Skip to main content
Log in

Identification and mapping of cleistogamy genes in barley

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Cleistogamy is a closed type of flowering with ensured self-pollination and an important trait to study evolutionary development in flower organs, reproduction systems, gene flow, and disease control. Still, very limited information is available about the genetic control and regulatory mechanism of this trait in barley. In this work, from the eight crosses between cleistogamous and chasmogamous accessions, five crosses generated chasmogamous F1 plants and their F2 plants segregated as 3 chasmogamous:1 cleistogamous, whereas three crosses generated cleistogamous F1 plants, and their F2 plants segregated as 1 chasmogamous:3 cleistogamous. Although a single gene was responsible for the control of cleistogamy in these two groups of crosses, the direction of dominance was opposite, suggesting two genes, cly1 and Cly2, for the genetic control of cleistogamy in barley. Epistatic type of gene interaction between the two loci was detected. In the analysis of 99 recombinant inbred lines of ‘Azumamugi’ × ’Kanto Nakate Gold’ and doubled haploid lines of ‘Harrington’ × ’Mikamo Golden’, where in both crosses F1 was chasmogamous, the cly1 locus has been mapped on chromosome 2HL. Using the analysis of the F2 population of ‘Misato Golden’ and ‘Satsuki Nijo’ where F1 was cleistogamous, the Cly2 locus was mapped in the same region of chromosome 2HL. Because the cly1 and Cly2 loci were mapped in the same region in these three different mapping populations, it was concluded that the expression of cleistogamy is under the control of two tightly linked genes or different alleles of the same gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel Ghani A, Parzies H, Geiger H (2002) Estimation of outcrossing rate in Hordeum spontaneum and barley landraces from Jordan. In: Materials of Deutscher Tropentag meeting, technical and institutional innovation for sustaining rural development, 9–11 October 2002, Witzenhausen, pp 2–7

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1989) Molecular biology of the cell, 2nd edn. Garland Publishing, New York, pp 843–844

  • Becker J, Heun M (1995) Barley microsatellites: allele variation and mapping. Plant Mol Biol 21:835–845

    Google Scholar 

  • Blake TK, Kadyrzhanova D, Shepherd KW, Islam AKMR, Langridge PL, McDonald CL, Erpelding J, Larson S, Blake NK, Talbert LE (1996) STS-PCR markers appropriate for wheat–barley introgression. Theor Appl Genet 93:826–832

    CAS  Google Scholar 

  • Briggs D (1978) Barley. Chapman and Hall, London, pp 44–46

  • Chhabra A, Sethi S (1991) Inheritance of cleistogamic flowering in durum wheat (Triticum durum). Euphytica 55:147–150

    Google Scholar 

  • Costa J, Corey A, Hayes P, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer S, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales M, Wolfe R (2001) Molecular mapping of the Oregon Wolfe barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. Appleton, New York

  • Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhang Y, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Lu Y, Zhang LS, Yu Z, Fan D, Liu X, Lu T, Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan J, Wu M, Zhang R, Zhou B, Chen Z, Chen L, Jin Z, Wang R, Yin H, Cai Z, Ren S, Lv G, Gu W, Zhu G, Tu Y, Jia J, Zhang Y, Chen J, Kang H, Chen X, Shao C, Sun Y, Hu Q, Zhang X, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L, Zhu F, Chen W, Lan L, Lai Y, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    Article  CAS  PubMed  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pollen K, Fischbeck G, Wenzel G, Herrmann R (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Google Scholar 

  • Honda I, Turuspekov Y, Mano Y, Sameri M, Komatsuda T, Watanabe Y (2003) Genetic analysis of opened and closed type of flowering. Plant and Animal Genomes XI Conference, San Diego, p 405

  • Hughes M (1996) Plant molecular genetics. Addison-Wesley, Longman, p 192

  • Johansen B, von Bothmer R (1994) Pollen size in Hordeum L.: correlation between size, ploidy level, and breeding system. Sex Plant Reprod 7:259–263

    Google Scholar 

  • Kalendar R (2001) A computer program “Oligos” for PCR primers design. In: The third major international bioinformatics meeting in Scandinavia, Bioinformatics 2001, 29 March–1 April 2001, Skövde, p 31

  • Kasha K, Kao K (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–875

    Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof M, Byashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp S, Liu B, Sorrels M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of barley (H. vulgare) genome. Theor Appl Genet 86:705–712

    CAS  Google Scholar 

  • Komatsuda T, Nakamura I, Takaiwa F, Oka S (1998) Development of STS markers closely linked to the vrs1 locus in barley, Hordeum vulgare. Genome 41:680–685

    Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kunzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  Google Scholar 

  • Kuraichi N, Makino T, Hirose S (1994) Inheritance of cleistogamy-chasmogamy in barley. Barley Genet Newsl 23:19

    Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lord E (1981) Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot Rev 47:421–449

    Google Scholar 

  • Maheshwari J (1962) Cleistogamy in angiosperms. In: Maheshwari P, Johri B, Vasil I (eds) Proceedings of the summer school of botany. Ministry of Scientific Research and Cultural Affairs, New Delhi

  • Mano Y, Kawasaki S, Takaiwa F, Komatsuda T (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ × ’Kanto Nakata Gold’ using a simple and efficient AFLP system. Genome 44:284–292

    Article  CAS  PubMed  Google Scholar 

  • Mesfin A, Smith K, Dill-Mackey R, Evans C, Waugh R, Gustus C, Muehlbauer G (2003) Quantitative trait loci for Fusarium head blight resistance in barley detected in two-rowed by six-rowed population. Crop Sci 43:307–318

    CAS  Google Scholar 

  • Michelmore R, Paran I, Kessli R (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  Google Scholar 

  • Nagao S, Takahashi M (1963) Trial construction of twelve linkage groups in Japanese rice. J Fac Agric 53:72–130

    Google Scholar 

  • Reid D (1985) Morphology and anatomy of the barley plant. In: Rasmussen D (ed) Barley. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 75–100

  • Saisho D, Kawasaki S, Sato K, Takeda K (2002) Construction of a BAC library from Japanese malting barley ‘Haruna Nijo’. Plant and Animal Genomes X Conferece, San Diego, p 393

  • Saji S, Umehara Y, Antonio B, Yamane H, Tanoue H, Baba T, Aoki H, Ishige N, Wu J, Koike K, MatsumotoT, Sasaki T (2001) A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome 44:32–37

    Article  PubMed  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Ito Yuichi, Ito Yukiyo, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Article  CAS  PubMed  Google Scholar 

  • Scheurer K, Friedt W, Huth W, Waugh R, Ordon F (2001) QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.) Theor Appl Genet 103:1074–1083

    Google Scholar 

  • Shepherd K, Islam AKMR (1981) Wheat: barley hybrids—the first eighty years. In: Evans RT, Peacock KW (eds) Wheat science today and tomorrow. Cambridge University Press, Cambridge, pp 107–128

  • Shin J, Chao S, Corpuz L, Blake T (1990) A partial map of the barley genome incorporating restriction fragment length polymorphism, polymerase chain reaction, isozyme, and morphological marker loci. Genome 33:803–810

    CAS  PubMed  Google Scholar 

  • Stebbins G (1974) Flowering plants: evolution above the species level. Harvard University Press, Cambridge

    Google Scholar 

  • Takahashi R, Kurosaki H, Yumoto S, Han O, Abe J (2001) Genetic and linkage analysis of cleistogamy in soybean. J Hered 92:89–92

    Article  CAS  PubMed  Google Scholar 

  • Thomsen S, Jensen H, Jensen J, Skou J, Jørgensen J (1997) Localization of a resistance gene and identification of sources of resistance to barley leaf stripe. Plant Breed 116:455–459

    Google Scholar 

  • Yoshida M, Kawada N, Tohnooka T (2001) Testing methods for resistance to FHB and the effect of spike traits in barley. In: Proceedings of the National Fusarium Head Blight Forum, 8–10 December 2001, Erlanger, Kentucky, p 290

  • Yu Y, Tomkins J, Waugh R, Frisch D, Kudrna D, Kleinhofs A, Brueggeman R, Muehlbauer G, Wise R, Wing R (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. T. Konishi (Okayama, Japan), Dr. K. Takeda (Okayama University, Kurashiki, Japan), and Dr. R. Takahashi (NICS) for reviewing the manuscript and referees for their valuable suggestions. We thank Dr. M. Furusho (Fukuoka Agricultural Research Center, Japan) for help in producing DH lines. The authors acknowledge financial support from the grants provided by Ministry of Agriculture, Forestry and Fisheries of Japan, and CREST, Japan Science and Technology Corporation (JST). Y. Turuspekov is a research fellow supported by Cooperative System for Supporting Priority Research working under the JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Komatsuda.

Additional information

Communicated by P. Langridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turuspekov, Y., Mano, Y., Honda, I. et al. Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109, 480–487 (2004). https://doi.org/10.1007/s00122-004-1673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1673-1

Keywords

Navigation