
Review

Radiologe 2018 · 58 (Suppl 1):S7–S13
https://doi.org/10.1007/s00117-018-0409-1
Published online: 8 June 2018
© The Author(s) 2018

D. Leithner1,2 · J. V. Horvat1 · R. E. Ochoa-Albiztegui1 · S. Thakur1 · G. Wengert3 ·
E. A. Morris1 · T. H. Helbich3 · K. Pinker1,3
1 Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York,
USA

2Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt,
Germany

3Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender
Imaging, Medical University Vienna, Vienna, Austria

Imaging and the completion of
the omics paradigm in breast
cancer

Within the field of oncology, “omics”
strategies—genomics, transcriptomics,
proteomics, metabolomics—have many
potential applications and may greatly
improve our understanding of the under-
lying processes of cancer development
and progression. Omics strategies can
play an important role in informing
patient diagnosis, prognosis, and treat-
ment [1, 2, 40]. In particular, they are
naturally suited and highly promising
for biomarker discovery as they allow for
the rapid and simultaneous analysis of
sampleswith rich biological information.

Omics data in oncology

In breast cancer (BC), the paradigm for
omics strategies has always favored inte-
grating multiple layers of omics data to
achieve a complete portrait of BC. In the
past decade, gene-expression profiling
revolutionized BC classifications and re-
placed traditional categorizations based
on immunohistochemistry with molec-
ular subtypes (. Fig. 1; [10, 11]).

Four intrinsic molecular subtypes of
BC have been revealed from extensive
profiling at the DNA, microRNA, and
protein levels by The Cancer Genome
Atlas (TCGA) Network [5]: luminal A,
luminal B, HER2(human epidermal
growth factor receptor 2)-enriched, and
triple negative (TN). Molecular BC
subtypes are unevenly distributed in
patients, are associated with different

tumor phenotypes, and have a distinct
prognosis, response to treatment, prefer-
ential metastatic organs, and recurrence
or disease-free survival outcomes [18].
Since 2011, the St. Gallen International
Expert Consensus panel has used the
molecular subtype-based recommenda-
tions for systemic therapies for BC [10,
11].

Patients with the luminal A subtype
have the most favorable prognosis, fol-
lowed by patients with luminal B, who
have an intermediate prognosis. TN and
HER2+ subtypes are associated with an
unfavorable prognosis, but with the in-
troduction of chemotherapy drugs such
as trastuzumab and pertuzumab, the nat-
ural course of disease of TN and HER2+
has significantly improved [19]. Whereas
luminal A cancers progress slowly over
time with a greater chance of disease-
free survival for patients [20], luminal B,
HER2+, and TN BCs tend to recur, with
a peak incidence of recurrence within
the first 5 years for luminal B and the
first 1–2 years for HER2+ and TN. Lu-
minal cancers tend to metastasize to the
bonewhile TN cancersmetastasize to the
viscera [33]. TN cancers are associated
with a higher risk of regional relapse and
the prognosis is dismal once the cancer
spreads to regional lymph nodes, regard-
less of the number of nodes involved.

In the clinical and research settings,
there is no readily available low-cost ge-
netic testing to date and therefore molec-

ularsubtypesarecommonlyderivedfrom
invasive tissue sampling to guide therapy
decisions. It shouldbenotedthatbiopsies
of small tumor regions aremost likely not
completely representative of the genetic,
epigenetic, and/orphenotypic alterations
of the entire tumor. In addition, although
immunohistochemistry surrogates may
provide clinical guidance, they have vari-
able agreement with formal genetic test-
ing (agreement rates have been reported
to be between 41 and 100%) and are less
robust for predicting patient outcomes
[16]. Therefore, there is a strong argu-
ment for an alternative, more accurate
means of differentiating molecular BC
subtypes and elucidating the underlying
processes of BC development and pro-
gression, which poses a tremendous and
unique opportunity for advanced medi-
cal imaging.

In this review, we discuss the pivotal
role of radiogenomics in BC within the
larger omics paradigm in BC oncology.
We aim to give an overview of breast
radiogenomics, its current role, future
applications, and challenges.

Radiogenomics in breast cancer

Advances in medical imaging technolo-
gies, image analysis, and the develop-
ment of high-throughput methods that
can extract and correlate multiple imag-
ing parameterswith omics data have ush-
ered in a new direction in medical re-
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Fig. 18 Omics technologies used in the characterization of breast cancer for precisionmedicine.
Molecular profiling and imaging technologies currently used for ome examination are shown.
aCGH array comparative genomic hybridization, FTI Fourier-transform infrared, LC liquid chromatog-
raphy,MSmass spectrometry,NMRnuclearmagnetic resonance, RPPA reverse phase protein ar-
ray, SNP single nucleotide polymorphism, SWATH serial windowacquisition of theoretical spectra,
WGSwhole-genome sequencing. (Modifiedwith permission from [22], this content is not part of the
OpenAccess licence)

search. Radiogenomics is a relatively
new omics strategy that correlates imag-
ing characteristics (i. e., the imaging phe-
notype) with underlying gene expres-
sion patterns, gene mutations, and other
genome-related characteristics [4, 6, 9,
17, 26, 27, 32, 44].

Radiogenomics is not synonymous
with radiomics, which is defined as the
conversion of medical images to higher-
dimensional, mineable data using com-
puter classification algorithms and cor-
relating these features with various data
of interest such as patient characteristics,
outcomes, and omics data for improved
decision support [9, 25, 27, 32, 38].

Radiogenomics not only represents
the evolution in the radiology–pathology
correlation from the anatomical–histo-
logical level to the molecular level, but it
is a pivotal step in the omics paradigm
in BC for fully characterizing the dis-
ease. With the use of modern analytical
software tools, discoveries of new quan-

titative and qualitative imaging biomark-
ers offer hitherto unprecedented insights
into the complex tumor biology and fa-
cilitate a deeper understanding of can-
cer development and progression. In
a typical radiogenomics study, multiple
qualitative and/or quantitative imaging
features—i. e., shape, size, volume, sig-
nal intensity, or texture—are manually
or (semi-)automatically extracted from
an imaging dataset and are then cor-
related with omics data. This correla-
tion provides useful bidirectional infor-
mation: Imaging parameters can be used
to predict cancer genotypes, and imaging
phenotypes can be predicted from gene
signatures [4, 8, 26, 32].

In 2012 the first article on radio-
genomics in BC was published followed
by a growing body of literature ever since
[49]. So far, the rapidly evolving field of
radiogenomics in BC has almost exclu-
sively focused on magnetic resonance
imaging (MRI). MRI is an established

tool in breast imaging, with multiple
indications such as preoperative staging,
monitoring of neoadjuvant chemother-
apy, and screening of high-risk patients.
Dynamic contrast-enhancedMRI (DCE-
MRI) provides excellentmorphologic in-
formation as well as limited functional
information about abnormal vascular-
ization as a tumor-specific feature. It is
regarded as the most sensitive imaging
modality for BC detection but has been
criticized for its variable specificity. To
add specificity and gain more functional
information on BC, diffusion-weighted
imaging (DWI) has been developed
and found to be an essential addition
to DCE-MRI in multiple studies [37].
Today, multiparametric (mp) MRI in-
cluding DCE-MRI and DWI has been
successfully implemented into clinical
routine. Additional parameters such as
chemical exchange saturation transfer
(CEST), blood oxygen level-dependent
(BOLD), hyperpolarized (HP) MRI,
and lipid MP spectroscopy (MRSI) are
currently being developed and investi-
gated. These newer applications in MRI
promise to provide additional functional
information and may open up further
avenues for radiogenomics research.

Feature extraction approaches

For the purposes of radiogenomics anal-
ysis, imaging features can be extracted
withhumaneffort, semi-automatically or
fullyautomaticallyusingcomputervision
algorithms. Human feature extraction
is based on image reading to provide
specific variables such as lesion shape,
margin, pattern, enhancement type, and
kinetics; these features are defined by the
AmericanCollegeofRadiologyBI-RADS
(Breast Imaging Reporting andData Sys-
tem) MR lexicon. Human-extracted im-
age variables are easily assessed but this
process is time consuming and often lim-
ited by inter- and intra-observer variabil-
ity, and thus semi- and fully automatic
approaches should be preferred for fea-
ture extraction. While semi-automatic
approaches still require human input in
termsoftumordelineationordrawingthe
region of interest, fully-automatic com-
puter-algorithm-extracted texture imag-
ing features are of special interest for ra-
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Abstract
Within the field of oncology, “omics” strate-
gies—genomics, transcriptomics, proteomics,
metabolomics—havemany potential appli-
cations and may significantly improve our
understanding of the underlying processes of
cancer development and progression. Omics
strategies aim to develop meaningful imaging
biomarkers for breast cancer (BC) by rapid
assessment of large datasets with different
biological information. In BC the paradigm
of omics technologies has always favored
the integration of multiple layers of omics
data to achieve a complete portrait of BC.
Advances in medical imaging technologies,
image analysis, and the development of
high-throughput methods that can extract
and correlate multiple imaging parameters
with “omics” data have ushered in a new

direction in medical research. Radiogenomics
is a novel omics strategy that aims to correlate
imaging characteristics (i. e., the imaging
phenotype) with underlying gene expression
patterns, gene mutations, and other genome-
related characteristics. Radiogenomics
not only represents the evolution in the
radiology–pathology correlation from the
anatomical–histological level to the molecular
level, but it is also a pivotal step in the omics
paradigm in BC in order to fully characterize
BC. Armed with modern analytical software
tools, radiogenomics leads to new discoveries
of quantitative and qualitative imaging
biomarkers that offer hitherto unprecedented
insights into the complex tumor biology
and facilitate a deeper understanding of
cancer development and progression. The

field of radiogenomics in breast cancer is
rapidly evolving, and results from previous
studies are encouraging. It can be expected
that radiogenomics will play an important
role in the future and has the potential to
revolutionize the diagnosis, treatment, and
prognosis of BC patients. This article aims to
give an overview of breast radiogenomics,
its current role, future applications, and
challenges.

Keywords
Breast neoplasms · Magnetic resonance
imaging · Diffusion-weighted imaging ·
Biomarkers · Gene expression · Molecular
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Bildgebung und die Vervollständigung des „Omics-Paradigmas“ bei Brustkrebs

Zusammenfassung
Die „Omics-Strategien“ – „genomics,
transcriptomics, proteomics, metabolomics“ –
haben viele potenzielle Anwendungsgebiete
innerhalb der Onkologie und könnten das
Verständnis der Krebsentstehung und des
Fortschreitens der Erkrankung deutlich
verbessern. Mit „Omics-Strategien“ können
große Datenmengen verschiedenster biolo-
gischer Informationen schnell ausgewertet
werden, mit dem Ziel, sinnvolle Biomarker für
Brustkrebs und hiermit ein integratives Porträt
dieser Erkrankung zu entwickeln. Diese neue
Richtung in der medizinischenWissenschaft
wurde durch verschiedenste Fortschritte
in Bildgebungs- und Bildanalysemethoden
sowie die Entwicklung von Techniken zur
Extraktion und Korrelation verschiedenster
Bildgebungsparametermit „Omics-Daten“

eingeläutet. Radiogenomics haben zum Ziel,
Bildgebungscharakteristika (Phänotypen) mit
Genexpressionsmustern, Genmutationen und
weiteren genomassoziierten Eigenschaften
zu korrelieren. Hiermit repräsentieren
Radiogenomics die Evolution der Korrelation
von Radiologie und Pathologie von der ana-
tomisch-histologischen hin zur molekularen
Ebene und stellen einen zentralen Schritt
des „Omics-Paradigmas“ bei Brustkrebs dar.
In Verbindung mit modernen Software-
analysetechniken können quantitative und
qualitative Bildgebungsbiomarker bisher
beispiellose Erkenntnisse über komplexe
Tumorbiologie liefern und ein besseres
Verständnis der Krebsentstehung und
-progression bewirken. Radiogenomics stellen
ein sich rasch entwickelndes Forschungsfeld

dar, und Resultate aus ersten Studien sind
vielversprechend. Es ist zu erwarten, dass
Radiogenomics zukünftig eine wichtige Rolle
spielen werden, da sie das Potenzial haben,
Diagnose, Behandlung und Prognose von
Brustkrebs zu beeinflussen. Im vorliegenden
Artikel wird ein Überblick über Radiogenomics
der Brust, ihre aktuelle Rolle, zukünftige
Anwendungen und Herausforderungen
gegeben.

Schlüsselwörter
Brustneoplasien · Magnetresonanztomo-
graphie · Diffusionsgewichtete Bildgebung ·
Biomarker · Genexpression · Molekulare
Subtypen

diogenomics, quantifying the morphol-
ogy and three-dimensional (3D) struc-
ture of the lesion of interest on a voxel-
by-voxel basis.

Texture features are evaluated by tex-
ture analysis, which comprises four tasks
with the aim of quantifying the mor-
phology and internal structure of the
tissue: feature extraction, texture dis-
crimination, texture classification, and
shape reconstruction [42]. In feature
extraction, a numerical value is cal-

culated based on statistical, structural,
or model-based processing, e. g., with
publicly available software such as the
open source software MaZda (Technical
University of Łodz, Institute of Electron-
ics, Łodz, Poland; http://www.eletel.p.
lodz.pl/programy/mazda/). In texture
discrimination, images are segmented
and regions with similar texture features
are grouped together. These regions can
be matched on predefined characteris-
tics such as amount of fibroglandular

tissue, benign tissue, or malignant breast
lesions. The derived information can
then be used to reconstruct 3D shapes
and models and finally be correlated
with genomic signatures or outcome
variables.

In addition, data-mining algorithms
can be used to extract dynamic variables
such as enhancement kinetics, which al-
lows for the assessment of neoangio-
genesis as a tumor-specific feature. Ki-
netic features that are usually evaluated
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Fig. 28 Example cases including segmentation outlines obtained from the computer segmentation
method. aER-positiveexample;bER-negativeexample;cCEIPvalues (andranges) forsize, irregularity,
and enhancement texture of two example cases.CEIP computer-extracted image phenotypes, ER es-
trogen receptor,HER2 human epidermal growth factor receptor 2,MRImagnetic resonance imaging.
(Reprintedwith nomodifications under a creative common license (https://creativecommons.org/
licenses/by/4.0/) from [29])

are the rate of enhancement on early
postcontrast-enhanced sequences, peak
enhancement, and late postcontrast-en-
hanced sequences.

Although computer vision algorithms
are of special interest because they can
facilitate the assessment of large data vol-
umes, are not reader-dependent, and can
provide information that is beyond hu-
man perception, they are not ready to be
introduced into clinical routine, as re-
search data are not yet fully reproducible
owing to a lack of image protocol and
data standardization.

Radiogenomic approaches

In exploratory radiogenomics studies,
the extracted imaging features are tested
against multiple different genomic char-
acteristics, while metrics such as the
false discovery rate are often used to

detect meaningful prospective variables
[12, 36, 39]. Hierarchical clustering
is a method for evaluating similarities
in large datasets and has been used
famously in the original definition of
the molecular subtypes of BC by Perou
et al. [35]. In this approach, individual
data points that show similarities are
clustered until the relationship between
all data points is established. The largest
group at the top of the map is then used
to define all groups within the dataset.

In hypothesis-driven radiogenomics
studies, imagingcharacteristicsarecorre-
latedwith specific genetic signatures [26]
withmanypotential benefits forBCdiag-
nosis and therapy. As mentioned earlier,
no low-cost genetic testing is available to
date and the development of surrogates
bymeans of radiogenomics with medical
imaging is of great interest. In addition,
radiogenomics might be used to develop

imaging biomarkers to predict outcome
parameters, such as therapy response or
metastases [3].

Current applications

Thus far, MRI radiogenomics in the
breast has mainly focused on DCE-MRI
and the analyses of individual genomic
signatures, BC molecular subtypes, or
clinically used recurrence scores, with
promising results.

Individual genomic signatures

In 2012, Yamamoto et al. conducted the
first radiogenomics study in BC, demon-
strating in ten BC patients that radio-
genomics can be used to correlate gene
expressionpatternswith imagingfeatures
in DCE-MRI [49]. In this groundbreak-
ing study, the authors showed that 21 of
26 imaging characteristics were signifi-
cantly associated with 71% of approxi-
mately 52,000 variably expressed genes.
They found that 12 imaging characteris-
tics were significantly correlated with BC
genes, while 11 were significantly corre-
lated with prognostic molecular charac-
teristics. In a follow-up studyby the same
investigators using computer vision-ex-
tracted features andRNAsequencing, the
enhancing rim fraction score was signif-
icantly associated with early metastasis
[48].

Another group of authors, Zhu et al.,
investigated potential correlations of
DCE-MRI features such as tumor size,
shape, and morphology with genomic
features such as transcriptional activi-
ties, protein expressions, and mutations
for 91 breast carcinomas [51]. All se-
lected DCE-MRI characteristics were
associated with transcriptional activities
of pathways, in particular tumor size,
indicating that upregulated pathways are
more common in large cancers. At the
same time, associations between tran-
scriptional activities and blurred tumor
margins and irregular shape were found,
indicatingmore aggressivemalignancies.

Molecular breast cancer subtypes

As shown in recent efforts, radio-
genomics has the potential to identify
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Fig. 39 Colormap show-
ing the correlation of
MRI-based phenotypes
with the recurrence predic-
tormodels ofMammaPrint,
OncotypeDX, PAM50
ROR-S, and PAM50 ROR-P.
Here, yellow indicates
higher correlation than
blue. The different gene
assays (recurrence pre-
dictormodels) serve as
“reference standard” in this
study. ROR-P risk of relapse
based on proliferation,
ROR-S risk of relapse based
on subtype. (Reprinted
with permission from [28],
this content is not part of
the OpenAccess licence)

imaging biomarkers as reliable surro-
gates for genetic testing in the future.
Grimm et al. found strong correlations
between morphologic, kinetic, and tex-
tural imaging findings and luminal A
and B subtypes [15]. While the classifier
model by Waugh et al. had limited
success, achieving an accuracy of 57.2%
[46], Li et al. evaluated a classifier model
utilizing tumor phenotypes to distin-
guish between molecular subtypes with
promising results (. Fig. 2; [29]).

While the following are not radio-
genomics studies, they show that imag-
ing features are associated with molecu-
lar subtypes. In a recent study involving
278 cancer patients, Grimm et al. found
significant correlations between DCE-
MRI BI-RADS descriptors and molecu-
lar subtypes [14]. Previous studies have
also reported associations betweenDCE-
MRI enhancement kinetics and molecu-
lar BC subtypes. For instance, Elias et al.
demonstrated that the luminal B subtype
is associated with a higher internal en-
hancementof the tumor, whileHER2-en-
richedcancers aremore likely to showfast
initial enhancement or wash-out kinetics
[7]. HER2 subtypes have been described
as being associated with a circumscribed
margin, whileTNsubtypesare associated
withrimenhancementandhighT2signal
intensity[13, 45]. InDWI, thehighestap-
parentdiffusioncoefficient (ADC)values

were found in HER2-enriched tumors,
while luminal B/HER2-negative cancers
showed the lowest ADC values [23, 31,
34], which might be due to the increased
vascularization found in HER2-positive
subtypes. Thesefindings indicate that the
assessment of functional tumor parame-
ters with radiogenomics can be expected
to contribute to our deeper understand-
ing of BC biology.

Recurrence scores

Another clinically relevant application
of radiogenomics is the correlation of
imaging characteristics with prognostic
genomic assays that provide scores for
the risk of recurrence and are used to
guide treatment decisions. Ashraf et al.
demonstrated thatDCE-MRI features in-
dicative of greater tumor vascularization
were associated with an increased risk of
cancer recurrence [3]. Suttonet al. devel-
oped amodel incorporating imaging and
pathological information that showed
a correlation with the OncotypeDx re-
currence score [41]. In another study,
Li et al. evaluated whether computer-
extracted imaging phenotypes could pre-
dict cancer recurrence using multigene
assays, indicating that larger, more het-
erogeneous tumors have a higher risk for
recurrence [28]. In this study, significant
associations between BCMRI radiomics

features and recurrence scores, espe-
cially MammaPrint, OncotypeDx, and
PAM50/Prosigna, were found (. Fig. 3).
In a very recent study, Woodard et al.
evaluated the association of BI-RADS
mammography and MRI features with
BC recurrence in estrogen receptor (ER)
positive patients using the OncotypeDx
assay [47]. They found indistinct mass
margins andfine linear branching calcifi-
cations to be significantly associatedwith
a higher recurrence score, while breast
density was inversely associated with the
recurrence score (. Fig. 4). These stud-
ies illustrate that radiogenomics has the
potential to identify multiple imaging
biomarkers of BC recurrence risk, with
larger studies needed to validate these
preliminary findings.

Challenges and future
perspectives

One of the main challenges of radio-
genomics is the generation of big data,
which must be stored, managed, and an-
alyzed in a standardized, cost-effective
way. Initiatives such as the Center for
AdvancingTranslationScience of theNa-
tional Institutes of Health (NIH, 2011)
are being developed to address this prob-
lem. In addition, research in the field of
radiogenomics is still limitedby the inter-
and intra-institutionaldataheterogeneity
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caused bydifferent hardware, scanproto-
cols, and postprocessing. Furthermore,
genetic testing is challenging and costly,
while the availability of genetic data is
generally limited. The TCGA and Can-
cer Imaging Archive have been launched
to store imaging and genetic data derived
fromdifferent institutions. However, ow-
ing to these challenges, the conclusions
that can be drawn from radiogenomic
BC studies are limited by their mostly
retrospective nature and small patient
cohorts. To date, the evolving field of
radiogenomics in breast imaging has al-
most exclusively focused on DCE-MRI,
while most studies aimed to correlate ge-
nomic features with cancer subtypes and
recurrence scores.

However, thefieldofimagingbiomark-
ers development with MRI is rapidly
growing. In DWI advanced techniques
such as intravoxel incoherent motion,
stretchedexponentialDWI,andDWkur-
tosis imaging are being investigated and
hold promise for providing additional
robust imaging biomarkers that can be
incorporated in radiogenomic studies
[30]. In addition, other MRI techniques
that may be used for radiogenomic re-
search include spectroscopy (proton,
phosphorus, lipid), sodium imaging
[50], CEST imaging [24], BOLD [21],
and arterial spin labeling MRI [43]. Ra-
diogenomics research in BC is still in its
infancy. Larger prospective studies uti-
lizing the full wealth of information that
MRI can offer and considerable efforts

in standardization and quality con-
trol are warranted, especially regarding
outcome-related data, to meaningfully
implement radiogenomics in the clinical
setting.

Practical conclusion

4 Radiogenomics examines the corre-
lations of imaging phenotypes with
characteristics derived from omics
strategies—genomics, transcrip-
tomics, proteomics, metabolomics.

4 The integration of radiogenomics is
a pivotal step toward completing the
omics paradigm in BC.

4 Thanks to the noninvasive nature and
ubiquitous use of medical imaging
in clinical routine, radiogenomics
can elucidate disease processes by
adding to our understanding of
the disease etiology and helping
to determine patient diagnosis,
prognosis, and treatment.

4 Exploration of additional functional
imaging data in conjunction with
omics technologies will open new
avenues of multidimensional radio-
genomic research.

4 The implementation of radio-
genomics in clinical BC care can
further enhance the role of radiology.
Additional efforts, rigorous stan-
dardization, and quality control are
needed to validate already described
radiogenomic correlations, discover

new correlations, anddefine clinically
relevant imaging biomarkers.
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