Skip to main content
Log in

MDCT-based Finite Element Analysis of Vertebral Fracture Risk: What Dose is Needed?

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare vertebral failure loads, predicted from finite element (FE) analysis of patients with and without osteoporotic vertebral fractures (OVF) at virtually reduced dose levels, compared to standard-dose exposure from multidetector computed tomography (MDCT) imaging and evaluate whether ultra-low dose derived FE analysis can still differentiate patient groups.

Materials and Methods

An institutional review board (IRB) approval was obtained for this retrospective study. A total of 16 patients were evaluated at standard-dose MDCT; eight with and eight without OVF. Images were reconstructed at virtually reduced dose levels (i. e. half, quarter and tenth of the standard dose). Failure load was determined at L1–3 from FE analysis and compared between standard, half, quarter, and tenth doses and used to differentiate between fracture and control groups.

Results

Failure load derived at standard dose (3254 ± 909 N and 3794 ± 984 N) did not significantly differ from half (3390 ± 890 N and 3860 ± 1063 N) and quarter dose (3375 ± 915 N and 3925 ± 990 N) but was significantly higher for one tenth dose (4513 ± 1762 N and 4766 ± 1628 N) for fracture and control groups, respectively. Failure load differed significantly between the two groups at standard, half and quarter doses, but not at tenth dose. Receiver operating characteristic (ROC) curve analysis also demonstrated that standard, half, and quarter doses can significantly differentiate the fracture from the control group.

Conclusion

The use of MDCT enables a dose reduction of at least 75% compared to standard-dose for an adequate prediction of vertebral failure load based on non-invasive FE analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Francis RM, Aspray TJ, Hide G, Sutcliffe AM, Wilkinson P. Back pain in osteoporotic vertebral fractures. Osteoporos Int. 2008;19:895–903.

    Article  CAS  PubMed  Google Scholar 

  2. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.

    Article  CAS  Google Scholar 

  3. Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM; Osteoporotic Fractures in Men (MrOS) Research Group, Keaveny TM. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27:808–16.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29:570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anitha D, Subburaj K, Mei K, Kopp FK, Foehr P, Noel PB, Kirschke JS, Baum T. Effects of dose reduction on bone strength prediction using finite element analysis. Sci Rep. 2016;6:38441.

    Article  CAS  Google Scholar 

  6. Anitha D, Subburaj K, Baum T, Kirschke JS. Vertebral stability in multiple myeloma patients: a finite-element study. European Orthopaedic Research Society 24th Annual Meeting; Bologna, Italy. 2016.

    Google Scholar 

  7. Bauer JS, Sidorenko I, Mueller D, Baum T, Issever AS, Eckstein F, Rummeny EJ, Link TM, Raeth CW. Prediction of bone strength by muCT and MDCT-based finite-element-models: how much spatial resolution is needed? Eur J Radiol. 2014;83:e36–42.

    Article  PubMed  Google Scholar 

  8. Liebl H, Garcia EG, Holzner F, Noel PB, Burgkart R, Rummeny EJ, Baum T, Bauer JS. In-vivo assessment of femoral bone strength using Finite Element Analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures. PLoS One. 2015;10:e116907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yi JW, Park HJ, Lee SY, Rho MH, Hong HP, Choi YJ, Kim MS. Radiation dose reduction in multidetector CT in fracture evaluation. Br J Radiol. 2017;90(1077):20170240.

    Article  Google Scholar 

  10. Wiest PW, Locken JA, Heintz PH, Mettler FA Jr.. CT scanning: a major source of radiation exposure. Semin Ultrasound Ct Mr. 2002;23:402–10.

    Article  Google Scholar 

  11. Costello JE, Cecava ND, Tucker JE, Bau JL. CT radiation dose: current controversies and dose reduction strategies. AJR Am J Roentgenol. 2013;201:1283–90.

    Article  Google Scholar 

  12. Pontana F, Duhamel A, Pagniez J, Flohr T, Faivre JB, Hachulla AL, Remy J, Remy-Jardin M. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol. 2011;21:636–43.

    Article  Google Scholar 

  13. Niu YT, Mehta D, Zhang ZR, Zhang YX, Liu YF, Kang TL, Xian JF, Wang ZC. Radiation dose reduction in temporal bone CT with iterative reconstruction technique. AJNR Am J Neuroradiol. 2012;33:1020–6.

    Article  CAS  Google Scholar 

  14. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol. 2010;194:191–9.

    Article  Google Scholar 

  15. Konda SR, Goch AM, Leucht P, Christiano A, Gyftopoulos S, Yoeli G, Egol KA. The use of ultra-low-dose CT scans for the evaluation of limb fractures. Bone Jt J. 2016;98-B:1668–73.

    Article  CAS  Google Scholar 

  16. Mulkens TH, Marchal P, Daineffe S, Salgado R, Bellinck P, te Rijdt B, Kegelaers B, Termote JL. Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR Am J Neuroradiol. 2007;28:1444–50.

    Article  CAS  Google Scholar 

  17. Zabić S, Wang Q, Morton T, Brown KM. A low dose simulation tool for CT systems with energy integrating detectors. Med Phys. 2013;40:31102.

    Article  Google Scholar 

  18. Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F, Rummeny EJ, Kirschke JS, Noël PB, Baum T. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol. 2017;27:5261–71.

    Article  Google Scholar 

  19. Huber MB, Carballido-Gamio J, Bauer JS, Baum T, Eckstein F, Lochmüller EM, Majumdar S, Link TM. Proximal femur specimens: Automated 3D trabecular bone mineral density analysis at multidetector CT—Correlation with biomechanical strength measurement. Radiology. 2008;247:472–81.

    Article  Google Scholar 

  20. Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17:347–55.

    Article  CAS  Google Scholar 

  21. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27:375–89.

    Article  CAS  PubMed  Google Scholar 

  22. Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27:1159–68.

    Article  CAS  Google Scholar 

  23. Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys. 2001;23:165–73.

    Article  CAS  Google Scholar 

  24. Keyak JH, Lee IY, Skinner HB. Correlations between orthogonal mechanical-properties and density of trabecular bone—use of different densitometric measures. J Biomed Mater Res. 1994;28:1329–36.

    Article  CAS  Google Scholar 

  25. Keyak JH, Falkinstein Y. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys. 2003;25:781–7.

    Article  Google Scholar 

  26. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50.

    Article  Google Scholar 

  27. Imai K. Analysis of vertebral bone strength, fracture pattern, and fracture location: a validation study using a computed tomography-based nonlinear finite element analysis. Aging Dis. 2015;6:180–7.

    Article  Google Scholar 

  28. Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2015;25:141–51.

    Article  Google Scholar 

  29. Tack D, Jahnen A, Kohler S, Harpes N, De Maertelaer V, Back C, Gevenois PA. Multidetector CT radiation dose optimisation in adults: short- and long-term effects of a clinical audit. Eur Radiol. 2014;24:169–75.

    Article  Google Scholar 

Download references

Funding

This study received funding by the Deutsche Forschungsgemeinschaft (DFG) BA 4906/2-1 (TB), and TUM Faculty of Medicine KKF grant H01 (TB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karupppasamy Subburaj.

Ethics declarations

Conflict of interest

D. Anitha, K. Mei, M. Dieckmeyer, F.K. Kopp, N. Sollmann, C. Zimmer, J.S. Kirschke, P.B. Noel, T. Baum and K. Subburaj declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitha, D., Mei, K., Dieckmeyer, M. et al. MDCT-based Finite Element Analysis of Vertebral Fracture Risk: What Dose is Needed?. Clin Neuroradiol 29, 645–651 (2019). https://doi.org/10.1007/s00062-018-0722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-018-0722-0

Keywords

Navigation