Genomics 273:462–473

    Article  CAS  Google Scholar 

  • Chan BS, Court DA, Vierula PJ, Bertrand H (1991) The kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20:225–237

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 101:17741–17746

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Qiu YL, Kuhlman P, Palmer JD (1998) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95:14003–14005

    Article  Google Scholar 

  • Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503

    Article  PubMed  CAS  Google Scholar 

  • Collett MA, Bradshaw R, Scott DB (1995) A mutalistic fungal symbiont of perennial ryegrass contains two different pyr4 genes, both expressing orotidine-5′-monophosphate decarboxylase. Gene 158:31–39

    Article  PubMed  CAS  Google Scholar 

  • Connolly V, Wright-Turner R (1984) Induction of cytoplasmic male sterility into ryegrass (Lolium perenne L.). Theor Appl Genet 68:449–453

    Article  Google Scholar 

  • Court DA, Bertrand H (1992) Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Curr Genet 22:385–397

    Article  PubMed  CAS  Google Scholar 

  • Dohmen G, Tudzynski PA (1994) DNA-polymerase-related reading frame (pol-r) in the mtDNA of Secale cereale. Curr Genet 25:59–65

    Article  PubMed  CAS  Google Scholar 

  • Escote LJ, Gabay-Laughnan SJ, Laughnan JR (1985) Cytoplasmic reversion to fertility in cms-S need not involve loss of linear mitochondrial plasmids. Plasmid 14:264–267

    Article  PubMed  CAS  Google Scholar 

  • Garcia JA, Kolacz K, Studnicka GM, Gilmore-Herbert M (1988) Sequence of integrated S-1 homologous DNA in the normal maize mitochondrial genome. Nucleic Acids Res 16:4169–4170

    Article  PubMed  CAS  Google Scholar 

  • Griffiths AJF (1995) Natural plasmids in filamentous fungi. Microbiol Rev 59:673–685

    PubMed  CAS  Google Scholar 

  • Handa H, Itani K, Sato H (2002) Structural features and expression analysis of a linear mitochondrial plasmid in rapeseed (Brassica napus L.). Mol Genet Genomics 267:797–805

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucl Acids Res 31:5907–5916

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Boerner T, Weihe A (1997) Mitochondrial and chloroplast phage type RNA polymerases in Arabidopsis. Science 277:809–811

    Article  PubMed  CAS  Google Scholar 

  • Jung G, Leavitt MC, Hsieh J-C, Ito J (1987) Bacteriophage PRD1 DNA polymerase: evolution of DNA polymerases. Proc Natl Acad Sci USA 84:8287–8291

    Article  PubMed  CAS  Google Scholar 

  • Kemble RJ, Carlson JE, Erickson LR, Serynk JL, Thompson DJ (1986) The Brassica mitochondrial DNA plasmid and large RNAs are not exclusively associated with cytoplasmic male sterility. Mol Gen Genet 205:183–185

    Article  CAS  Google Scholar 

  • Kiang AS, Connolly V, McConnell DJ, Kavanagh TA (1993) Cytoplasmic male sterility (CMS) in Lolium perenne L. 1. Development of a diagnostic probe for the male-sterile cytoplasm. Theor Appl Genet 86:781–787

    Article  Google Scholar 

  • Kiang AS, Connolly V, McConnell DJ, Kavanagh TA (1994) Paternal inheritance of mitochondria and chloroplasts in Festuca pratensis–Lolium perenne intergeneric hybrids. Theor Appl Genet 87:681–688

    Article  Google Scholar 

  • Kiang AS, Kavanagh TA (1996) Cytoplasmic male sterility (CMS) in Lolium perenne L.2. The mitochondrial genome of a CMS line is rearranged and contains a chimeric atp9 gene. Theor Appl Genet 92:308–315

    Article  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 28:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Levings CS III, Sederoff RR (1983) Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize. Proc Natl Acad Sci USA 80:4055–4059

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt F, Kempken F, Kamper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17:89–95

    Article  PubMed  CAS  Google Scholar 

  • McAllistair WT, Raskin CA (1993) The phage RNA polymerases are related to DNA polymerases and reverse transcriptases. Mol Microbiol 10:1–6

    Article  Google Scholar 

  • Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7:135–149

    Article  PubMed  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. J Mol Biol 223:1–7

    Article  PubMed  CAS  Google Scholar 

  • Oeser B, Tudzynski P (1989) The linear mitochondrial plasmid pClK1 of the phytopathogenic fungus Claviceps purpurea may code for a DNA polymerase and an RNA polymerase. Mol Gen Genet 217:132–140

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucl Acids Res 33:6235–6250

    Article  PubMed  CAS  Google Scholar 

  • Paillard M, Sederoff RR, Levings CS III (1985) Nucleotide sequence of the S-1 mitochondrial DNA from the cytoplasm of maize. EMBO J 4:1125–1128

    PubMed  CAS  Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) An unusual mitochondrial DNA plasmid in the genus Brassica. Nature 301:725–728

    Article  CAS  Google Scholar 

  • Robison MM, Horgen PA (1998) Widespread distribution of low copy number variants of mitochondrial plasmid plasmid pEM in the genus Agaricus. Fungal Genetics Biol 26:62–70

    Article  Google Scholar 

  • Robison MM, Wolyn DJ (2005) A mitochondrial plasmid and plasmid-like RNA and DNA polymerases encoded within the mitochondrial genome of carrot (Daucus carota L). Curr Genet 47:57–66

    Article  PubMed  CAS  Google Scholar 

  • Salas M (1991) Protein priming of DNA replication. Annu Rev Biochem 60:39–71

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Kubo T, Nishizawa S, Estiati A, Itchoda N, Mikami T (2004) The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol Genet Genomics 272:247–256

    Article  PubMed  CAS  Google Scholar 

  • Saumitou-Laprade P, Pannenbecker G, Maggouta F, Jean R, Michaelis G (1989) A linear 10.4 kb plasmid in the mitochondria of Beta maritima. Curr Genet 16:181–186

    Article  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Tsai H, Collett MA, Watt DM, Scott DB (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridisation of a mutualist with the ryegrass choke pathogen Epichloe typhina. Genetics 136:1307–1317

    PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Ann Rev Plant Biol 55:315–340

    Article  CAS  Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell 43:361–368

    Article  PubMed  CAS  Google Scholar 

  • Small I, Isaac P, Leaver C (1987) Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J 6:865–869

    PubMed  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Turpen T, Garger SJ, Marks MD, Grill LK (1987) Molecular cloning and physical characterization of a Brassica linear mitochondrial plasmid. Mol Gen Genet 209:227–233

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia. J Mol Evol 41:563–572

    Article  PubMed  CAS  Google Scholar 

  • Weber B, Borner T, Weihe A (1995) Remnants of a DNA polymerase gene in the mitochondrial DNA of Marchantia polymorpha. Curr Genet 27:488–490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony A. Kavanagh.

Additional information

Communicated by Y. Xue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2008_790_MOESM1_ESM.doc

Supplementary Table 1: Synonymous and non-synonymous nucleotide substitutions in the sequenced Dpo genes. The amino acid differences resulting from non-synonymous substitutions (relative to LpRpo) are indicated in the single letter format beside the relevant codon. (DOC 87 kb)

122_2008_790_MOESM2_ESM.doc

Supplementary Table 2: Synonymous and non-synonymous nucleotide substitutions in the sequenced Rpo genes. The amino acid differences resulting from non-synonymous substitutions (relative to LpRpo) are indicated in the single letter format beside the relevant codon. (DOC 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDermott, P., Connolly, V. & Kavanagh, T.A. The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) contains an integrated linear plasmid-like element. Theor Appl Genet 117, 459–470 (2008). https://doi.org/10.1007/s00122-008-0790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0790-7

Keywords

Navigation