Skip to main content
Log in

Using molecular markers to identify two major loci controlling carotenoid contents in maize grain

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Maize is an important source of pro-vitamin A; β-carotene, α-carotene and β-cryptoxanthin, and the non-pro-vitamin A carotenoids including lutein and zeaxanthin. In the present study, a recombinant inbred (RI) population with 233 RI lines derived from a cross between By804 and B73 was employed to detect QTL for these nutritionally important components in maize grain. High Performance Liquid Chromatography was used to measure amounts of individual carotenoids over 2 years. A genetic linkage map was constructed with 201 molecular markers. In all, 31 putative QTL including 23 for individual and 8 for total carotenoids were detected on chromosome(s) 1, 3, 5, 6, 7, 8 and 10. The notable aspect of this study was that much of the phenotypic variation in contents of carotenoids could be explained by two loci (y1 and y9), and the QTL for carotenoids elucidated the interrelationships among these compounds at the molecular level. A gene targeted marker (Y1ssr) in the candidate gene phytoene synthase 1 (psy1) tightly linked to a major QTL explaining 6.6–27.2% phenotypic variation for levels of carotenoids was identified, which may prove useful to expedite breeding for higher level of carotenoids in maize grain. This functionally characterized gene (psy1) could also be exploited for further development of functional marker for carotenoids in maize. The QTL cluster located at y9 locus may also be used for pyramiding favorable alleles controlling contents of carotenoids from diverse maize germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R, Kahl G, Winter P, Reifen R (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 113:1357–1369

    Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  PubMed  CAS  Google Scholar 

  • Blessin CW, Brecher JD, Dimler RJ, Grogan CO, Campbell CM (1963a) Carotenoid of corn and sorghum III. Variation in xanthophylls and carotenes in hybrid, inbred, and exotic corn lines. Cereal Chem 40:436–442

    CAS  Google Scholar 

  • Blessin CW, Brecher JD, Dimler RJ, Grogan CO, Campbell CM (1963b) Carotenoids of corn and sorghum V. Distribution of xanthophylls and carotenes in hand-dissected and dry milled fraction of yellow dent corn. Cereal Chem 40:582–586

    CAS  Google Scholar 

  • Brunson AM, Quackenbush FW (1962) Breeding corn with high pro-vitamin A in the grain. Crop Sci 2:344–347

    Article  CAS  Google Scholar 

  • Buckner B, Kelson TL, Robertson DS (1990) Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2:867–876

    Article  PubMed  CAS  Google Scholar 

  • Buckner B, San Miguel P, Bennetzen JL (1996) The y1 gene of maize codes for phytoene synthase. Genetics 143:479–488

    PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Egesel CO, Wong JC, Lambert RJ, Rocheford TR (2003a) Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci 43:818–823

    Article  CAS  Google Scholar 

  • Egesel CO, Wong JC, Lambert RJ, Rocheford TR (2003b) Gene dosage effects on carotenoid concentration in maize grain. Maydica 48:183–190

    Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Progr Lipid Res 43:228–265

    Article  CAS  Google Scholar 

  • Gallagher CE, Matthews PD, Li FQ, Wurtzel ET (2003) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135(7):1776–1783

    Google Scholar 

  • Hable WE, Oishi KK, Schumaker KS (1998) Viviparous-5 encodes phytoene desaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol Gen Genet 257(2):167–176

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, Lee MH, Kim BD (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit colour in red pepper (Capsicum spp.). Theor Appl Genet 102:524–530

    Article  CAS  Google Scholar 

  • Janic-Buckner D, O´Neal J, Joyce E, Buckner B (2001) Genetic and biochemical analysis of the y9 gene of maize, a carotenoid biosynthetic gene. Maydica 46:41–46

    Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Kurilich AC, Juvik JA (1999) Simultaneous quantification of carotenoids and tocopherols in corn kernel extracts by HPLC. J Liq Chromatogr Relat Technol 22:2925–2934

    Article  CAS  Google Scholar 

  • Li FQ, Murillo C, Wurtzel ET (2007) Maize Y9 encodes a product essential for 15-cis- ξ-carotene isomerization. Plant Physiol 144:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Matthews PD, Burr B, Wurtzel ET (1996) Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol Biol 30:269–279

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Mapping genetic mapping with MAPMAKER/EXP3.0. Whitehead Institute technical report, Cambridge, MA, USA

  • Liu YS, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotech J 1:195–207

    Article  CAS  Google Scholar 

  • Luo R, Wurtzel ET (1999) A maize cDNA encoding zeta carotene desaturase. Plant Physiol 120:1206

    Google Scholar 

  • Mangelsdorf PC, Fraps GS (1931) A direct quantitative relationship between vitamin A in corn and the number of genes for yellow pigmentation. Science 73:241–242

    Article  PubMed  CAS  Google Scholar 

  • Matthews PD, Luo R, Wurtzel ET (2003) Maize phytoene desaturase and zeta carotene desaturase catalyze a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Botany 54:2215–2230

    Article  CAS  Google Scholar 

  • Murry MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells MR, Kennedy JM, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  PubMed  CAS  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at tow phytoene synthase loci. Plant cell 15:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Quackenbush FW (1963) Corn carotenoids: effects of temperature and moisture on losses during storage. Cereal Chem 40(3):266–269

    CAS  Google Scholar 

  • Ravanello PM, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–263

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. HarvestPlus technical monograph 2, pp 2–51

  • Santos CAF, Simon PW (2006) Heritabilities and minimum gene number estimates of carrot carotenoids. Euphytica 151:79–86

    Article  CAS  Google Scholar 

  • Singh M, Lewis PE, Hardeman K, Bai L, Rose JKC, Azourek M, Chomt P, Brutnell TP (2003) Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Plant Cell 15(4):874–884

    Article  PubMed  CAS  Google Scholar 

  • Steenbock H, Coward KH (1927) Fat-soluble vitamins. XXVII. The quantitative determination of vitamin A. J Biol Chem 72:765–779

    CAS  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197

    Article  PubMed  CAS  Google Scholar 

  • UNICEF (2005) Vitamin A webpage. Available at: http://www.unicef.org/nutrition/23964_vitamina.html

  • Weber EJ (1987) Carotenoids and tocols of corn grain determined by HPLC. J Am Oil Chem Soc 64:1129–1134

    Article  CAS  Google Scholar 

  • Wong JC, Lambert RJ, Wurtzel ET, Rocheford TR (2004) QTL and candidate genes phytoene synthase and z-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–435

    Article  PubMed  CAS  Google Scholar 

  • Wurtzel ET (2004) Genomics, genetics, and biochemistry of maize carotenoid biosynthesis. Recent Adv Phytochem 38:85–110

    Article  CAS  Google Scholar 

  • Xu SB, Tao YF, Yang ZQ, Chu JY (2002) A simple and rapid method used for silver staining and gel preservation. Heredity 24:335–336

    CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Delia Rodriguez-Amaya (Brazil) for guidance during carotenoids standard preparation, and Drs. Vinay Mahajan and S. S. Banga (India) for suggestions and discussion on revised manuscript. We also greatly appreciate both anonymous reviewers for their invaluable comments. We would also like to acknowledge financial support from the HarvestPlus program and the Indian and Chinese governments for providing scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Li.

Additional information

Communicated by A. Charcosset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chander, S., Guo, Y.Q., Yang, X.H. et al. Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 116, 223–233 (2008). https://doi.org/10.1007/s00122-007-0661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0661-7

Keywords

Navigation