Skip to main content

Advertisement

Log in

Analysis of primary tumor metabolic volume during chemoradiotherapy in locally advanced non-small cell lung cancer

Analyse des metabolischen Primärtumorvolumens im Verlauf der Radiochemotherapie bei lokal fortgeschrittenem nichtkleinzelligem Lungenkarzinom

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

A Correction to this article was published on 14 March 2018

This article has been updated

Abstract

Purpose

Positron emission tomography with 2‑deoxy-2-[fluorine-18] fluoro-d-glucose integrated with computed tomography (18F-FDG-PET/CT) has an established role in the initial diagnosis and staging of lung cancer. However, a prognostic value of PET/CT during multimodality treatment has not yet been fully clarified. This study evaluated the role of primary tumor metabolic volume (PT-MV) changes on PET/CT before, during, and after chemoradiotherapy (CRT).

Methods

A total of 65 patients with non-small-cell lung cancer (NSCLC) UICC stage IIIA/B (TNM 7th Edition) were treated with definitive chemoradiotherapy (sequential or concurrent setting). PET/CT was acquired before the start, at the end of the third week, and 6 weeks following CRT.

Results

Median overall survival (OS) for the entire cohort was 16 months (95% confidence interval [CI]: 12–20). In all, 60 (92.3%) patients were eligible for pre-treatment (pre-PT-MV), 28 (43%) for mid-treatment (mid-PT-MV), and 53 (81.5%) for post-treatment (post-PT-MV) volume analysis. Patients with pre-PT-MV >63 cm3 had worse OS (p < 0.0001). A reduction from mid-PT-MV to post-PT-MV of >15% improved OS (p = 0.001). In addition, patients with post-PT-MV > 25 cm3 had significantly worse outcome (p = 0.001). On multivariate analysis, performance status (p = 0.002, hazard ratio [HR] 0.007; 95% CI 0.00–0.158), pre-PT-MV1 < 63 cm3 (p = 0.027, HR 3.98; 95% CI 1.17–13.49), post-PT-MV < 25 cm3 (p = 0.013, HR 11.90; 95% CI 1.70–83.27), and a reduction from mid-PT-MV to post-PT-MV > 15% (p = 0.004, HR 0.25; 95% CI 0.02–0.31) correlated with improved OS.

Conclusions

Our results demonstrated that pre- and post-treatment PT-MV, as well as an at least 15% reduction in mid- to post-PT-MV, significantly correlates with OS in patients with inoperable locally advanced NSCLC.

Zusammenfassung

Zielsetzung

Die kombinierte Positronenemissionstomographie (PET) mit 18F-2-Fluor-2-desoxy-D-Glukose und Computertomographie (18F-FDG-PET/CT) hat sich in der initialen Diagnostik und im Staging des Lungenkarzinoms bewährt. Jedoch wurde der prognostische Wert der PET/CT-Untersuchung während der multimodalen Therapie noch nicht vollständig aufgeklärt. In dieser Studie wurde die Rolle der Änderung des metabolischen Primärtumorvolumens („primary tumor metabolic volume“ [PT-MV]) in der PET/CT vor, während und nach der definitiven Radiochemotherapie untersucht.

Methoden

Insgesamt 65 Patienten mit nichtkleinzelligem Lungenkarzinom (NSCLC) des UICC-Stadiums IIIA/B (TNM, 7. Version) wurden mit definitiver Radiochemotherapie behandelt (sequenziell oder gleichzeitig). Eine PET/CT wurde vor dem Start, am Ende der dritten Behandlungswoche und 6 Wochen nach dem Abschluss der Radiochemotherapie durchgeführt.

Ergebnisse

Das mediane Gesamtüberleben der Kohorte betrug 16 Monate (95 %-Konfidenzintervall [KI]: 12–20 Monate). Insgesamt 60 (92,3 %) Patienten waren in die Volumenanalyse vor der Behandlung („pre-PT-MV“), 28 (43 %) in die Volumenanalyse während der Behandlung („mid-PT-MV“) und 53 (81,5 %) in die Volumenanalyse nach abgeschlossener Behandlung („post-PT-MV“) eingeschlossen. Patienten mit „pre-PT-MV“ > 63 cm3 hatten ein signifikant schlechteres Gesamtüberleben (p < 0,0001). Eine Reduktion von „mid-PT-MV“ zu „post-PT-MV“ um >15 % verbesserte das Gesamtüberleben signifikant (p = 0,001). Außerdem zeigten Patienten mit einem „post-PT-MV“ > 25 cm3 eine signifikant schlechtere Überlebensrate (p = 0,001). In der multivariaten Analyse korrelierten der Performance-Status (p = 0,002, Hazard Ratio [HR] 0,007; 95 %-KI 0,00–0,158), ein „pre-PT-MV“ < 63 cm3 (p = 0,027, HR 3,98; 95 %-KI 1,17–13,49), ein „post-PT-MV“ < 25 cm3 (p = 0,013, HR 11,90; 95 %-KI 1,70–83,27) und eine Abnahme von „mid-PT-MV“ zu „post-PT-MV“ um >15 % (p = 0,004, HR 0,25; 95 %-KI 0,02–0,31) signifikant mit einem verbesserten Gesamtüberleben.

Schlussfolgerung

Unsere Ergebnisse zeigen, dass die pre-PT-MV- und post-PT-MV-Werte sowie eine Abnahme des PT-MV zwischen der dritten Behandlungswoche und 6 Wochen nach der Radiochemotherapie um mindestens 15 % signifikant mit dem Gesamtüberleben von Patienten mit inoperablem, lokal fortgeschrittenem NSCLC korrelieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 14 March 2018

    Correction to:

    Strahlenther Onkol 2017

    https://doi.org/10.1007/s00066-017-1229-3

    Unfortunately, an incorrect reference was provided in Table 4.

    The corrected version of Table 4 can be found in the Correction article.

References

  1. Oser MG, Niederst MJ, Sequist LV, Engelman JA (2015) Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol 16:e165–e172. https://doi.org/10.1016/S1470-2045(14)71180-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crino L, Weder W, van Meerbeeck J, Felip E (2010) Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(Suppl 5):v103–v115. https://doi.org/10.1093/annonc/mdq207

    Article  PubMed  Google Scholar 

  3. Le Chevalier T, Arriagada R, Quoix E et al (1991) Radiotherapy alone versus combined chemotherapy and radiotherapy in nonresectable non-small-cell lung cancer: first analysis of a randomized trial in 353 patients. J Natl Cancer Inst 83:417–423

    Article  PubMed  Google Scholar 

  4. Flentje M, Huber RM, Engel-Riedel W et al (2016) GILT-A randomised phase III study of oral vinorelbine and cisplatin with concomitant radiotherapy followed by either consolidation therapy with oral vinorelbine and cisplatin or best supportive care alone in stage III non-small cell lung cancer. Strahlenther Onkol 192:216–222. https://doi.org/10.1007/s00066-016-0941-8

    Article  PubMed  Google Scholar 

  5. Bradley JD, Paulus R, Komaki R et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial. Lancet Oncol 16:187–199. https://doi.org/10.1016/S1470-2045(14)71207-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47:885–895

    PubMed  Google Scholar 

  7. Nappi A, Gallicchio R, Simeon V et al (2015) [F-18] FDG-PET/CT parameters as predictors of outcome in inoperable NSCLC patients. Radiol Oncol 49:320–326. https://doi.org/10.1515/raon-2015-0043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pottgen C, Gauler T, Bellendorf A et al (2016) Standardized uptake decrease on [18F]-Fluorodeoxyglucose positron emission tomography after neoadjuvant chemotherapy is a prognostic classifier for long-term outcome after multimodality treatment: secondary analysis of a randomized trial for resectable st. J Clin Oncol 34:2526–2533. https://doi.org/10.1200/JCO.2015.65.5167

    Article  CAS  PubMed  Google Scholar 

  9. Machtay M, Duan F, Siegel BA et al (2013) Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial. J Clin Oncol 31:3823–3830. https://doi.org/10.1200/JCO.2012.47.5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Usmanij EA, de Geus-Oei L‑F, Troost EGC et al (2013) 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. J Nucl Med 54:1528–1534. https://doi.org/10.2967/jnumed.112.116921

    Article  CAS  PubMed  Google Scholar 

  11. van Elmpt W, Ollers M, Dingemans A‑MC et al (2012) Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J Nucl Med 53:1514–1520. https://doi.org/10.2967/jnumed.111.102566

    Article  PubMed  PubMed Central  Google Scholar 

  12. Su X‑D, Xie H‑J, Liu Q‑W et al (2017) The prognostic impact of tumor volume on stage I non-small cell lung cancer. Lung Cancer 104:91–97. https://doi.org/10.1016/j.lungcan.2016.12.013

    Article  PubMed  Google Scholar 

  13. Bazan JG, Duan F, Snyder BS et al (2017) Metabolic tumor volume predicts overall survival and local control in patients with stage III non-small cell lung cancer treated in ACRIN 6668/RTOG 0235. Eur J Nucl Med Mol Imaging:17–24. https://doi.org/10.1007/s00259-016-3520-4

    PubMed  Google Scholar 

  14. Park S, Kim HJ, Choi C‑M et al (2016) Predictive factors for a long-term response duration in non-squamous cell lung cancer patients treated with pemetrexed. BMC Cancer 16:417. https://doi.org/10.1186/s12885-016-2457-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chung MK, Jeong H‑S, Park SG et al (2009) Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res 15:5861–5868. https://doi.org/10.1158/1078-0432.CCR-08-3290

    Article  CAS  PubMed  Google Scholar 

  16. Kanzaki H, Kataoka M, Nishikawa A et al (2016) Impact of early tumor reduction on outcome differs by histological subtype in stage III non-small-cell lung cancer treated with definitive radiotherapy. Int J Clin Oncol 21:853–861. https://doi.org/10.1007/s10147-016-0982-0

    Article  CAS  PubMed  Google Scholar 

  17. Halvorsen TO, Herje M, Levin N et al (2016) Tumour size reduction after the first chemotherapy-course and outcomes of chemoradiotherapy in limited disease small-cell lung cancer. Lung Cancer 102:9–14. https://doi.org/10.1016/j.lungcan.2016.10.003

    Article  PubMed  Google Scholar 

  18. Jabbour SK, Kim S, Haider SA et al (2015) Reduction in tumor volume by cone beam computed tomography predicts overall survival in non-small cell lung cancer treated with chemoradiation therapy. Int J Radiat Oncol Biol Phys 92:627–633. https://doi.org/10.1016/j.ijrobp.2015.02.017

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2017) Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother Oncol 123:363–369. https://doi.org/10.1016/j.radonc.2017.04.016

    Article  PubMed  Google Scholar 

  20. Huber RM, Borgmeier A, Flentje M et al (2010) Concurrent chemoradiation therapy with docetaxel/cisplatin followed by docetaxel consolidation therapy in inoperable stage IIIA/B non-small-cell lung cancer: results of a phase I study. Clin Lung Cancer 11:45–50. https://doi.org/10.3816/CLC.2010.n.007

    Article  CAS  PubMed  Google Scholar 

  21. Huber RM, Flentje M, Schmidt M et al (2006) Simultaneous chemoradiotherapy compared with radiotherapy alone after induction chemotherapy in inoperable stage IIIA or IIIB non-small-cell lung cancer: study CTRT99/97 by the Bronchial Carcinoma Therapy Group. J Clin Oncol 24:4397–4404. https://doi.org/10.1200/JCO.2005.05.4163

    Article  CAS  PubMed  Google Scholar 

  22. Huang W, Zhou T, Ma L et al (2011) Standard uptake value and metabolic tumor volume of (1)(8)F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging 38:1628–1635. https://doi.org/10.1007/s00259-011-1838-5

    Article  CAS  PubMed  Google Scholar 

  23. Nagamachi S (2014) The problem of metabolic tumor volume in FDG/PET for evaluating cancers – determination of threshold and use of Methionine-PET. J Radiol Radiat Ther 2(2):1029

    Google Scholar 

  24. Ohri N, Piperdi B, Garg MK et al (2015) Pre-treatment FDG-PET predicts the site of in-field progression following concurrent chemoradiotherapy for stage III non-small cell lung cancer. Lung Cancer 87:23–27. https://doi.org/10.1016/j.lungcan.2014.10.016

    Article  PubMed  Google Scholar 

  25. Ohri N, Duan F, Snyder BS et al (2016) Pretreatment 18F-FDG PET textural features in locally advanced non-small cell lung cancer: secondary analysis of ACRIN 6668/RTOG 0235. J Nucl Med 57:842–848. https://doi.org/10.2967/jnumed.115.166934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohri N, Bodner WR, Halmos B et al (2017) 18F-Fluorodeoxyglucose/positron emission tomography predicts patterns of failure after definitive chemoradiation therapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 97:372–380. https://doi.org/10.1016/j.ijrobp.2016.10.031

    Article  PubMed  Google Scholar 

  27. Markovina S, Duan F, Snyder BS et al (2015) Regional lymph node uptake of [(18)F]Fluorodeoxyglucose after definitive chemoradiation therapy predicts local-regional failure of locally advanced non-small cell lung cancer: results of ACRIN 6668/RTOG 0235. Int J Radiat Oncol Biol Phys 93:597–605. https://doi.org/10.1016/j.ijrobp.2015.04.026

    Article  PubMed  PubMed Central  Google Scholar 

  28. Manapov F, Eze C (2017) Survival advantage for etoposide/cisplatin over paclitaxel/carboplatin concurrent chemoradiation in patients with inoperable stage III NSCLC: a subgroup analysis for ECOG 2 patients would be of great interest. Ann Oncol 28(9):2319–2320. https://doi.org/10.1093/annonc/mdx254

    Article  CAS  PubMed  Google Scholar 

  29. Liang J, Bi N, Wu S et al (2017) Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage III non-small cell lung cancer: a multicenter randomized phase III trial. Ann Oncol 28:777–783. https://doi.org/10.1093/annonc/mdx009

    CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olarn Roengvoraphoj MD.

Ethics declarations

Conflict of interest

O. Roengvoraphoj, C. Wijaya, C. Eze, M. Li, M. Dantes, J. Taugner, A. Tufman, R.M. Huber, C. Belka, and F. Manapov declare that they have no competing interests.

Additional information

Presented in part as a poster at the European Lung Cancer Conference (ELCC) 2016, Geneva, Switzerland, 13–16 April 2016: https://www.ncbi.nlm.nih.gov/pubmed/27198263

Olarn Roengvoraphoj and Cherylina Wijaya contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roengvoraphoj, O., Wijaya, C., Eze, C. et al. Analysis of primary tumor metabolic volume during chemoradiotherapy in locally advanced non-small cell lung cancer. Strahlenther Onkol 194, 107–115 (2018). https://doi.org/10.1007/s00066-017-1229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1229-3

Keywords

Schlüsselwörter

Navigation