Skip to main content
Log in

Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We report the most complete genetic map to have been constructed for the genus Populus. This map includes 544 markers mapped onto 19 linkage groups, equivalent to the Populus chromosome number, with all markers displaying internally consistent linkage patterns. We estimate the genome length to be between 2,300 and 2,500 cM, based both on the observed number of crossovers in the maternal haplotypes, as well as the total observed map length. Genome coverage was estimated to be greater than 99.9% at 20 cM per marker. We did not detect obvious recombination repression in the maternal tree (a hybrid of Populus trichocarpa Hooker × P. deltoides Marsh.) compared to the paternal tree (pure P. deltoides). Finally, most markers exhibiting segregation distortion were derived from the donor parent in this backcross, and generally occurred in large contiguous blocks on two linkage groups. We hypothesize that divergent selection has occurred on chromosomal scales among the parental species used to create this pedigree, and explore the evolutionary implications of this observation. This genetic linkage map provides the most comprehensive view of the Populus genome reported to date and will prove invaluable for future inquiries into the structural and functional genomics, evolutionary biology, and genetic improvement of this ecologically important model species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cardon LR (2001) The impact of genotyping error on family-based analysis of quantitative traits. Eur J Hum Genet 9:130−134

    CAS  PubMed  Google Scholar 

  • Anderson E (1949) Introgressive hybridization. Wiley, New York

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford

  • Barton NH (1983) Multilocus clines. Evolution 37:454–471

    Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148

    Google Scholar 

  • Bhalerao R, Nilsson O, Sandberg G (2003) Out of the woods: forest biotechnology enters the genomic era. Curr Opin Biotech 14:206–213

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw HD III, Stettler RF (1993) Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theor Appl Genet 86:301–307

    Google Scholar 

  • Bradshaw HD III, Stettler RF (1995) Molecular genetics of growth and development in Populus. 4. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963–973

    CAS  PubMed  Google Scholar 

  • Bradshaw HD III, Villar M, Watson BD, Otto KG, Stewart S, Stettler RF (1994) Molecular genetics of growth and development in Populus. 3. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers. Theor Appl Genet 89:167–178

    CAS  Google Scholar 

  • Bradshaw HD III, Ceulemans R, Davis J, Stettler R (2000) Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul 3:306–313

    Article  Google Scholar 

  • Brzustowicz LM, Merette C, Xie X, Townsend L, Gilliam TC, Ott J (1993) Molecular and statistical approaches to the detection and correction of errors in genotype databases. Am J Hum Genet 53:1137–1145

    Google Scholar 

  • Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52

    Article  CAS  PubMed  Google Scholar 

  • Carney SE, Hodges SA, Arnold ML (1996) Effects of differential pollen-tube growth on hybridization in the Louisiana irises. Evolution 50:1871–1878

    Google Scholar 

  • Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Slycken JV, Montagu MV, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809

    CAS  PubMed  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum-likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    CAS  PubMed  Google Scholar 

  • Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homologous genomes. Genetics 154:857–867

    CAS  PubMed  Google Scholar 

  • DeVicente MC, Tanksley SD (1991) Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor Appl Genet 83:173–178

    Google Scholar 

  • DiFazio SP, Leonardi S, Cheng S, Strauss SH (1999) Assessing potential risks of transgene escape from fiber plantations. In: Lutman PJ (ed) Gene flow and agriculture: relevance for transgenic crops. British Crop Protection Council, Farnham, pp 171–176

  • DiFazio SP, Slavov GT, Burczyk J, Leonardi S, Strauss SH (2004) Gene flow from tree plantations and implications for transgenic risk assessment. In: Walter C, Carson M (eds) Forest biotechnology for the 21st century. Research Signpost, Kerala

  • Dinus RJ, Tuskan GA (1997) Integration of molecular and classical genetics: a synergistic approach to tree improvement. In: Klopfenstein NB, Chun YW, Kim M-S, Ahuja MR (eds) Micropropagation, genetic engineering, and molecular biology of Populus. General Technical Report RM-GTR-297, USDA Forest Service, Fort Collins, pp 220–235

  • Echt CS, Nelson CD (1997) Linkage mapping and genome length in eastern white pine (Pinus strobus L). Theor Appl Genet 94:1031–1037

    CAS  Google Scholar 

  • Eckenwalder JE (1984) Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. III. Paleobotany and evolution. Can J Bot 62:336–342

    Google Scholar 

  • Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 7–32

  • Einspahr D, Benson MK, Peckham JR (1963) Natural variation and heritability in triploid aspen. Silvae Genet 12:51–58

    Google Scholar 

  • Felsenstein J (1981) Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35:124–138

    Google Scholar 

  • Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716

    Google Scholar 

  • Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD III (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845

    CAS  PubMed  Google Scholar 

  • Ganal MW, Simon R, Brommonschenkel S, Arndt M, Phillips MS, Tanksley SD, Kumar A (1995) Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol Plant Microbe Interact 8:886–891

    CAS  PubMed  Google Scholar 

  • Gerber S, Rodolphe F (1994) An estimation of the genome length of Maritime pine (Pinus pinaster Ait.). Theor Appl Genet 88:289–292

    Google Scholar 

  • Graf J (1921) Beitrage zur Kenntnis der Gattung Populus. Beih Bot Central 38:405–434

    Google Scholar 

  • Grattapaglia D, Sederoff RR (1994) Genetic-linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross-mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  Google Scholar 

  • Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff RR (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144:1205–1214

    CAS  PubMed  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Google Scholar 

  • Han K, Bradshaw HD Jr, Gordon MP, Han KH (1994) Adventitious root and shoot regeneration in vitro is under major gene control in an F2 family of hybrid poplar (Populus trichocarpa × P. deltoides). For Genet 1:139–146

    Google Scholar 

  • Harald H, Goring H, Terwilliger JD (2000) Linkage analysis in the presence of errors II: marker-locus genotyping errors modeled with hypercomplex recombination fractions. Am J Hum Genet 66:1107–1118

    Article  PubMed  Google Scholar 

  • Harrison JWH (1924) A preliminary account of the chromosomes and chromosome behavior in the Salicaceae. Ann Bot 38:361–378

    Google Scholar 

  • Hartl DL (1974) Genetic dissection of segregation distortion. I. Suicide combinations of Sd genes. Genetics 76:477–486

    CAS  PubMed  Google Scholar 

  • Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907

    Article  CAS  PubMed  Google Scholar 

  • Hulbert S, Ilott T, Legg EJ, Lincoln S, Lander E, Milchelmore R (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction length polymorphisms. Genetics 120:947–958

    CAS  PubMed  Google Scholar 

  • Jackson RC (1985) Genomic differentiation and its effect on gene flow. Syst Bot 10:391–404

    Google Scholar 

  • Jiang CX, Chee PW, Draye X, Morrell PL, Smith CW, Paterson AH (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution 54:798–814

    CAS  PubMed  Google Scholar 

  • Kim SC, Rieseberg LH (1999) Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics 153:965–977

    CAS  PubMed  Google Scholar 

  • Krutovskii KV, Vollmer SS, Sorensen FC, Adams WT, Knapp SJ, Strauss SH (1998) RAPD genome maps of Douglas-fir. J Hered 89:197–205

    CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lange K, Boehnke M (1982) How many polymorphic genes will it take to span the human genome? Am J Hum Genet 24:842–845

    Google Scholar 

  • Lerceteau E, Plomion C, Andersson B (2000) AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Mol Breed 6:451–458

    CAS  Google Scholar 

  • Li Z, Pinson SRM, Paterson AH, Park WD, Stansel JW (1997) Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice (Oryza sativa l.) population. Genetics 145:1139–1148

    CAS  PubMed  Google Scholar 

  • Lincoln S, Lander E (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604–610

    CAS  PubMed  Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  Google Scholar 

  • Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70:237–250

    Article  Google Scholar 

  • Martinsen GD, Whitham TG, Turek RJ, Keim P (2001) Hybrid populations selectively filter gene introgression between species. Evolution 55:1325–1335

    CAS  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

  • Neale DB, Sewell MM, Brown GR (2002) Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Ann For Sci 59:595–605

    Article  Google Scholar 

  • Orr HA (1996) Dobzhansky, Bateson, and the genetics of speciation. Genetics 144:1331–1335

    CAS  PubMed  Google Scholar 

  • Plomion C, O’Malley DM (1996) Recombination rate differences for pollen parents and seed parents in Pinus pinaster. Heredity 77:341–350

    CAS  Google Scholar 

  • Remington DL, Whetten RW, Liu B-H, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292

    Article  CAS  Google Scholar 

  • Riemenschneider DE, Stanton BJ, Vallee G, Perinet P (2001) Poplar breeding strategies. In: Dickmann D, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, Ottawa, pp 43–76

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624

    Article  Google Scholar 

  • Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM (1996) Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272:741–745

    CAS  PubMed  Google Scholar 

  • Rieseberg LH, Baird SJE, Gardner KA (2000) Hybridization, introgression, and linkage evolution. Plant Mol Biol 42:205–224

    Article  CAS  PubMed  Google Scholar 

  • Rood SB, Campbell JS, Despins T (1986) Natural poplar hybrids from southern Alberta. I. Continuous variation for foliar characteristics. Can J Bot 64:1382–1388

    Google Scholar 

  • Sano Y (1990) The genic nature of gamete eliminator in rice. Genetics 125:183–191

    CAS  PubMed  Google Scholar 

  • Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L). II. Chemical wood properties. Theor Appl Genet 104:214–222

    Article  Google Scholar 

  • Shi QL, Zhuge Q, Huang MR, Wang MX (2001) Phylogenetic relationship of Populus sections by ITS sequence analysis. Acta Bot Sin 43:323–325

    CAS  Google Scholar 

  • Smith EC (1943) A study of cytology and speciation in the genus Populus L. J Arnold Arboretum 24:275–305

    Google Scholar 

  • Smith RL, Sytsma KJ (1990) Evolution of Populus nigra (Sect Aigeiros) - introgressive hybridization and the chloroplast contribution of Populus alba (Sect Populus). Am J Bot 77:1176–1187

    Google Scholar 

  • Snow AA (1984) Mate choice in plants-tactics, mechanisms, and consequences. Ecology 65:1025–1026

    Google Scholar 

  • Stettler RF, Zsuffa L, Wu R (1996) The role of hybridization in the genetic manipulation of Populus. In: Stettler RF, Bradshaw HD III, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 87–112

  • Stirling B, Newcombe G, Vrebalov J, Bosdet I, Bradshaw HD (2001) Suppressed recombination around the MXC3 locus, a major gene for resistance to poplar leaf rust. Theor Appl Genet 103:1129–1137

    CAS  Google Scholar 

  • Strauss S, Lande R, Namkoong G (1992) Limitations of molecular-marker-aided selection in forest tree breeding. Can J For Res 22:1050–1061

    CAS  Google Scholar 

  • Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689

    Article  CAS  PubMed  Google Scholar 

  • Tenhoopen R, Robbins TP, Fransz PF, Montijn BM, Oud O, Gerats AGM, Nanninga N (1996) Localization of T-DNA insertions in petunia by fluorescence in situ hybridization: physical evidence for suppression of recombination. Plant Cell 8:823–830

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, Gunter LE, Yang ZK, Yin TM, Sewell MM, DiFazio SP (2004) Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J For Res 34:85–93

    Article  CAS  Google Scholar 

  • Van der Schoot J, Pospíšková M, Vosman B, Smulders MJM (2000) Development and characterization of microsatellite markers in black poplar (Populus nigra L). Theor Appl Genet 101:317–322

    Article  Google Scholar 

  • Van Dillewijin C (1940) Zytologische studien in der gattung Populus. Genetica 22:131–182

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Wu RL, Han YF, Hu JJ, Fang JJ, Li L, Li ML, Zeng ZB (2000) An integrated genetic map of Populus deltoides based on amplified fragment length polymorphisms. Theor Appl Genet 100:1249–1256

    CAS  Google Scholar 

  • Wullschleger SD, Janssson S, Taylor G (2002a) Genomics and forest biology: Populus emerges as the perennial favorite. Plant Cell 14:2651–2655

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger SD, Tuskan GA, DiFazio SP (2002b) Genomics and the tree physiologist. Tree Physiol 22:1273–1276

    CAS  PubMed  Google Scholar 

  • Yin TM, Huang MR, Wang MX, Zhu LH, Zeng ZB, Wu RL (2001) Preliminary interspecific genetic maps of the Populus genome constructed from RAPD markers. Genome 44:602–609

    Article  CAS  PubMed  Google Scholar 

  • Yin TM, Zhang XY, Huang MR, Wang MX, Zhuge Q, Tu SM, Zhu LH, Zeng ZB, Wu RL (2002) Molecular linkage maps of the Populus genome. Genome 45:541–555

    Google Scholar 

  • Yin TM, Wang XR, Andersson B, Lerceteau-Kohler E (2003) Nearly complete genetic maps of Pinus sylvestris L (Scots pine) constructed by AFLP marker analysis in a full-sib family. Theor Appl Genet 106:1075–1083

    CAS  PubMed  Google Scholar 

  • Zhang J, Steenackers M, Storme V, Neyrinck S, Van Montagu M, Gerats T, Boerjan W (2001) Fine mapping and identification of nucleotide binding site/leucine-rich repeat sequences at the MER locus in Populus deltoides ‘S9-2’. Phytopathology 91:1069–1073

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Sewell, T. Bradshaw, and W. Boerjan for providing data and advice, and two anonymous reviewers for helpful comments on the manuscript. Funding for this research was provided by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), and the U.S. Department of Energy, Office of Science, Biological and Environmental Research Carbon Sequestration Program. ORNL is managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. DiFazio.

Additional information

Communicated by D.B. Neale

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, T.M., DiFazio, S.P., Gunter, L.E. et al. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109, 451–463 (2004). https://doi.org/10.1007/s00122-004-1653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1653-5

Keywords

Navigation