Skip to main content
Log in

Effect of bone sialoprotein coating on progression of bone formation in a femoral defect model in rats

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

In orthopedic and trauma surgery, calcium phosphate cement (CPC) scaffolds are widely used as substitute for autologous bone grafts. The purpose of this study was to evaluate bone formation in a femoral condyle defect model in rats after scaffold-coating with bioactive bone sialoprotein (BSP). Our hypothesis was that BSP-coating results in additional bone formation.

Methods

In 20 Wistar rats, defects of 3.0 mm diameter were drilled into the lateral femoral condyles of both legs. BSP-coated scaffolds or uncoated control scaffolds were implanted into the defects. After 4 and 8 weeks, five rats of each group were euthanized, respectively. µCT scans and histological analyses were performed. The ratio of bone volume–total volume (BV/TV) was analyzed and histological sections were evaluated.

Results

At week four, bone fraction reached 5.2 ± 1.7% in BSP-coated scaffolds and 4.5 ± 3.2% in the control (p = 0.06). While bone fraction of the BSP-group did not change much between week four and eight [week eight: 5.4 ± 3.8% (p = 0.53)], there was a tendency towards an increase in the control [week eight: 7.0 ± 2.2% (p = 0.08)]. No significant difference in bone fraction were observable between BSP-coated and uncoated scaffolds at week eight (p = 0.08).

Conclusions

A significant superiority of BSP-coated scaffolds over uncoated scaffolds could not be proven. However, BSP-coating showed a tendency towards improving bone ingrowth in the scaffolds 4 weeks after implantation. This effect was only short-lived: bone growth in the control scaffolds tended to outpace that of the BSP-group at week eight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36(Suppl 3):S20–7. https://doi.org/10.1016/j.injury.2005.07.029.

    Article  PubMed  Google Scholar 

  2. Tu YK, Yen CY, Yeh WL, Wang IC, Wang KC, Ueng WN. Reconstruction of posttraumatic long bone defect with free vascularized bone graft: good outcome in 48 patients with 6 years’ follow-up. Acta Orthop Scand. 2001;72(4):359–64. https://doi.org/10.1080/000164701753542014.

    Article  CAS  PubMed  Google Scholar 

  3. Heinemann S, Gelinsky M, Worch H, Hanke T. Resorbable bone substitution materials: an overview of commercially available materials and new approaches in the field of composites. Der Orthopade. 2011;40(9):761–73. https://doi.org/10.1007/s00132-011-1748-z.

    Article  CAS  PubMed  Google Scholar 

  4. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  Google Scholar 

  5. Kasten P, Luginbühl R, van Griensven M, Barkhausen T, Krettek C, Bohner M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003;24(15):2593–603. https://doi.org/10.1016/S0142-9612(03)00062-0.

    Article  CAS  PubMed  Google Scholar 

  6. Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials. 2012;33(17):4309–18. https://doi.org/10.1016/j.biomaterials.2012.03.002(PubMed PMID: 22436798).

    Article  CAS  PubMed  Google Scholar 

  7. Jones AC, Arns CH, Hutmacher DW, Milthorpe BK, Sheppard AP, Knackstedt MA. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials. 2009;30(7):1440–51. https://doi.org/10.1016/j.biomaterials.2008.10.056(PubMed PMID: 19091398).

    Article  CAS  PubMed  Google Scholar 

  8. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91. https://doi.org/10.1016/j.biomaterials.2005.02.002(PubMed PMID: 15860204).

    Article  CAS  PubMed  Google Scholar 

  9. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6 (PubMed PMID: 18224731).

    Article  Google Scholar 

  10. Khojasteh A, Behnia H, Naghdi N, Esmaeelinejad M, Alikhassy Z, Stevens M. Effects of different growth factors and carriers on bone regeneration: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(6):e405–23. https://doi.org/10.1016/j.oooo.2012.01.044(PubMed PMID: 22901644).

    Article  PubMed  Google Scholar 

  11. Agrawal V, Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater. 2017;105(4):904–25. https://doi.org/10.1002/jbm.b.33599(PubMed PMID: 26728994).

    Article  CAS  PubMed  Google Scholar 

  12. Bosemark P, Isaksson H, McDonald MM, Little DG, Tagil M. Augmentation of autologous bone graft by a combination of bone morphogenic protein and bisphosphonate increased both callus volume and strength. Acta Orthop. 2013;84(1):106–11. https://doi.org/10.3109/17453674.2013.773123(PubMed PMID: 23409846; PubMed Central PMCID: PMCPMC3584593).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Carragee EJ, Mitsunaga KA, Hurwitz EL, Scuderi GJ. Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J. 2011;11(6):511–6. https://doi.org/10.1016/j.spinee.2011.02.013(PubMed PMID: 21612985).

    Article  PubMed  Google Scholar 

  14. Faundez A, Tournier C, Garcia M, Aunoble S, Le Huec JC. Bone morphogenetic protein use in spine surgery-complications and outcomes: a systematic review. Int Orthop. 2016;40(6):1309–19. https://doi.org/10.1007/s00264-016-3149-8(PubMed PMID: 26961193).

    Article  PubMed  Google Scholar 

  15. Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902. https://doi.org/10.7326/0003-4819-158-12-201306180-00006(PubMed PMID: 23778906).

    Article  PubMed  Google Scholar 

  16. Tye CE, Rattray KR, Warner KJ, Gordon JA, Sodek J, Hunter GK, et al. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J Biol Chem. 2003;278(10):7949–55. https://doi.org/10.1074/jbc.M211915200(PubMed PMID: 12493752).

    Article  CAS  PubMed  Google Scholar 

  17. Klein A, Baranowski A, Ritz U, Gotz H, Heinemann S, Mattyasovszky S, et al. Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts. J Biomed Mater Res B Appl Biomater. 2018;7:2565–75. https://doi.org/10.1002/jbm.b.34073.

    Article  CAS  Google Scholar 

  18. Bellahcene A, Bonjean K, Fohr B, Fedarko NS, Robey FA, Young MF, et al. Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis. Circ Res. 2000;86(8):885–91.

    Article  CAS  Google Scholar 

  19. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63(4):408–12. https://doi.org/10.1002/jbm.10259(Epub 2002/07/13).

    Article  CAS  PubMed  Google Scholar 

  20. Lode A, Meissner K, Luo Y, Sonntag F, Glorius S, Nies B, et al. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J Tissue Eng Regen Med. 2014;8(9):682–93. https://doi.org/10.1002/term.1563(Epub 2012/08/31; PubMed PMID: 22933381).

    Article  CAS  PubMed  Google Scholar 

  21. Heinemann S, Rossler S, Lemm M, Ruhnow M, Nies B. Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid. Acta Biomater. 2013;9(4):6199–207. https://doi.org/10.1016/j.actbio.2012.12.017(Epub 2012/12/25; PubMed PMID: 23261920).

    Article  CAS  PubMed  Google Scholar 

  22. Nau C, Henrich D, Seebach C, Schroder K, Fitzsimmons SJ, Hankel S, et al. Treatment of large bone defects with a vascularized periosteal flap in combination with biodegradable scaffold seeded with bone marrow-derived mononuclear cells: an experimental study in rats. Tissue Eng Part A. 2016;22(1–2):133–41. https://doi.org/10.1089/ten.tea.2015.0030(Epub 2015/10/22; PubMed PMID: 26486307).

    Article  CAS  PubMed  Google Scholar 

  23. Seebach C, Henrich D, Schaible A, Relja B, Jugold M, Bonig H, et al. Cell-based therapy by implanted human bone marrow-derived mononuclear cells improved bone healing of large bone defects in rats. Tissue Eng Part A. 2015;21(9–10):1565–78. https://doi.org/10.1089/ten.tea.2014.0410(Epub 2015/02/20; PubMed PMID: 25693739).

    Article  CAS  PubMed  Google Scholar 

  24. Seebach C, Henrich D, Kahling C, Wilhelm K, Tami AE, Alini M, et al. Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A. 2010;16(6):1961–70. https://doi.org/10.1089/ten.tea.2009.0715(Epub 2010/01/22; PubMed PMID: 20088701).

    Article  CAS  PubMed  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5 (PubMed PMID: 22930834; PubMed Central PMCID: PMCPMC5554542).

    Article  CAS  Google Scholar 

  26. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82(7–8):518–29. https://doi.org/10.1002/mrd.22489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone. 2010;47(6):1076–9. https://doi.org/10.1016/j.bone.2010.08.023.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Donath K. Preparation of histologic sections by the cutting grinding technique for hard tissue and other material not suitable to be sectioned by routine methods. Norderstedt: Exakt-Kulzer-Publication; 1988. p. 1–15.

    Google Scholar 

  29. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62. https://doi.org/10.1016/j.msec.2017.05.017(PubMed PMID: 28575964).

    Article  CAS  PubMed  Google Scholar 

  30. Quinlan E, Thompson EM, Matsiko A, O’Brien FJ, Lopez-Noriega A. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration. J Control Release. 2015;207:112–9. https://doi.org/10.1016/j.jconrel.2015.03.028(PubMed PMID: 25817394).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang B-J, He L, Han Z-W, Li X-G, Zhi W, Zheng W, et al. Enhanced osteogenesis of multilayered pore-closed microsphere-immobilized hydroxyapatite scaffold via sequential delivery of osteogenic growth peptide and BMP-2. J Mater Chem B. 2017;5(41):8238–53. https://doi.org/10.1039/c7tb01970j.

    Article  CAS  Google Scholar 

  32. Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP. Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem. 2004;279(24):25464–73. https://doi.org/10.1074/jbc.M312409200(PubMed PMID: 15004030).

    Article  CAS  PubMed  Google Scholar 

  33. Kruger TE, Miller AH, Wang J. Collagen scaffolds in bone sialoprotein-mediated bone regeneration. Sci World J. 2013;2013:812718. https://doi.org/10.1155/2013/812718.

    Article  CAS  Google Scholar 

  34. Xu L, Anderson AL, Lu Q, Wang J. Role of fibrillar structure of collagenous carrier in bone sialoprotein-mediated matrix mineralization and osteoblast differentiation. Biomaterials. 2007;28(4):750–61. https://doi.org/10.1016/j.biomaterials.2006.09.022(PubMed PMID: 17045334).

    Article  CAS  PubMed  Google Scholar 

  35. Choi YJ, Lee JY, Chung CP, Park YJ. Enhanced osteogenesis by collagen-binding peptide from bone sialoprotein in vitro and in vivo. J Biomed Mater Res A. 2013;101(2):547–54. https://doi.org/10.1002/jbm.a.34356(PubMed PMID: 22926956).

    Article  CAS  PubMed  Google Scholar 

  36. Schaeren S, Jaquiery C, Wolf F, Papadimitropoulos A, Barbero A, Schultz-Thater E, et al. Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on in vitro osteogenic cell differentiation and in vivo bone formation. J Biomed Mater Res A. 2010;92(4):1461–7. https://doi.org/10.1002/jbm.a.32459(PubMed PMID: 19402137).

    Article  CAS  PubMed  Google Scholar 

  37. Bernhard J, Ferguson J, Rieder B, Heimel P, Nau T, Tangl S, et al. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair. Biomaterials. 2017;139:202–12. https://doi.org/10.1016/j.biomaterials.2017.05.045(PubMed PMID: 28622604).

    Article  CAS  PubMed  Google Scholar 

  38. Dadsetan M, Guda T, Runge MB, Mijares D, LeGeros RZ, LeGeros JP, et al. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater. 2015;18:9–20. https://doi.org/10.1016/j.actbio.2014.12.024(PubMed PMID: 25575855).

    Article  CAS  PubMed  Google Scholar 

  39. Lan Levengood SK, Polak SJ, Poellmann MJ, Hoelzle DJ, Maki AJ, Clark SG, et al. The effect of BMP-2 on micro- and macroscale osseointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater. 2010;6(8):3283–91. https://doi.org/10.1016/j.actbio.2010.02.026(PubMed PMID: 20176148).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gracefully thank Ute Zerfaß (former Department of Oral Maxillofacial Surgery, University Medical Centre Mainz) for preparation of histological slices according to the cutting and grinding method as well as for toluidine blue staining.

Funding

The research project was funded by Immundiagnostik AG (Bensheim, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Baranowski.

Ethics declarations

Conflict of interest

Anja Klein, Andreas Baranowski, Ulrike Ritz, Christiane Mack, Hermann Götz, Eva Langendorf, Bilal Al-Nawas, Philipp Drees, Pol M. Rommens and Alexander Hofmann declare that they have no conflict of interest.

Ethical standards

The local ethics committee (registration number: G 15-1-093, date of issue: 21.01.2016) approved this study. National regulations for care and use of laboratory animals were respected at all times.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, A., Baranowski, A., Ritz, U. et al. Effect of bone sialoprotein coating on progression of bone formation in a femoral defect model in rats. Eur J Trauma Emerg Surg 46, 277–286 (2020). https://doi.org/10.1007/s00068-019-01159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-019-01159-5

Keywords

Navigation