Skip to main content

Advertisement

Log in

Inheritance of inflorescence architecture in sorghum

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The grass inflorescence is the primary food source for humanity, and has been repeatedly shaped by human selection during the domestication of different cereal crops. Of all major cultivated cereals, sorghum [Sorghum bicolor (L.) Moench] shows the most striking variation in inflorescence architecture traits such as branch number and branch length, but the genetic basis of this variation is little understood. To study the inheritance of inflorescence architecture in sorghum, 119 recombinant inbred lines from an elite by exotic cross were grown in three environments and measured for 15 traits, including primary, secondary, and tertiary inflorescence branching. Eight characterized genes that are known to control inflorescence architecture in maize (Zea mays L.) and other grasses were mapped in sorghum. Two of these candidate genes, Dw3 and the sorghum ortholog of ramosa2, co-localized precisely with QTL of large effect for relevant traits. These results demonstrate the feasibility of using genomic and mutant resources from maize and rice (Oryza sativa L.) to investigate the inheritance of complex traits in related cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles W, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, Flick E, Rohlfing T, Fries J, Bradford K, MeMenamy J, Smith M, Holeman H, Roe BA, Wiley G, Korf IF, Rabinowicz PD, Lakey N, McCombie WR, Jeddeloh JA, Martienssen RA (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:e13

    Article  PubMed  Google Scholar 

  • Bomblies K, Wang R-L, Ambrose BA, Schmidt RJ, Meeley RB, Doebley JF (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395

    Article  PubMed  CAS  Google Scholar 

  • Bommert P, Satoh-Nagasawa N, Jackson D, Hirano H-Y (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46:69–78

    Article  PubMed  CAS  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  PubMed  CAS  Google Scholar 

  • Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown Midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genom 269:205–214

    CAS  Google Scholar 

  • Brown DG, Vision T (2000) MapPop 1.0: software for selective mapping and bin mapping. http://www.bio.unc.edu/faculty/vision/lab/mappop/

  • Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev 12:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241

    Article  PubMed  CAS  Google Scholar 

  • Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci 101:700–707

    Article  PubMed  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    Article  PubMed  CAS  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific & Technical, Essex

    Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2005) The genetic basis for inflorescence variation between foxtail and green millet (Poaceae). Genetics 169:1659–1672

    Article  PubMed  CAS  Google Scholar 

  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue: CTAB method. Phytochem Bull 19:11

    Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Klein PE, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet (in press)

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pe ME, Schmidt RJ (2004) The role of barren-stalk1 in the architecture of maize. Nature 432:630–635

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Gocal GF, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125:1788–1801

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell SE, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR, De Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Ikeda K, Sunohara H, Nagato Y (2004) Developmental course of inflorescence and spikelet in rice. Breeding Sci 54:147–156

    Article  Google Scholar 

  • Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528

    Article  PubMed  CAS  Google Scholar 

  • Kaplinsky NJ, Freeling M (2003) Combinatorial control of meristem identity in maize inflorescences. Development 130:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Kim J-S, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, Mullet JE (2005) Comprehensive molecular cytogenetic analysis of sorghum genome architecture; distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003a) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  PubMed  CAS  Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003b) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci 100:11765–11770

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci 95:1979–1982

    Article  PubMed  CAS  Google Scholar 

  • Lauter N, Doebley JF (2002) Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics 160:333–341

    PubMed  CAS  Google Scholar 

  • Lin Y-R, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP, and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE, Karlsen A, Lien S, Olsaker I, Goddard ME (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379

    PubMed  CAS  Google Scholar 

  • Michaels SD, Amasino RM (1998) A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385

    Article  PubMed  CAS  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  PubMed  CAS  Google Scholar 

  • Robertson DS (1989) Understanding the relationship between qualitative and quantitative genetics. In: Helentjaris T, Burr B (eds) Development and application of molecular markers to problems in plant genetics. Cold Spring Harbor Lab Press, New York, pp 81–87

    Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48:601–613

    Article  PubMed  CAS  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  PubMed  CAS  Google Scholar 

  • Stam M, Belele C, Ramakrishna W, Dorweiler JE, Bennetzen JL, Chandler VL (2002) The regulatory regions required for B’ paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–930

    PubMed  CAS  Google Scholar 

  • Stephens JC, Miller FR, Rosenow DT (1967) Conversion of alien sorghums to early combine genotypes. Crop Sci 7:396

    Article  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley JF, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci 100:13099–13104

    Article  PubMed  CAS  Google Scholar 

  • Upadyayula N, da Silva HS, Bohn MO, Rocheford TR (2005) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet (in press)

  • Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen RA (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2005) Windows QTL Cartographer 2.5. Statistical Genetics, NCSU

  • Zhang S, Hu W, Wang L, Lin C, Cong B, Sun C, Luo D (2005) TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice. Plant Sci 168:1393–1408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Toby Kellogg, Sarah Hake, and Gael Pressoir for critical advice, Robert Klein for providing plant materials, Delilah Wood for assistance with scanning electron microscopy, and Mark Sorrells and David Benscher for providing threshing equipment. The MORPH Research Coordination Network provided financial assistance to PJB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Brown.

Additional information

Communicated by R. Bernardo

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, P.J., Klein, P.E., Bortiri, E. et al. Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113, 931–942 (2006). https://doi.org/10.1007/s00122-006-0352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0352-9

Keywords

Navigation