Skip to main content
Log in

Moderne Immunsuppressiva nach Nierentransplantation

Standard oder maßgeschneidert?

Modern immunosuppression following renal transplantation

Standard or tailored medication?

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Die Nierentransplantation ist die bestmögliche Therapie der terminalen Niereninsuffizienz hinsichtlich Lebensqualität, Rehabilitationsgrad und Patientenüberleben. Durch Verhinderung von akuter Transplantatabstoßung und chronischer Transplantatdysfunktion soll eine optimale immunsuppressive Therapie die Funktion der transplantierten Organe langfristig sichern und dazu beitragen, den vorzeitigen Tod des Empfängers zu vermeiden.

In den letzten 10 Jahren kam es mit der Einführung neuer Immunsuppressiva zu einer deutlichen Reduktion akuter Abstoßungskrisen von ca. 50% auf ca. 15–30%. Aber unverändert geht die Suche nach neuen Substanzklassen weiter, die nicht nur zur effektiven Prophylaxe akuter Rejektionen beitragen, sondern auch die chronische Transplantatdysfunktion günstig beeinflussen und zumindest nicht zur weiteren Aggravation dieses multifaktoriellen Prozesses beitragen.

Ausgehend von einer kurzen Darstellung des 3-Signal-Modells der Immunaktivierung werden wesentliche Angriffspunkte und Eigenschaften der zur Verfügung stehenden Immunsuppressiva erläutert. Da sich die Aufgaben der Immunsuppression in den verschiedenen Phasen nach der Transplantation unterscheiden, ist eine phasengerechte Adaptation erforderlich. Derzeit wird in Deutschland bei den meisten Transplantationen initial eine Kombinationstherapie bestehend aus einem Calcineurin-Inhibitor (CNI, Cyclosporin oder Tacrolimus), einem Glukokortikoid (Prednisolon oder Methylprednisolon) und der Mycophenolsäure (MPA) eingesetzt und unter Umständen mit einem Antikörper (z. B. IL-2R-Antikörper) zur Induktion kombiniert. Im Gegensatz zu der eher übersichtlichen Situation vor ca. 10 Jahren ist heute ein ausgeprägtes Spezialwissen bezüglich genauem Wirkungsmechanismus, Nebenwirkungen und Interaktionspotential unerlässlich, um eine patientenadaptierte bestmögliche Immunsuppression durchzuführen.

Zunehmend werden vermehrt individuelle immunsuppressive Behandlungsstrategien eingesetzt, die sich an den Eigenschaften des Medikaments und an seinen Nebenwirkungen ebenso orientieren wie an den Besonderheiten des Empfängers, des Spenders und des transplantierten Organs (wie z. B. Immunologie, Ischämiezeit). Dazu gehört die frühestmögliche Reduktion oder Elimination von einzelnen Immunsuppressiva ebenso wie der Einsatz neuer diagnostischer und genetischer Marker, mit denen das individuelle Wechselspiel zwischen Empfänger und Transplantat besser charakterisiert werden kann und die neben einer verbesserten supportiven Therapie das Langzeitüberleben weiter verbessert.

Abstract

Renal transplantation is by far the best therapeutic option for end-stage kidney disease with respect to quality of life, psychosocial rehabilitation, and even patient survival. Optimal immunosuppressive therapy should provide effective prophylaxis of both acute rejection and chronic allograft dysfunction. Thus immunosuppressive therapy should help to maintain good renal function and could help to prevent premature death of the recipient. With the introduction of new immunosuppressants over the last decade a dramatic reduction of acute rejection rates from approximately 50% to 15–30% could be achieved.

However, the search for novel immunosuppressive drugs continues, drugs which not only lead to effective prevention of acute rejection, but also have an impact on chronic allograft dysfunction and prevent further deterioration of this multifactorial process. Based on a short presentation of the “three signal model” of immunoactivation, the most important mechanisms and characteristics of the presently available immunosuppressants are described. Because the immunosuppressive objectives change over time, a phase-dependent adaptation is necessary. At present, most centers in Germany use an immunosuppressive combination therapy, consisting of a calcineurin inhibitor (CNI; cyclosporine or tacrolimus), a glucocorticoid (prednisolone or methylprednisolone), and mycophenolic acid (MPA), which is eventually combined with an antibody (e.g., IL-2R antibody) for induction. In contrast to the clear situation 10 years ago, highly specialized knowledge is required today with respect to mechanism of action, side effects, and potential interactions. This may enable the physician to adopt patient-oriented optimal immunosuppression. In the near future more individualized treatment options will be employed, which are adapted to the characteristics and side effects of the immunosuppressant, as well as to the characteristics of the donor, the recipient, and the transplanted organ such as immunology and ischemia.

Another aspect is the reduction or elimination of some immunosuppressants at the earliest possible time. With new diagnostic and genetic markers the relationship between recipient and transplanted organ will be characterized better in the future and therapy will become more individualized. Altogether, these measures as well as optimized supportive therapy will help to further improve the longevity of the transplanted organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Wolfe RA, Ashby VB, Milford EL et al. (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341: 1725–1730

    Article  PubMed  Google Scholar 

  2. Shu-Fen N, Chuan LI (2005) Quality of life of patients having renal replacement therapy. J Adv Nurs 51: 15–21

    Article  PubMed  Google Scholar 

  3. Andrews PA (2002) Renal transplantation. BMJ 324: 530–534

    Article  PubMed  Google Scholar 

  4. Vanrenterghem Y (1998) Role of acute rejection in chronic rejection. Transplant Proc 30: 1210–1211

    Article  PubMed  Google Scholar 

  5. Halloran PF (2004) Immunosuppressive drugs for kidney transplantation. N Engl J Med 351: 2715–2729

    Article  PubMed  Google Scholar 

  6. Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B (2004) Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 4: 378–383

    Article  PubMed  Google Scholar 

  7. Koyama H, Cecka JM (1992) Rejection episodes. Clin Transpl 1992: 391–404

    Google Scholar 

  8. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group (1996) A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation 61: 1029–1037

    PubMed  Google Scholar 

  9. Flechner SM, Feng J, Mastroianni B et al. (2005) The effect of 2-gram versus 1-gram concentration controlled mycophenolate mofetil on renal transplant outcomes using sirolimus-based calcineurin inhibitor drug-free immunosuppression. Transplantation 79: 926–934

    Article  PubMed  Google Scholar 

  10. Pascual M, Theruvath T, Kawai T, Tolkoff-Rubin N, Cosimi AB (2002) Strategies to improve long-term outcomes after renal transplantation. N Engl J Med 346: 580–590

    Article  PubMed  Google Scholar 

  11. Lindholm A (1991) Factors influencing the pharmacokinetics of cyclosporine in man. Ther Drug Monit 13: 465–477

    PubMed  Google Scholar 

  12. van Gelder T (2002) Drug interactions with tacrolimus. Drug Saf 25: 707–712

    PubMed  Google Scholar 

  13. Holt DW (2002) Cyclosporin monitoring based on C2 sampling. Transplantation 73: 840–841

    PubMed  Google Scholar 

  14. Pescovitz MD, Barbeito R, Simulect US01 Study Group (2002) Two-hour post-dose cyclosporine level is a better predictor than trough level of acute rejection of renal allografts. Clin Transplant 16: 378–382

    Article  PubMed  Google Scholar 

  15. Elion GB (1993) The George Hitchings and Gertrude Elion Lecture. The pharmacology of azathioprine. Ann NY Acad Sci 685: 400–407

    PubMed  Google Scholar 

  16. Tiede I, Fritz G, Strand S et al. (2003) CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest 111: 1133–1145

    Article  PubMed  Google Scholar 

  17. Kunz R, Neumayer HH (1997) Maintenance therapy with triple versus double immunosuppressive regimen in renal transplantation: a meta-analysis. Transplantation 63: 386–392

    Article  PubMed  Google Scholar 

  18. European Mycophenolate Mofetil Cooperative Study Group (1995) Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet 345: 1321–1325

    PubMed  Google Scholar 

  19. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group (1996) A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation 61: 1029–1037

    PubMed  Google Scholar 

  20. Budde K, Glander P, Diekmann F et al. (2004) Review of the immunosuppressant enteric-coated mycophenolate sodium. Expert Opin Pharmacother 5: 1333–1345

    Article  PubMed  Google Scholar 

  21. Sollinger HW for the US Renal Transplant Mycophenolate Mofetil Study Group (1995) Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 60: 225–232

    PubMed  Google Scholar 

  22. Ojo AO, Meier-Kriesche HU, Hanson JA et al. (2000) Mycophenolate mofetil reduces late renal allograft loss independent of acute rejection. Transplantation 69: 2405–2409

    Article  PubMed  Google Scholar 

  23. Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35 [Suppl 3]: 7–14

    Article  Google Scholar 

  24. Kahan, Barry D, Podbielski J et al. (1998) Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation 66: 1040–1046

    Article  PubMed  Google Scholar 

  25. Diekmann F, Budde K, Oppenheimer F, Fritsche L, Neumayer HH, Campistol JM (2004) Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am J Transplant 4: 1869–1875

    Article  PubMed  Google Scholar 

  26. Fritsche L, Budde K, Dragun D, Einecke G, Diekmann F, Neumayer HH (2004) Testosterone concentrations and sirolimus in male renal transplant patients. Am J Transplant 4: 130–131

    Article  PubMed  Google Scholar 

  27. Nashan B (2002) Review of the proliferation inhibitor everolimus. Expert Opin Investig Drugs 11: 1845–1157

    Article  PubMed  Google Scholar 

  28. Abramowicz D, Wissing M (1999) S206 Induction protocols: yesterday, today, and tomorrow. Transplant Proc 31: 1100–1101

    Article  PubMed  Google Scholar 

  29. Opelz G, Henderson R (1993) Incidence of Non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet 342: 1514–1516

    Article  PubMed  Google Scholar 

  30. Vincenti F, Kirkman R, Light S et al. (1998) Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 338: 161–165

    Article  PubMed  Google Scholar 

  31. Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP (1997) Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 350: 1193–1188

    Article  PubMed  Google Scholar 

  32. Kaltwasser JP, Behrens F (2005) Leflunomide: long-term clinical experience and new uses. Expert Opin Pharmacother 6: 787–801

    Article  PubMed  Google Scholar 

  33. Hardinger KL, Wang CD, Schnitzler MA et al. (2002) Prospective, pilot, open-label, short-term study of conversion to leflunomide reverses chronic renal allograft dysfunction. Am J Transplant 2: 867–871

    Article  PubMed  Google Scholar 

  34. Evers DL, Wang X, Huong SM, Andreoni KA, Huang ES (2005) Inhibition of human cytomegalovirus signaling and replication by the immunosuppressant FK778. Antiviral Res 65: 1–12

    Article  PubMed  Google Scholar 

  35. Fitzsimmons WE, First MR (2004) FK778, a synthetic malononitrilamide. Yonsei Med J 45: 1132–1135

    PubMed  Google Scholar 

  36. Vanrenterghem Y, van Hooff JP, Klinger M et al. (2004) The effects of FK778 in combination with tacrolimus and steroids: a phase II multicenter study in renal transplant patients. Transplantation 78: 9–14

    Article  PubMed  Google Scholar 

  37. Brinkmann V, Cyster JG, Hla T (2004) FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 4: 1019–1025

    Article  PubMed  Google Scholar 

  38. Budde K, Schmouder RL, Brunkhorst R et al. (2002) First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 13: 1073–1083

    PubMed  Google Scholar 

  39. Kirk AD, Hale DA, Mannon RB et al. (2003) Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 76: 120–129

    Article  PubMed  Google Scholar 

  40. Becker YT, Becker BN, Pirsch JD, Sollinger HW (2004) Rituximab as treatment for refractory kidney transplant rejection. Am J Transplant 4: 996–1001

    Article  PubMed  Google Scholar 

  41. Larsen CP, Pearson TC, Adams AB et al. (2005) Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 5: 443–453

    PubMed  Google Scholar 

  42. Rama I, Cruzado JM, Gil-Vernet S et al. (2005) Steroids can be safely withdrawn from cyclosporine and mycophenolate mofetil-treated renal allograft recipients: long-term results. Transplantation 80: 164–168

    Article  PubMed  Google Scholar 

  43. Meier-Kriesche HU, Steffen BJ, Hochberg AM et al. (2003) Mycophenolate mofetil versus azathioprine therapy is associated with a significant protection against long-term renal allograft function deterioration. Transplantation 75: 1341–1346

    Article  PubMed  Google Scholar 

  44. Nashan B (2002) Review of the proliferation inhibitor everolimus. Expert Opin Invest Drugs 11: 1845–1857

    Article  Google Scholar 

  45. Oberbauer R, Segoloni G, Campistol JM et al. (2005) Early cyclosporine withdrawal from a sirolimus-based regimen results in better renal allograft survival and renal function at 48 months after transplantation. Transpl Int 18: 22–28

    Article  PubMed  Google Scholar 

  46. Glander P, Hambach P, Braun KP et al. (2004) Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am J Transplant 4: 2045–2051

    Article  PubMed  Google Scholar 

  47. Fischereder M, Gohring P, Schneeberger H et al. (1998) Early loss of renal transplants in patients with thrombophilia. Transplantation 65: 936–939

    Article  PubMed  Google Scholar 

  48. Heidenreich S, Junker R, Wolters H et al. (2003) Outcome of kidney transplantation in patients with inherited thrombophilia: data of a prospective study. J Am Soc Nephrol 14: 234–239

    Article  PubMed  Google Scholar 

  49. Slifkin M, Doron S, Snydman DR (2004) Viral prophylaxis in organ transplant patients. Drugs 64: 2763–2792

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: Forschungsunterstützung von Roche AG, Wyeth, Astellas Pharma, Novatis Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Budde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budde, K., Giessing, M., Liefeldt, L. et al. Moderne Immunsuppressiva nach Nierentransplantation. Urologe 45, 9–17 (2006). https://doi.org/10.1007/s00120-005-0958-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-005-0958-6

Schlüsselwörter

Keywords

Navigation