Skip to main content
Log in

Cell Tracking

Prinzipien und Anwendungen

Cell tracking

Principles and applications

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Zelluläre Therapieverfahren wie Stammzelltherapien bei Morbus Parkinson oder Diabetes sowie adoptive Immuntherapien bei Krebs werden in Zukunft zunehmend an Bedeutung gewinnen. Ein Problem bei beiden Therapieverfahren stellt jedoch das qualitative und quantitative Monitoring der Therapie dar. Es ist wichtig zu wissen, ob die applizierten Zellen auch zu ihrem Zielgewebe gelangen und darüber hinaus auch noch funktionsfähig sind. Diese Informationen sind heute meist nur durch invasive Maßnahmen wie Blut- oder Gewebeproben zu erlangen. Das Verfahren des „Cell Tracking“, bei dem entweder direkt oder über Markergene markierte Zellen mit verschiedenen bildgebenden Verfahren (MRT, optische oder nuklearmedizinische Verfahren) in vivo dargestellt und verfolgt werden können, verspricht für die Therapiekontrolle von großem Nutzen zu sein, zumal unter geeigneten Voraussetzungen nicht nur die Anzahl der Zellen erfasst werden kann, sondern auch deren Funktionalität. Auch in der Grundlagenforschung wird das Cell Tracking zunehmend eingesetzt, nicht nur zur Entwicklung zellulärer Therapien, sondern auch zur Erforschung pathologischer Prozesse wie etwa der Metastasierung. In diesem Übersichtsartikel werden die Prinzipien des Cell Tracking erläutert und an ausgewählten Beispielen verdeutlicht.

Abstract

Cell based therapies such as stem cell therapies or adoptive immunotherapies are currently being explored as a potential treatment for a variety of diseases such as Parkinson’s disease, diabetes or cancer. However, quantitative and qualitative evaluation of adoptively transferred cells is indispensable for monitoring the efficiency of the treatment. Current approaches mostly analyze transferred cells from peripheral blood, which cannot assess whether transferred cells actuallyhome to and stay in the targeted tissue. Using cell-labeling methods such as direct labeling or transfection with a marker gene in conjunction with various imaging modalities (MRI, optical or nuclear imaging), labeled cells can be followed in vivo in real-time, and their accumulation as well as function in vivo can be monitored and quantified accurately. This method is usually referred to as “cell tracking” or “cell trafficking” and is also being applied in basic biological sciences, exemplified in the evaluation of genes contributing to metastasis. This review focuses on principles of this promising methodology and explains various approaches by highlighting recent examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49: 349–360

    PubMed  Google Scholar 

  2. Adonai N, Nguyen KN, Walsh J et al. (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 99: 3030–3035

    Article  PubMed  Google Scholar 

  3. Ahrens ET, Feili-Hariri M, Xu H et al. (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49: 1006–1013

    Article  PubMed  Google Scholar 

  4. Aicher A, Brenner W, Zuhayra M et al. (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107: 2134–2139

    Article  PubMed  Google Scholar 

  5. Aime S, Cabella C, Colombatto S et al. (2002) Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16: 394–406

    Article  PubMed  Google Scholar 

  6. Aime S, Carrera C, Delli Castelli D et al. (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 44: 1813–1815

    Article  PubMed  Google Scholar 

  7. Alfke H, Stoppler H, Nocken F et al. (2003) In vitro MR imaging of regulated gene expression. Radiology 228: 488–492

    PubMed  Google Scholar 

  8. Aung W, Okauchi T, Sato M et al. (2005) In vivo PET imaging of inducible D2R reporter transgene expression using [11C]FLB 457 as reporter probe in living rats. Nucl Med Commun 26: 259–268

    Article  PubMed  Google Scholar 

  9. Bennink RJ, Hamann J, de Bruin K et al. (2005) Dedicated pinhole SPECT of intestinal neutrophil recruitment in a mouse model of dextran sulfate sodium-induced colitis. J Nucl Med 46: 526–531

    PubMed  Google Scholar 

  10. Bettegowda C, Foss CA, Cheong I et al. (2005) Imaging bacterial infections with radiolabeled 1-(2’-deoxy-2’-fluoro-beta-D-arabinofuranosyl)-5-iodouracil. Proc Natl Acad Sci U S A 102: 1145–1150

    Article  PubMed  Google Scholar 

  11. Bhorade R, Weissleder R, Nakakoshi T et al. (2000) Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjug Chem 11: 301–305

    Article  PubMed  Google Scholar 

  12. Blasberg RG, Gelovani J (2002) Molecular-genetic imaging: a nuclear medicine-based perspective. Mol Imaging 1: 280–300

    Article  PubMed  Google Scholar 

  13. Blocklet D, Toungouz M, Kiss R et al. (2003) 111In-oxine and 99mTc-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur J Nucl Med Mol Imaging 30: 440–447

    PubMed  Google Scholar 

  14. Brenner W, Aicher A, Eckey T et al. (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45: 512–518

    PubMed  Google Scholar 

  15. Bulte JW, Douglas T, Witwer B et al. (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19: 1141–1147

    Article  PubMed  Google Scholar 

  16. Bulte JW, Kraitchman DL (2004) Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5: 567–584

    Article  PubMed  Google Scholar 

  17. Bulte JW, Laughlin PG, Jordan EK et al. (1996) Tagging of T cells with superparamagnetic iron oxide: uptake kinetics and relaxometry. Acad Radiol 3 [suppl 2]: S301–303

  18. Bulte JW, Ma LD, Magin RL et al. (1993) Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 29: 32–37

    PubMed  Google Scholar 

  19. Bulte JW, Zhang S, van Gelderen P et al. (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci U S A 96: 15256–15261

    Article  PubMed  Google Scholar 

  20. Correia AS, Anisimov SV, Li JY, Brundin P (2005) Stem cell-based therapy for Parkinson’s disease. Ann Med 37: 487–498

    Article  PubMed  Google Scholar 

  21. De A, Lewis XZ, Gambhir SS (2003) Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 7: 681–691

    Article  PubMed  Google Scholar 

  22. Gambhir SS, Bauer E, Black ME et al. (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97: 2785–2790

    Article  PubMed  Google Scholar 

  23. Gattinoni L, Powell DJ jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6: 383–393

    Article  PubMed  Google Scholar 

  24. Genove G, DeMarco U, Xu H et al. (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11: 450–454

    Article  PubMed  Google Scholar 

  25. Grimm J, Kirsch DG, Windsor SD et al. (2005) Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc Natl Acad Sci U S A 102: 14404–14409

    Article  PubMed  Google Scholar 

  26. Grimm J, Pittet M, Swirski FK et al. (2005) Imaging immune cell trafficking in vivo with SPECT/CT. Mol Imaging 4: 345–346

    Google Scholar 

  27. Grimm J, Swirski FK, Pittet M et al. (2006) A nanoparticle-based cell labeling agent for cell tracking with SPECT/CT. Mol Imaging 5: 364

    Google Scholar 

  28. Grimm J, Wunder A (2005) Molekulare Bildgebung: Stand der Forschung [Current state of molecular imaging research]. Rofo 177: 326–337

    PubMed  Google Scholar 

  29. Gustafsson B, Youens S, Louie AY (2006) Development of contrast agents targeted to macrophage scavenger receptors for MRI of vascular inflammation. Bioconjug Chem 17: 538–547

    Article  PubMed  Google Scholar 

  30. Hardy J, Margolis JJ, Contag CH (2006) Induced biliary excretion of Listeria monocytogenes. Infect Immun 74: 1819–1827

    Article  PubMed  Google Scholar 

  31. Hasegawa T, Okada K, Morimoto Y, Okita Y (2006) Indium-111-oxine-labeled platelet scintigraphic images in the assessment of thrombogenicity in small-caliber prosthetic vascular grafts. Asaio J 52: 140–144

    Article  PubMed  Google Scholar 

  32. Heckl S, Debus J, Jenne J et al. (2002) CNN-Gd(3+) enables cell nucleus molecular imaging of prostate cancer cells: the last 600 nm. Cancer Res 62: 7018–7024

    PubMed  Google Scholar 

  33. Heyn C, Ronald JA, Mackenzie LT et al. (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55: 23–29

    Article  PubMed  Google Scholar 

  34. Huang M, Batra RK, Kogai T et al. (2001) Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 8: 612–618

    Article  PubMed  Google Scholar 

  35. Jacobs RE, Fraser SE (1994) Magnetic resonance microscopy of embryonic cell lineages and movements. Science 263: 681–684

    Article  PubMed  Google Scholar 

  36. Jaffer FA, Nahrendorf M, Sosnovik D et al. (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5: 85−92

    PubMed  Google Scholar 

  37. Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10: 186–191

    Article  PubMed  Google Scholar 

  38. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13: 661–674

    Article  PubMed  Google Scholar 

  39. Kadurugamuwa JL, Modi K, Yu J et al. (2005) Noninvasive monitoring of pneumococcal meningitis and evaluation of treatment efficacy in an experimental mouse model. Mol Imaging 4: 137–142

    PubMed  Google Scholar 

  40. Kim YH, Lee DS, Kang JH et al. (2005) Reversing the silencing of reporter sodium/iodide symporter transgene for stem cell tracking. J Nucl Med 46: 305–311

    PubMed  Google Scholar 

  41. Kircher M, Grimm J, Swirski F et al. (2006) Nichtinvasive in vivo Bildgebung der Monozytenmigration in atherosklerotische Plaques mittels microSPECT/CT. RoFo Fortschritte auf dem Gebiet der Roentgenstrahlen 178: S211

    Google Scholar 

  42. Kircher MF, Allport JR, Graves EE et al. (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63: 6838–6846

    PubMed  Google Scholar 

  43. Kircher MF, Mahmood U, King RS et al. (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63: 8122–8125

    PubMed  Google Scholar 

  44. Kircher MF, Weissleder R, Josephson L (2004) A dual fluorochrome probe for imaging proteases. Bioconjug Chem 15: 242–248

    Article  PubMed  Google Scholar 

  45. Koehne G, Doubrovin M, Doubrovina E et al. (2003) Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21: 405–413

    Article  PubMed  Google Scholar 

  46. Kostura L, Kraitchman DL, Mackay AM et al. (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17: 513–517

    Article  PubMed  Google Scholar 

  47. Lewin M, Carlesso N, Tung CH et al. (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18: 410–414

    Article  PubMed  Google Scholar 

  48. Lim YT, Kim S, Nakayama A et al. (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2: 50–64

    Article  PubMed  Google Scholar 

  49. Marsee DK, Shen DH, MacDonald LR et al. (2004) Imaging of metastatic pulmonary tumors following NIS gene transfer using single photon emission computed tomography. Cancer Gene Ther11: 121–127

    Article  Google Scholar 

  50. Mempel TR, Pittet MJ, Khazaie K et al. (2006) Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25: 129–141

    Article  PubMed  Google Scholar 

  51. Min JJ, Ahn Y, Moon S et al. (2006) In vivo bioluminescence imaging of cord blood derived mesenchymal stem cell transplantation into rat myocardium. Ann Nucl Med 20: 165–170

    PubMed  Google Scholar 

  52. Minn AJ, Kang Y, Serganova I et al. (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115: 44–55

    Article  PubMed  Google Scholar 

  53. Miyahara Y, Nagaya N, Kataoka M et al. (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12: 459–465

    Article  PubMed  Google Scholar 

  54. Modo M, Hoehn M, Bulte JW (2005) Cellular MR imaging. Mol Imaging 4: 143–164

    PubMed  Google Scholar 

  55. Montet-Abou K, Montet X, Weissleder R, Josephson L (2005) Transfection agent induced nanoparticle cell loading. Mol Imaging 4: 165–171

    PubMed  Google Scholar 

  56. Moore A, Grimm J, Han B, Santamaria P (2004) Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time. Diabetes 53: 1459–1466

    PubMed  Google Scholar 

  57. Moore A, Weissleder R, Bogdanov A jr (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7: 1140–1145

    PubMed  Google Scholar 

  58. Muller C, Zielinski CC, Linkesch W et al. (1989) In vivo tracing of indium-111 oxine-labeled human peripheral blood mononuclear cells in patients with lymphatic malignancies. J Nucl Med 30: 1005–1011

    PubMed  Google Scholar 

  59. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23: 313–320

    Article  PubMed  Google Scholar 

  60. Ponomarev V, Doubrovin M, Lyddane C et al. (2001) Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3: 480–488

    Article  PubMed  Google Scholar 

  61. Ponomarev V, Doubrovin M, Serganova I et al. (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31: 740–751

    Article  PubMed  Google Scholar 

  62. Ramiya VK, Maraist M, Arfors KE et al. (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6: 278–282

    Article  PubMed  Google Scholar 

  63. Rogers BE, Chaudhuri TR, Reynolds PN et al. (2003) Non-invasive gamma camera imaging of gene transfer using an adenoviral vector encoding an epitope-tagged receptor as a reporter. Gene Ther 10: 105–114

    Article  PubMed  Google Scholar 

  64. Rogers WJ, Meyer CH, Kramer CM (2006) Technology Insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med 3: 554–562

    Article  PubMed  Google Scholar 

  65. Rudelius M, Daldrup-Link HE, Heinzmann U et al. (2003) Highly efficient paramagnetic labelling of embryonic and neuronal stem cells. Eur J Nucl Med Mol Imaging 30: 1038–1044

    Article  PubMed  Google Scholar 

  66. Shah K, Bureau E, Kim DE et al. (2005) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57: 34–41

    Article  PubMed  Google Scholar 

  67. Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2: 215–225

    Article  PubMed  Google Scholar 

  68. Shapiro EM, Skrtic S, Sharer K et al. (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A 101: 10901–10906

    Article  PubMed  Google Scholar 

  69. Shen T, Weissleder R, Papisov M et al. (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29: 599–604

    PubMed  Google Scholar 

  70. Shin JH, Chung JK, Kang JH et al. (2004) Noninvasiveimaging for monitoring of viable cancer cells using a dual-imaging reporter gene. J Nucl Med 45: 2109–2115

    PubMed  Google Scholar 

  71. Sipe JC, Filippi M, Martino G et al. (1999) Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents. Magn Reson Imaging 17: 1521–1523

    Article  PubMed  Google Scholar 

  72. Tang Y, Shah K, Messerli SM et al. (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14: 1247–1254

    Article  PubMed  Google Scholar 

  73. Tannous BA, Grimm J, Perry KF et al. (2006) Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat Methods 3: 391–396

    Article  PubMed  Google Scholar 

  74. Vianello F, Papeta N, Chen T et al. (2006) Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J Immunol 176: 2902–2914

    PubMed  Google Scholar 

  75. Von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3: 867–878

    Article  PubMed  Google Scholar 

  76. Wagner S, Schnorr J, Pilgrimm H et al. (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 37: 167–177

    Article  PubMed  Google Scholar 

  77. Wang X, Rosol M, Ge S et al. (2003) Dynamic tracking of human hematopoieticstem cell engraftment using in vivo bioluminescence imaging. Blood 102: 3478–3482

    Article  PubMed  Google Scholar 

  78. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143: 79–87

    Article  PubMed  Google Scholar 

  79. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A jr (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7: 258–263

    PubMed  Google Scholar 

  80. Weissleder R, Kelly K, Sun EY et al. (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23: 1418–1423

    Article  PubMed  Google Scholar 

  81. Weissleder R, Moore A, Mahmood U et al. (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6: 351–355

    Article  PubMed  Google Scholar 

  82. Welsh DK, Kay SA (2005) Bioluminescence imaging in living organisms. Curr Opin Biotechnol 16: 73–78

    Article  PubMed  Google Scholar 

  83. Youssef PP, Cormack J, Evill CA et al. (1996) Neutrophil trafficking into inflamed joints in patients with rheumatoid arthritis, and the effects of methylprednisolone. Arthritis Rheum 39: 216–225

    PubMed  Google Scholar 

  84. Zelivyanskaya ML, Nelson JA, Poluektova L et al. (2003) Tracking superparamagnetic iron oxide labeled monocytes in brain by high-field magnetic resonance imaging. J Neurosci Res 73: 284–295

    Article  PubMed  Google Scholar 

  85. Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13: 840–844

    Article  PubMed  Google Scholar 

  86. Zhou R, Thomas DH, Qiao H et al. (2005) In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med 46: 816–822

    PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Herrn cand. med. Lukas Kremmler für das Korrekturlesen des Manuskripts. Moritz Kircher dankt der Deutschen Forschungsgemeinschaft für ein Forschungsstipendium und der American Heart Association für ein Postdoctoral Fellowship Award. Jan Grimm dankt der Deutschen Forschungsgemeinschaft für ein Forschungsstipendium sowie der Radiological Society of North America (RSNA) für einen Research Seed Grant.

Interessenkonflikt

Es besteht kein Interessenkonflikt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Grimm.

Additional information

Gleicher Beitrag der Autoren J. Grimm und M.F. Kircher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, J., Kircher, M. & Weissleder, R. Cell Tracking. Radiologe 47, 25–33 (2007). https://doi.org/10.1007/s00117-006-1449-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-006-1449-5

Schlüsselwörter

Keywords

Navigation