Skip to main content
Log in

Mechanisms and management of doxorubicin cardiotoxicity

Mechanismen und Management der Doxorubicinkardiotoxiztät

  • Main topic/CME
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Doxorubicin is an effective anti-tumor agent with a cumulative dose-dependent cardiotoxicity. In addition to its principal toxic mechanisms involving iron and redox reactions, recent studies have described new mechanisms of doxorubicin-induced cell death, including abnormal protein processing, hyper-activated innate immune responses, inhibition of neuregulin-1 (NRG1)/ErbB(HER) signalling, impaired progenitor cell renewal/cardiac repair, and decreased vasculogenesis. Although multiple mechanisms involved in doxorubicin cardiotoxicity have been studied, there is presently no clinically proven treatment established for doxorubicin cardiomyopathy. Iron chelator dexrazoxane, angiotensin converting enzyme (ACE) inhibitors, and β-blockade have been proposed as potential preventive strategies for doxorubicin cardiotoxicity. Novel approaches such as anti-miR-146 or recombinant NRG1 to increase cardiomyocyte resistance to toxicity may be of interest in the future.

Zusammenfassung

Doxorubicin ist eine hochwirksame antineoplastische Substanz mit einer von der kumulativen Dosis abhängigen Kardiotoxizität. Neben den hauptsächlichen toxischen Mechanismen mit Eisen und Redoxreaktionen wurden in letzter Zeit neue Ursachen für den doxorubicininduzierten Zelltod beschrieben, u. a. eine pathologische Eiweißprozessierung, eine überproportionale Stimulation des angeborenen Immunsystems, die Inhibition der Neuregulin-1(NRG1)-ErB(HER)-Signalkaskade, eine gestörte Erneuerung der kardialen Progenitorzellen und Reparaturmechanismen und eine verminderte Vaskulogenese. Obwohl verschiedene Mechanismen der Doxorubicinkardiotoxizität bisher untersucht wurden, fehlt es bislang an einer klinisch effektiven und etablierten Behandlung der Doxorubicinkardiomyopathie. Der Eisenchelatbildner Dexrazoxan, ACE-Hemmer und Betablocker wurden als eine mögliche präventive Behandlung diskutiert. Neue Therapieansätze stützen sich auf Anti-MiR-146 oder rekombinantes NRG1 zur Verbesserung der Resistenz der Kardiomyozyten gegen die toxische Nebenwirkung und könnten zukünftig von besonderem Interesse sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433

    Article  PubMed  CAS  Google Scholar 

  2. Chatterjee K, Zhang J, Honbo N, Karliner JS (2010) Doxorubicin cardiomyopathy. Cardiology 115:155–162

    Article  PubMed  CAS  Google Scholar 

  3. Robert J, Gianni L (1993) Pharmacokinetics and metabolism of anthracyclines. Cancer Surv 17:219–252

    PubMed  CAS  Google Scholar 

  4. Cartoni A, Menna P, Salvatorelli E et al (2004) Oxidative degradation of cardiotoxic anticancer anthracyclines to phthalic acids. Novel function or ferrylmyoglobin. J Biol Chem 279:5088–5099

    Article  PubMed  CAS  Google Scholar 

  5. Minotti G, Menna P, Salvatorelli E et al (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  PubMed  CAS  Google Scholar 

  6. Shin M, Matsunaga H, Fujiwara K (2010) Differences in accumulation of anthracyclines daunorubicin, doxorubicin and epirubicin in rat tissues revealed by immunocytochemistry. Histochem Cell Biol 133:677–682

    Article  PubMed  CAS  Google Scholar 

  7. Menna P, Salvatorelli E, Minotti G (2010) Anthracycline degradation in cardiomyocytes: a journey to oxidative survival. Chem Res Toxicol 23:6–10

    Article  PubMed  CAS  Google Scholar 

  8. Menna P, Salvatorelli E, Minotti G (2007) Doxorubicin degradation in cardiomyocytes. J Pharmacol Exp Ther 322:408–419

    Article  PubMed  CAS  Google Scholar 

  9. Yi X, Bekeredjian R, De Filippis NJ et al (2006) Transcriptional analysis of doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 290:H1098–H1102

    Article  PubMed  CAS  Google Scholar 

  10. Umlauf J, Horky M (2002) Molecular biology of doxorubicin-induced cardiomyopathy. Exp Clin Cardiol 7:35–39

    PubMed  CAS  Google Scholar 

  11. Xu X, Persson HL, Richardson DR (2005) Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol 68:261–271

    PubMed  CAS  Google Scholar 

  12. Minotti G, Ronchi R, Salvatorelli E et al (2001) Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Res 61:8422–8428

    PubMed  CAS  Google Scholar 

  13. Ducroq J, Moha ou Maati H, Guilbot S et al (2010) Dexrazoxane protects the heart from acute doxorubicin-induced QT prolongation: a key role for I(Ks). Br J Pharmacol 159:93–101

    Article  PubMed  CAS  Google Scholar 

  14. Xiang P, Deng HY, Li K et al (2009) Dexrazoxane protects against doxorubicin-induced cardiomyopathy: upregulation of Akt and Erk phosphorylation in a rat model. Cancer Chemother Pharmacol 63:343–349

    Article  PubMed  CAS  Google Scholar 

  15. Miranda CJ, Makui H, Soares RJ et al (2003) Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood 102:2574–2580

    Article  PubMed  CAS  Google Scholar 

  16. Menna P, Salvatorelli E, Minotti G (2008) Cardiotoxicity of antitumor drugs. Chem Res Toxicol 21:978–989

    Article  PubMed  CAS  Google Scholar 

  17. Simunek T, Sterba M, Popelova O et al (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61:154–171

    PubMed  CAS  Google Scholar 

  18. Zhang YW, Shi J, Li YJ, Wei L (2009) Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp (Warsz) 57:435–445

    Article  CAS  Google Scholar 

  19. Lebrecht D, Walker UA (2007) Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 7:108–113

    Article  PubMed  CAS  Google Scholar 

  20. L’Ecuyer T, Sanjeev S, Thomas R et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280

    Article  CAS  Google Scholar 

  21. Solem LE, Heller LJ, Wallace KB (1996) Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. J Mol Cell Cardiol 28:1023–1032

    Article  PubMed  CAS  Google Scholar 

  22. Wallace KB (2003) Doxorubicin-induced cardiac mitochondrionopathy. J Pharmacol Toxicol Methods 93:105–115

    CAS  Google Scholar 

  23. Wallace KB (2007) Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 7:101–107

    Article  PubMed  CAS  Google Scholar 

  24. Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777

    PubMed  CAS  Google Scholar 

  25. Liu X, Chua CC, Gao J et al (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286:H933–H939

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Mao W, Ding B, Liang CS (2008) ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 295:H1956–H1965

    Article  PubMed  CAS  Google Scholar 

  27. Aries A, Paradis P, Lefebvre C et al (2004) Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proc Natl Acad Sci U S A 101:6975–6980

    Article  PubMed  CAS  Google Scholar 

  28. Kim Y, Ma AG, Kitta K et al (2003) Anthracycline-induced suppression of GATA-4 transcription factor: implication in the regulation of cardiac myocyte apoptosis. Mol Pharmacol 63:368–377

    Article  PubMed  CAS  Google Scholar 

  29. Park AM, Nagase H, Liu L et al (2010) Mechanism of anthracycline-mediated down-regulation of GATA4 in the heart. Cardiovasc Res 90:97–104

    Article  PubMed  CAS  Google Scholar 

  30. Kawamura T, Hasegawa K, Morimoto T et al (2004) Expression of p300 protects cardiac myocytes from apoptosis in vivo. Biochem Biophys Res Commun 315:733–738

    Article  PubMed  CAS  Google Scholar 

  31. Poizat C, Puri PL, Bai Y, Kedes L (2005) Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 25:2673–2687

    Article  PubMed  CAS  Google Scholar 

  32. Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276:13505–13508

    PubMed  CAS  Google Scholar 

  33. Yuan ZM, Huang Y, Ishiko T et al (1999) Function for p300 and not CBP in the apoptotic response to DNA damage. Oncogene 18:5714–5717

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi S, Volden P, Timm D et al (2010) Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J Biol Chem 285:793–804

    Article  PubMed  CAS  Google Scholar 

  35. Terman A, Brunk UT (2005) Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 68:355–365

    Article  PubMed  CAS  Google Scholar 

  36. Terman A, Kurz T, Gustafsson B, Brunk UT (2008) The involvement of lysosomes in myocardial aging and disease. Curr Cardiol Rev 4:107–115

    Article  PubMed  CAS  Google Scholar 

  37. Hoyer-Hansen M, Bastholm L, Szyniarowski P et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205

    Article  PubMed  CAS  Google Scholar 

  38. Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14:1576–1582

    Article  PubMed  CAS  Google Scholar 

  39. Kumar D, Lou H, Singal PK (2002) Oxidative stress and apoptosis in heart dysfunction. Herz 27:662–668

    Article  PubMed  Google Scholar 

  40. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  41. Ehrke MJ, Ryoyama K, Cohen SA (1984) Cellular basis for adriamycin-induced augmentation of cell-mediated cytotoxicity in culture. Cancer Res 44:2497–2504

    PubMed  CAS  Google Scholar 

  42. Maccubbin DL, Wing KR, Mace KF et al (1992) Adriamycin-induced modulation of host defenses in tumor-bearing mice. Cancer Res 52:3572–3576

    PubMed  CAS  Google Scholar 

  43. Haskill JS (1981) Adriamycin-activated macrophages as tumor growth inhibitors. Cancer Res 41:3852–3856

    PubMed  CAS  Google Scholar 

  44. Methe H, Kim JO, Kofler S et al (2005) Statins decrease toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arterioscler Thromb Vasc Biol 25:1439–1445

    Article  PubMed  CAS  Google Scholar 

  45. Mann DL, Topkara VK, Evans S, Barger PM (2010) Innate immunity in the adult mammalian heart: for whom the cell tolls. Trans Am Clin Climatol Assoc 121:34–50; discussion 50–31

    PubMed  Google Scholar 

  46. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  PubMed  CAS  Google Scholar 

  47. Apetoh L, Tesniere A, Ghiringhelli F et al (2008) Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res 68:4026–4030

    Article  PubMed  CAS  Google Scholar 

  48. Kast RE, Foley KF, Focosi D (2007) Doxorubicin cardiomyopathy via TLR-2 stimulation: potential for prevention using current anti-retroviral inhibitors such as ritonavir and nelfinavir. Hematol Oncol 25:96–97

    Article  PubMed  CAS  Google Scholar 

  49. Methe H, Kim JO, Kofler S et al (2005) Expansion of circulating Toll-like receptor 4-positive monocytes in patients with acute coronary syndrome. Circulation 111:2654–2661

    Article  PubMed  CAS  Google Scholar 

  50. Nozaki N, Shishido T, Takeishi Y, Kubota I (2004) Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation 110:2869–2874

    Article  PubMed  CAS  Google Scholar 

  51. Riad A, Bien S, Gratz M et al (2008) Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur J Heart Fail 10:233–243

    Article  PubMed  CAS  Google Scholar 

  52. Sakata Y, Dong JW, Vallejo JG et al (2007) Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 292:H503–H509

    Article  PubMed  CAS  Google Scholar 

  53. Shishido T, Nozaki N, Yamaguchi S et al (2003) Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 108:2905–2910

    Article  PubMed  CAS  Google Scholar 

  54. Fairweather D, Frisancho-Kiss S, Rose NR (2005) Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Rev Med Virol 15:17–27

    Article  PubMed  CAS  Google Scholar 

  55. Zhu J, Zhang J, Xiang D et al (2010) Recombinant human interleukin-1 receptor antagonist protects mice against acute doxorubicin-induced cardiotoxicity. Eur J Pharmacol 643:247–253

    Article  PubMed  CAS  Google Scholar 

  56. Frantz S, Kelly RA, Bourcier T (2001) Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J Biol Chem 276:5197–5203

    Article  PubMed  CAS  Google Scholar 

  57. Wang S, Kotamraju S, Konorev E et al (2002) Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J 367:729–740

    Article  PubMed  CAS  Google Scholar 

  58. Timmers L, Sluijter JP, Keulen JK van et al (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102:257–264

    Article  PubMed  CAS  Google Scholar 

  59. Dunne A, O’Neill LA (2003) The interleukin-1 receptor/toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003:re3

    Article  PubMed  Google Scholar 

  60. Berthiaume JM, Wallace KB (2007) Persistent alterations to the gene expression profile of the heart subsequent to chronic Doxorubicin treatment. Cardiovasc Toxicol 7:178–191

    Article  PubMed  CAS  Google Scholar 

  61. Herman EH, Lipshultz SE, Rifai N et al (1998) Use of cardiac troponin T levels as an indicator of doxorubicin-induced cardiotoxicity. Cancer Res 58:195–197

    PubMed  CAS  Google Scholar 

  62. Saadane N, Alpert L, Chalifour LE (1999) TAFII250, egr-1, and D-type cyclin expression in mice and neonatal rat cardiomyocytes treated with doxorubicin. Am J Physiol 276:H803–H814

    PubMed  CAS  Google Scholar 

  63. Jeyaseelan R, Poizat C, Baker RK et al (1997) A novel cardiac-restricted target for doxorubicin. CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes. J Biol Chem 272:22800–22808

    Article  PubMed  CAS  Google Scholar 

  64. Zordoky BN, Anwar-Mohamed A, Aboutabl ME, El-Kadi AO (2010) Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicol Appl Pharmacol 242:38–46

    Article  PubMed  CAS  Google Scholar 

  65. Sayed-Ahmed MM, Al-Shabanah OA, Hafez MM et al (2010) Inhibition of gene expression of heart fatty acid binding protein and organic cation/carnitine transporter in doxorubicin cardiomyopathic rat model. Eur J Pharmacol 640:143–149

    Article  PubMed  CAS  Google Scholar 

  66. Pointon AV, Walker TM, Phillips KM et al (2010) Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One 5:e12733

    Article  PubMed  CAS  Google Scholar 

  67. Maeda A, Honda M, Kuramochi T, Takabatake T (1998) Doxorubicin cardiotoxicity: diastolic cardiac myocyte dysfunction as a result of impaired calcium handling in isolated cardiac myocytes. Jpn Circ J 62:505–511

    Article  PubMed  CAS  Google Scholar 

  68. Jeyaseelan R, Poizat C, Wu HY, Kedes L (1997) Molecular mechanisms of doxorubicin-induced cardiomyopathy. Selective suppression of reiske iron-sulfur protein, ADP/ATP translocase, and phosphofructokinase genes is associated with ATP depletion in rat cardiomyocytes. J Biol Chem 272:5828–5832

    Article  PubMed  CAS  Google Scholar 

  69. Arai M, Tomaru K, Takizawa T et al (1998) Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. J Mol Cell Cardiol 30:243–254

    Article  PubMed  CAS  Google Scholar 

  70. Maejima Y, Adachi S, Ito H et al (2008) Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell 7:125–136

    Article  PubMed  CAS  Google Scholar 

  71. Kajstura J, Rota M, Urbanek K et al (2006) The telomere-telomerase axis and the heart. Antioxid Redox Signal 8:2125–2141

    Article  PubMed  CAS  Google Scholar 

  72. Bernhard D, Laufer G (2008) The aging cardiomyocyte: a mini-review. Gerontology 54:24–31

    Article  PubMed  CAS  Google Scholar 

  73. Wang X, Su H, Ranek MJ (2008) Protein quality control and degradation in cardiomyocytes. J Mol Cell Cardiol 45:11–27

    Article  PubMed  CAS  Google Scholar 

  74. Ranek MJ, Wang X (2009) Activation of the ubiquitin-proteasome system in doxorubicin cardiomyopathy. Curr Hypertens Rep 11:389–395

    Article  PubMed  CAS  Google Scholar 

  75. Wang X, Robbins J (2006) Heart failure and protein quality control. Circ Res 99:1315–1328

    Article  PubMed  CAS  Google Scholar 

  76. Patterson C, Ike C, Willis PWT et al (2007) The bitter end: the ubiquitin-proteasome system and cardiac dysfunction. Circulation 115:1456–1463

    Article  PubMed  CAS  Google Scholar 

  77. Tu D, Li W, Ye Y, Brunger AT (2007) Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Proc Natl Acad Sci U S A 104:15599–15606

    Article  PubMed  CAS  Google Scholar 

  78. Powell SR (2006) The ubiquitin-proteasome system in cardiac physiology and pathology. Am J Physiol Heart Circ Physiol 291:H1–H19

    Article  PubMed  CAS  Google Scholar 

  79. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  PubMed  CAS  Google Scholar 

  80. Liu J, Zheng H, Tang M et al (2008) A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. Am J Physiol Heart Circ Physiol 295:H2541–2550

    Article  PubMed  CAS  Google Scholar 

  81. Li YZ, Lu DY, Tan WQ et al (2008) p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Mol Cell Biol 28:564–574

    Article  PubMed  CAS  Google Scholar 

  82. Nam YJ, Mani K, Wu L et al (2007) The apoptosis inhibitor ARC undergoes ubiquitin-proteasomal-mediated degradation in response to death stimuli: identification of a degradation-resistant mutant. J Biol Chem 282:5522–5528

    Article  PubMed  CAS  Google Scholar 

  83. Fukuda N, Sasaki D, Ishiwata S, Kurihara S (2001) Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the frank-starling mechanism of the heart. Circulation 104:1639–1645

    Article  PubMed  CAS  Google Scholar 

  84. Lim CC, Zuppinger C, Guo X et al (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279:8290–8299

    Article  PubMed  CAS  Google Scholar 

  85. Haq S, Michael A, Andreucci M et al (2003) Stabilization of beta-catenin by a wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 100:4610–4615

    Article  PubMed  CAS  Google Scholar 

  86. Poizat C, Sartorelli V, Chung G et al (2000) Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 20:8643–8654

    Article  PubMed  CAS  Google Scholar 

  87. Li Q, Sanlioglu S, Li S et al (2001) GPx-1 gene delivery modulates NFkappaB activation following diverse environmental injuries through a specific subunit of the IKK complex. Antioxid Redox Signal 3:415–432

    Article  PubMed  CAS  Google Scholar 

  88. Yamamoto Y, Hoshino Y, Ito T et al (2008) Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovasc Res 79:89–96

    Article  PubMed  CAS  Google Scholar 

  89. Xie P, Guo S, Fan Y et al (2009) Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK activation. J Biol Chem 284:5488–5496

    Article  PubMed  CAS  Google Scholar 

  90. Gomes MD, Lecker SH, Jagoe RT et al (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445

    Article  PubMed  CAS  Google Scholar 

  91. Stitt TN, Drujan D, Clarke BA et al (2004) The IGF-1/PI3 K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  PubMed  CAS  Google Scholar 

  92. Razeghi P, Baskin KK, Sharma S et al (2006) Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 342:361–364

    Article  PubMed  CAS  Google Scholar 

  93. Razeghi P, Taegtmeyer H (2006) Hypertrophy and atrophy of the heart: the other side of remodeling. Ann N Y Acad Sci 1080:110–119

    Article  PubMed  CAS  Google Scholar 

  94. Li HH, Kedar V, Zhang C et al (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071

    PubMed  CAS  Google Scholar 

  95. Bodine SC, Latres E, Baumhueter S et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  PubMed  CAS  Google Scholar 

  96. Murton AJ, Constantin D, Greenhaff PL (2008) The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta 1782:730–743

    PubMed  CAS  Google Scholar 

  97. Kalivendi SV, Konorev EA, Cunningham S et al (2005) Doxorubicin activates nuclear factor of activated T-lymphocytes and fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem J 389:527–539

    Article  PubMed  CAS  Google Scholar 

  98. Ito T, Fujio Y, Takahashi K, Azuma J (2007) Degradation of NFAT5, a transcriptional regulator of osmotic stress-related genes, is a critical event for doxorubicin-induced cytotoxicity in cardiac myocytes. J Biol Chem 282:1152–1160

    Article  PubMed  CAS  Google Scholar 

  99. Ito T, Fujio Y, Schaffer SW, Azuma J (2009) Involvement of transcriptional factor TonEBP in the regulation of the taurine transporter in the cardiomyocyte. Adv Exp Med Biol 643:523–532

    Article  PubMed  CAS  Google Scholar 

  100. LoConte NK, Thomas JP, Alberti D et al (2008) A phase I pharmacodynamic trial of bortezomib in combination with doxorubicin in patients with advanced cancer. Cancer Chemother Pharmacol 63:109–115

    Article  PubMed  CAS  Google Scholar 

  101. Burden S, Yarden Y (1997) Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron 18:847–855

    Article  PubMed  CAS  Google Scholar 

  102. Li JY, Wang H, May S et al (2008) Constitutive activation of c-jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol 88:11–17

    Article  PubMed  CAS  Google Scholar 

  103. Steinthorsdottir V, Stefansson H, Ghosh S et al (2004) Multiple novel transcription initiation sites for NRG1. Gene 342:97–105

    Article  PubMed  CAS  Google Scholar 

  104. Bublil EM, Yarden Y (2007) The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 19:124–134

    Article  PubMed  CAS  Google Scholar 

  105. Horie T, Ono K, Nishi H et al (2010) Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res 87:656–664

    Article  PubMed  CAS  Google Scholar 

  106. Zhao YY, Sawyer DR, Baliga RR et al (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273:10261–10269

    Article  PubMed  CAS  Google Scholar 

  107. Spector NL, Blackwell KL (2009) Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 27:5838–5847

    Article  PubMed  CAS  Google Scholar 

  108. Garrett TP, McKern NM, Lou M et al (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110:763–773

    Article  PubMed  CAS  Google Scholar 

  109. Lemmens K, Doggen K, De Keulenaer GW (2007) Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation 116:954–960

    Article  PubMed  CAS  Google Scholar 

  110. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  111. Linggi B, Carpenter G (2006) ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol 16:649–656

    Article  PubMed  CAS  Google Scholar 

  112. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  PubMed  CAS  Google Scholar 

  113. Ozcelik C, Erdmann B, Pilz B et al (2002) Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A 99:8880–8885

    Article  PubMed  CAS  Google Scholar 

  114. Crone SA, Zhao YY, Fan L et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465

    Article  PubMed  CAS  Google Scholar 

  115. Sawyer DB, Zuppinger C, Miller TA et al (2002) Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 105:1551–1554

    Article  PubMed  CAS  Google Scholar 

  116. Pentassuglia L, Graf M, Lane H et al (2009) Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Exp Cell Res 315:1302–1312

    Article  PubMed  CAS  Google Scholar 

  117. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  PubMed  CAS  Google Scholar 

  118. Christodoulou C, Kostopoulos I, Kalofonos HP et al (2009) Trastuzumab combined with pegylated liposomal doxorubicin in patients with metastatic breast cancer. phase II Study of the Hellenic Cooperative Oncology Group (HeCOG) with biomarker evaluation. the International Society for Cellular 76:275–285

    CAS  Google Scholar 

  119. Rayson D, Richel D, Chia S et al (2008) Anthracycline-trastuzumab regimens for HER2/neu-overexpressing breast cancer: current experience and future strategies. Ann Oncol 19:1530–1539

    Article  PubMed  CAS  Google Scholar 

  120. Ewer MS, Vooletich MT, Durand JB et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23:7820–7826

    Article  PubMed  CAS  Google Scholar 

  121. Liu FF, Stone JR, Schuldt AJ et al (2005) Heterozygous knockout of neuregulin-1 gene in mice exacerbates doxorubicin-induced heart failure. Am J Physiol Heart Circ Physiol 289:H660–H666

    Article  PubMed  CAS  Google Scholar 

  122. Bian Y, Sun M, Silver M et al (2009) Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. Am J Physiol Heart Circ Physiol 297:H1974–H1983

    Article  PubMed  CAS  Google Scholar 

  123. Hosoda T, Kajstura J, Leri A, Anversa P (2010) Mechanisms of myocardial regeneration. Circ J 74:13–17

    Article  PubMed  CAS  Google Scholar 

  124. Di Nardo P, Forte G, Ahluwalia A, Minieri M (2010) Cardiac progenitor cells: potency and control. J Cell Physiol 224:590–600

    Article  CAS  Google Scholar 

  125. De Angelis A, Piegari E, Cappetta D et al (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276–292

    Article  CAS  Google Scholar 

  126. Huang C, Zhang X, Ramil JM et al (2010) Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation 121:675–683

    Article  PubMed  CAS  Google Scholar 

  127. Yasuda K, Park HC, Ratliff B et al (2010) Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair. Am J Pathol 176:1685–1695

    Article  PubMed  CAS  Google Scholar 

  128. Yin D, Li C, Kao RL et al (2004) Angiopoietin-1 inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating fas expression and via the PI3 K/Akt pathway. Endothelium 11:247–252

    Article  PubMed  CAS  Google Scholar 

  129. Ewer MS, Ewer SM (2010) Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol 7:564–575

    Article  PubMed  Google Scholar 

  130. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352

    Article  PubMed  CAS  Google Scholar 

  131. Lipshultz SE, Alvarez JA, Scully RE (2008) Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 94:525–533

    Article  PubMed  CAS  Google Scholar 

  132. Spallarossa P, Garibaldi S, Altieri P et al (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37:837–846

    Article  PubMed  CAS  Google Scholar 

  133. Malcom J, Arnold O, Howlett JG et al (2008) Canadian Cardiovascular Society Consensus Conference guidelines on heart failure–2008 update: best practices for the transition of care of heart failure patients, and the recognition, investigation and treatment of cardiomyopathies. Can J Cardiol 24:21–40

    Article  PubMed  CAS  Google Scholar 

  134. Shaddy RE, Olsen SL, Bristow MR et al (1995) Efficacy and safety of metoprolol in the treatment of doxorubicin-induced cardiomyopathy in pediatric patients. Am Heart J 129:197–199

    Article  PubMed  CAS  Google Scholar 

  135. Hiona A, Lee AS, Nagendran J et al (2010) Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function. J Thorac Cardiovasc Surg

  136. Sacco G, Mario B, Lopez G et al (2009) ACE inhibition and protection from doxorubicin-induced cardiotoxicity in the rat. Vascul Pharmacol 50:166–170

    Article  PubMed  CAS  Google Scholar 

  137. Hensley ML, Hagerty KL, Kewalramani T et al (2009) American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 27:127–145

    Article  PubMed  CAS  Google Scholar 

  138. Lipshultz SE, Scully RE, Lipsitz SR et al (2010) Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol 11:950–961

    Article  PubMed  CAS  Google Scholar 

  139. Lebrecht D, Geist A, Ketelsen UP et al (2007) Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol 151:771–778

    Article  PubMed  CAS  Google Scholar 

  140. Cardinale D, Colombo A, Sandri MT et al (2006) Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114:2474–2481

    Article  PubMed  CAS  Google Scholar 

  141. Kalay N, Basar E, Ozdogru I et al (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48:2258–2262

    Article  PubMed  CAS  Google Scholar 

  142. Sawyer DB, Peng X, Chen B et al (2010) Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 53:105–113

    Article  PubMed  CAS  Google Scholar 

  143. Shi R, Huang CC, Aronstam RS et al (2009) N-acetylcysteine amide decreases oxidative stress but not cell death induced by doxorubicin in H9c2 cardiomyocytes. BMC Pharmacol 9:7

    Article  PubMed  CAS  Google Scholar 

  144. Lou H, Danelisen I, Singal PK (2005) Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 288:H1925–H1930

    Article  PubMed  CAS  Google Scholar 

  145. Ito T, Muraoka S, Takahashi K et al (2009) Beneficial effect of taurine treatment against doxorubicin-induced cardiotoxicity in mice. Adv Exp Med Biol 643:65–74

    Article  PubMed  CAS  Google Scholar 

  146. Berthiaume JM, Oliveira PJ, Fariss MW, Wallace KB (2005) Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol 5:257–267

    Article  PubMed  CAS  Google Scholar 

  147. Daosukho C, Chen Y, Noel T et al (2007) Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic Biol Med 42:1818–1825

    Article  PubMed  CAS  Google Scholar 

  148. Merten KE, Jiang Y, Kang YJ (2007) Zinc inhibits doxorubicin-activated calcineurin signal transduction pathway in H9c2 embryonic rat cardiac cells. Exp Biol Med (Maywood) 232:682–689

    Google Scholar 

  149. Chatterjee K, Zhang J, Tao R et al (2008) Vincristine attenuates doxorubicin cardiotoxicity. Biochem Biophys Res Commun 373:555–560

    Article  PubMed  CAS  Google Scholar 

  150. Konishi M, Haraguchi G, Ohigashi H et al (2011) Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK up-regulation. Cardiovasc Res 89:309–319

    Article  PubMed  CAS  Google Scholar 

  151. Chao HH, Liu JC, Hong HJ et al (2011) L-carnitine reduces doxorubicin-induced apoptosis through a prostacyclin-mediated pathway in neonatal rat cardiomyocytes. Int J Cardiol 146:145–152

    Article  PubMed  Google Scholar 

  152. Little GH, Saw A, Bai Y et al (2009) Critical role of nuclear calcium/calmodulin-dependent protein kinase IIdeltaB in cardiomyocyte survival in cardiomyopathy. J Biol Chem 284:24857–24868

    Article  PubMed  CAS  Google Scholar 

  153. Koka S, Das A, Zhu SG et al (2010) Long-acting phosphodiesterase-5 inhibitor tadalafil attenuates doxorubicin-induced cardiomyopathy without interfering with chemotherapeutic effect. J Pharmacol Exp Ther 334:1023–1030

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by grants from the Heart and Stroke Foundation (HSF) of Ontario and the Canadian Institutes of Health Research (CIHR).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.P. Liu MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Moon, M., Dawood, S. et al. Mechanisms and management of doxorubicin cardiotoxicity. Herz 36, 296–305 (2011). https://doi.org/10.1007/s00059-011-3470-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-011-3470-3

Keywords

Schlüsselwörter

Navigation