Skip to main content
Log in

Klinisch-validierte molekulare Biomarker neurodegenerativer Demenzerkrankungen

Clinically validated molecular biomarkers of neurodegenerative dementia

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die liquorbasierte neurochemische Demenzdiagnostik (CSF-NDD) ist zwischenzeitlich auf dem S3-Niveau evidenzbasiert validiert, und sie wird mit spezifischer Indikationsstellung für die verbesserte Früh- und Differenzialdiagnostik der multigenetischen (sporadischen) Alzheimer-Demenz (AD) von den gemeinsamen Demenzleitlinien der neuropsychiatrischen Fachgesellschaften empfohlen. Mittels CSF-NDD ist auch eine prädiktive Diagnostik der drohenden AD bei Hochrisikopatienten im Prodromalstadium der leichten kognitiven Beeinträchtigung („mild cognitive impairment“, MCI) möglich. Da bisher aber keine (sekundär)präventive Therapie der AD zur Verfügung steht, wird der Einsatz der CSF-NDD für die molekular prädiktive Demenzdiagnostik von neuropsychiatrischen Leitlinien nicht empfohlen (http://www.DGPPN.de). Die molekulare Diagnostik der präklinischen AD mittels CSF-NDD und [18F]Amyloid-Positronenemissionstomographie hat allerdings schon jetzt einen hohen Stellenwert innerhalb der klinischen Therapieforschung, da auf diese Weise vielversprechende (sekundär)präventive Therapieansätze im klinischen Modell systematisch untersuchbar werden. Zwischenzeitlich zeichnet sich auch ab, dass die Etablierung einer blutbasierten molekularen Frühdiagnostik der AD mittels Multiplex-Assays wahrscheinlich wird. Bisher konnten vielversprechende Assays jedoch nicht konsistent von unabhängigen Arbeitsgruppen validiert werden und im Gegensatz zur CSF-NDD steht eine blutbasierte Diagnostik neurodegenerativer Demenzen noch nicht zur Verfügung.

Summary

As cerebrospinal fluid-based neurochemical dementia diagnostics (CSF-NDD) has now been validated at the S3 evidence level, the German Association for Psychiatry, Psychotherapy and Psychosomatics (DGPPN) and the German Society for Neurology (DGN) recommend CSF-NDD in the recent joint dementia guidelines for improved early and differential diagnostics of multigenic (sporadic) Alzheimer’s dementia (AD). The CSF-NDD also provides a predictive diagnosis of incipient AD for high-risk patients when they are still in the prodromal stage of mild cognitive impairment (MCI) but as no (secondary) preventive therapy of AD is currently available, the use of CSF-NDD for the predictive molecular diagnosis of AD is not recommended in the neuropsychiatry guidelines (http://www.DGPPN.de). However, molecular diagnostics of preclinical AD by CSF-NDD and/or [18F]-amyloid positron emission tomography (PET) has meanwhile gained high clinical relevance for therapeutic clinical research, as this novel clinical model allows systematic screening for promising (secondary) preventive therapy options. Moreover, it has now become apparent that blood-based neurochemical diagnostics of preclinical and early AD will be possible by means of various formats of multiplex assays. However, so far promising blood assays have not been consistently validated by independent research groups and in contrast to CSF-NDD a blood-based diagnosis of AD is not yet available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    Article  PubMed Central  PubMed  Google Scholar 

  2. Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Z Psychiatrie Psychisch-Gerichtliche Med 64:146–148

  3. Amariglio RE, Becker JA, Carmasin J et al (2012) Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 50:2880–2886

    Article  PubMed Central  PubMed  Google Scholar 

  4. Barthel H, Gertz HJ, Dresel S et al (2011) Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10:424–435

    Article  CAS  PubMed  Google Scholar 

  5. Bateman RJ, Xiong C, Benzinger TL et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bibl M, Lewczuk P, Esselmann H et al (2008) CSF amyloid-beta 1-38 and 1-42 in FTD and AD: biomarker performance critically depends on the detergent accessible fraction. Proteomics Clin Appl 2:1548–1556

    Article  CAS  PubMed  Google Scholar 

  7. Bickel H (2002) Stand der Epidemiologie. In: Hallauer J, Kurz A (Hrsg) Weißbuch Demenz. Versorgungssituation relevanter Demenzerkrankungen in Deutschland. Thieme, Stuttgart, S 10–14

  8. Blennow K (2004) Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx 1:213–225

    Article  PubMed Central  PubMed  Google Scholar 

  9. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  CAS  PubMed  Google Scholar 

  10. Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144

    Article  CAS  PubMed  Google Scholar 

  11. Blennow K, Zetterberg H (2013) The application of cerebrospinal fluid biomarkers in early diagnosis of Alzheimer disease. Med Clin North Am 97:369–376

    Article  PubMed  Google Scholar 

  12. Buchhave P, Minthon L, Zetterberg H et al (2012) Cerebrospinal fluid levels of beta-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69:98–106

    Article  CAS  PubMed  Google Scholar 

  13. Camus V, Payoux P, Barre L et al (2012) Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging 39:621–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Czech C, Berndt P, Busch K et al (2012) Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One 7:e31501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Derecki NC, Katzmarski N, Kipnis J, Meyer-Luehmann M (2014) Microglia as a critical player in both developmental and late-life CNS pathologies. Acta Neuropathol 128:333–345

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dodel R, Rominger A, Bartenstein P et al (2013) Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol 12:233–243

    Article  CAS  PubMed  Google Scholar 

  17. Edison P, Archer HA, Gerhard A et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32:412–419

    Article  CAS  PubMed  Google Scholar 

  18. Fargo K, Bleiler L (2014) Alzheimer’s Association report. Alzheimers Dement 10:e47–e92

    Article  Google Scholar 

  19. Fleisher AS, Sherzai A, Taylor C et al (2009) Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage 47:1678–1690

    Article  PubMed Central  PubMed  Google Scholar 

  20. Funke SA, Wang L, Birkmann E, Willbold D (2010) Single-particle detection system for Abeta aggregates: adaptation of surface-fluorescence intensity distribution analysis to laser scanning microscopy. Rejuvenation Res 13:206–209

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Ariza JL (2014) Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. J Pharm Biomed Anal 98:321–326

    Article  CAS  PubMed  Google Scholar 

  22. Gustafson DR, Skoog I, Rosengren L et al (2007) Cerebrospinal fluid beta-amyloid 1-42 concentration may predict cognitive decline in older women. J Neurol Neurosurg Psychiatry 78:461–464

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hampel H, Lista S, Teipel SJ et al (2014) Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol 88:426–449

    Article  CAS  PubMed  Google Scholar 

  24. Hansson O, Zetterberg H, Buchhave P et al (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234

    Article  CAS  PubMed  Google Scholar 

  25. Hansson O, Zetterberg H, Vanmechelen E et al (2010) Evaluation of plasma Abeta(40) and Abeta(42) as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol Aging 31:357–367

    Article  CAS  PubMed  Google Scholar 

  26. Hedden T, Van Dijk KR, Becker JA et al (2009) Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 29:12686–12694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Henriksen K, O’Bryant SE, Hampel H et al (2014) The future of blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement 10:115–131

    Article  PubMed  Google Scholar 

  28. Hulstaert F, Blennow K, Ivanoiu A et al (1999) Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology 52:1555–1562

    Article  CAS  PubMed  Google Scholar 

  29. Hye A, Riddoch-Contreras J, Baird AL et al (2014) Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement [Epub ahead of print]

  30. Jack CR Jr, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262

    Article  PubMed Central  PubMed  Google Scholar 

  31. Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Jagust WJ, Landau SM, Shaw LM et al (2009) Relationships between biomarkers in aging and dementia. Neurology 73:1193–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Johnson KA, Minoshima S, Bohnen NI et al (2013) Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. J Nucl Med 54:476–490

    Article  CAS  PubMed  Google Scholar 

  34. Kaiser E, Schoenknecht P, Kassner S et al (2010) Cerebrospinal fluid concentrations of functionally important amino acids and metabolic compounds in patients with mild cognitive impairment and Alzheimer’s disease. Neurodegener Dis 7:251–259

    CAS  PubMed  Google Scholar 

  35. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  CAS  PubMed  Google Scholar 

  36. Koopman K, Le Bastard N, Martin JJ et al (2009) Improved discrimination of autopsy-confirmed Alzheimer’s disease (AD) from non-AD dementias using CSF P-tau(181P). Neurochem Int 55:214–218

    Article  CAS  PubMed  Google Scholar 

  37. Kosaka T, Imagawa M, Seki K et al (1997) The beta APP717 Alzheimer mutation increases the percentage of plasma amyloid-beta protein ending at A beta42(43). Neurology 48:741–745

    Article  CAS  PubMed  Google Scholar 

  38. Koyama A, Okereke OI, Yang T et al (2012) Plasma amyloid-beta as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch Neurol 69:824–831

    PubMed Central  PubMed  Google Scholar 

  39. Lannfelt L, Blennow K, Zetterberg H et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  40. Leinenbach A, Pannee J, Dulffer T et al (2014) Mass spectrometry-based candidate reference measurement procedure for quantification of amyloid-beta in cerebrospinal fluid. Clin Chem 60:987–994

    Article  CAS  PubMed  Google Scholar 

  41. Lewczuk P, Lelental N, Spitzer P et al (2014) Amyloid-beta 42/40 cerebrospinal fluid concentration ratio in the diagnostics of Alzheimer’s disease: validation of two novel assays. J Alzheimers Dis [Epub ahead of print]

  42. Lopez OL, Kuller LH, Mehta PD et al (2008) Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology 70:1664–1671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24:1–23

    Article  CAS  PubMed  Google Scholar 

  44. Maler JM, Klafki HW, Paul S et al (2007) Urea-based two-dimensional electrophoresis of beta-amyloid peptides in human plasma: evidence for novel Abeta species. Proteomics 7:3815–3820

    Article  CAS  PubMed  Google Scholar 

  45. Mapstone M, Cheema AK, Fiandaca MS et al (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20:415–418

    Article  CAS  PubMed  Google Scholar 

  46. Mattsson N, Andreasson U, Carrillo MC et al (2012) Proficiency testing programs for Alzheimer’s disease cerebrospinal fluid biomarkers. Biomark Med 6:401–407

    Article  CAS  PubMed  Google Scholar 

  47. Mattsson N, Andreasson U, Persson S et al (2013) CSF biomarker variability in the Alzheimer’s Association quality control program. Alzheimers Dement 9:251–261

    Article  PubMed Central  PubMed  Google Scholar 

  48. Mattsson N, Zegers I, Andreasson U et al (2012) Reference measurement procedures for Alzheimer’s disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid beta42. Biomark Med 6:409–417

    Article  CAS  PubMed  Google Scholar 

  49. Mattsson N, Zetterberg H, Hansson O et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393

    Article  CAS  PubMed  Google Scholar 

  50. Mayeux R, Honig LS, Tang MX et al (2003) Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 61:1185–1190

    Article  CAS  PubMed  Google Scholar 

  51. Mayeux R, Tang MX, Jacobs DM et al (1999) Plasma amyloid beta-peptide 1-42 and incipient Alzheimer’s disease. Ann Neurol 46:412–416

    Article  CAS  PubMed  Google Scholar 

  52. McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    Article  CAS  PubMed  Google Scholar 

  53. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mintun MA, Larossa GN, Sheline YI et al (2006) [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67:446–452

    Article  CAS  PubMed  Google Scholar 

  55. Mollenhauer B (2014) Quantification of alpha-synuclein in cerebrospinal fluid: how ideal is this biomarker for Parkinson’s disease? Parkinsonism Relat Disord 20(Suppl 1):S76–S79

    Article  PubMed  Google Scholar 

  56. Morris JC, Roe CM, Grant EA et al (2009) Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 66:1469–1475

    PubMed Central  PubMed  Google Scholar 

  57. Mott RT, Hulette CM (2005) Neuropathology of Alzheimer’s disease. Neuroimaging Clin N Am 15:755–765, ix

    Article  PubMed  Google Scholar 

  58. Nordberg A, Carter SF, Rinne J et al (2013) A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 40:104–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Okello A, Koivunen J, Edison P et al (2009) Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 73:754–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Otto M, Wiltfang J, Tumani H et al (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett 225:210–212

    Article  CAS  PubMed  Google Scholar 

  61. Rao P, Benito E, Fischer A (2013) MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci 6:39

    Article  PubMed Central  PubMed  Google Scholar 

  62. Reiman EM, Chen K, Liu X et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 106:6820–6825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651

    Article  CAS  PubMed  Google Scholar 

  64. Ringman JM, Younkin SG, Pratico D et al (2008) Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 71:85–92

    Article  CAS  PubMed  Google Scholar 

  65. Roses AD (1995) Apolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer’s disease. Ann Neurol 38:6–14

    Article  CAS  PubMed  Google Scholar 

  66. Rowe CC, Ng S, Ackermann U et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725

    Article  CAS  PubMed  Google Scholar 

  67. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012:756357

    Article  PubMed Central  PubMed  Google Scholar 

  68. Rutten BP, Steinbusch HW (2013) Current concepts in Alzheimer’s disease: molecules, models and translational perspectives. Mol Neurodegener 8:33

    Article  PubMed Central  PubMed  Google Scholar 

  69. Saunders AM, Hulette O, Welsh-Bohmer KA et al (1996) Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer’s disease. Lancet 348:90–93

    Article  CAS  PubMed  Google Scholar 

  70. Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    Article  CAS  PubMed  Google Scholar 

  71. Schupf N, Patel B, Silverman W et al (2001) Elevated plasma amyloid beta-peptide 1-42 and onset of dementia in adults with Down syndrome. Neurosci Lett 301:199–203

    Article  CAS  PubMed  Google Scholar 

  72. Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Shoji M, Matsubara E, Kanai M et al (1998) Combination assay of CSF tau, A beta 1-40 and A beta 1-42(43) as a biochemical marker of Alzheimer’s disease. J Neurol Sci 158:134–140

    Article  CAS  PubMed  Google Scholar 

  74. Skoog I, Davidsson P, Aevarsson O et al (2003) Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds. Dement Geriatr Cogn Disord 15:169–176

    Article  CAS  PubMed  Google Scholar 

  75. Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed Central  PubMed  Google Scholar 

  76. Stoeck K, Sanchez-Juan P, Gawinecka J et al (2012) Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt-Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain 135:3051–3061

    Article  PubMed Central  PubMed  Google Scholar 

  77. Stomrud E, Hansson O, Blennow K et al (2007) Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dement Geriatr Cogn Disord 24:118–124

    Article  CAS  PubMed  Google Scholar 

  78. Sundelof J, Giedraitis V, Irizarry MC et al (2008) Plasma beta amyloid and the risk of Alzheimer disease and dementia in elderly men: a prospective, population-based cohort study. Arch Neurol 65:256–263

    PubMed  Google Scholar 

  79. Tarawneh R, Holtzman DM (2010) Biomarkers in translational research of Alzheimer’s disease. Neuropharmacology 59:310–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Teunissen CE, Verwey NA, Kester MI et al (2010) Standardization of assay procedures for analysis of the CSF biomarkers amyloid beta((1-42)), Tau, and phosphorylated Tau in Alzheimer’s disease: report of an International Workshop. Int J Alzheimers Dis. DOI 10.4061/2010/635053

  81. Thompson PW, Ye L, Morgenstern JL et al (2009) Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J Neurochem 109:623–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Urraca JL, Aureliano CS, Schillinger E et al (2011) Polymeric complements to the Alzheimer’s disease biomarker beta-amyloid isoforms Abeta1-40 and Abeta1-42 for blood serum analysis under denaturing conditions. J Am Chem Soc 133:9220–9223

    Article  CAS  PubMed  Google Scholar 

  83. Oijen M van, Hofman A, Soares HD et al (2006) Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 5:655–660

    Article  PubMed  Google Scholar 

  84. Rossum IA van, Visser PJ, Knol DL et al (2012) Injury markers but not amyloid markers are associated with rapid progression from mild cognitive impairment to dementia in Alzheimer’s disease. J Alzheimers Dis 29:319–327

    PubMed  Google Scholar 

  85. Vanderstichele H, Bibl M, Engelborghs S et al (2012) Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s biomarkers standardization initiative. Alzheimers Dement 8:65–73

    Article  CAS  PubMed  Google Scholar 

  86. Visser PJ, Verhey F, Knol DL et al (2009) Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 8:619–627

    Article  PubMed  Google Scholar 

  87. Welge V, Fiege O, Lewczuk P et al (2009) Combined CSF tau, p-tau181 and amyloid-beta 38/40/42 for diagnosing Alzheimer’s disease. J Neural Transm 116:203–212

    Article  CAS  PubMed  Google Scholar 

  88. Wiltfang J, Esselmann H, Bibl M et al (2007) Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load. J Neurochem 101:1053–1059

    Article  CAS  PubMed  Google Scholar 

  89. Wiltfang J, Esselmann H, Smirnov A et al (2003) Beta-amyloid peptides in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Ann Neurol 54:263–267

    Article  CAS  PubMed  Google Scholar 

  90. Winblad B, Andreasen N, Minthon L et al (2012) Safety, tolerability, and antibody response of active Abeta immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11:597–604

    Article  CAS  PubMed  Google Scholar 

  91. Zetterberg H, Tullhog K, Hansson O et al (2010) Low incidence of post-lumbar puncture headache in 1,089 consecutive memory clinic patients. Eur Neurol 63:326–330

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Wiltfang gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wiltfang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiltfang, J. Klinisch-validierte molekulare Biomarker neurodegenerativer Demenzerkrankungen. Nervenarzt 85, 1372–1381 (2014). https://doi.org/10.1007/s00115-014-4086-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-014-4086-7

Schlüsselwörter

Keywords

Navigation