Skip to main content

Advertisement

Log in

Thiosemicarbazone and thiazole: in vitro evaluation of leishmanicidal and ultrastructural activity on Leishmania infantum

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Leishmaniasis is a much-neglected tropical disease, especially in developing countries. Visceral Leishmaniasis (VL) is the most severe form of this infection caused by Leishmania infantum specie. It affects the splenic and hepatic systems and, when left untreated, it is fatal in 95% of cases. There is no human vaccine available and the recommended treatment not only presents adverse effects but it enables the development of resistant strains if interrupted. Hence, the urgent search for new leishmanicidal compounds. In the present work, we evaluated the in vitro leishmanicidal action of new thiosemicarbazone and thiazolidine compounds against the evolutionary forms of L. infantum, as well as their hemolytic activity, ultrastructural alterations, cytotoxicity, and nitric oxide levels on peritoneal macrophages. The inhibitory concentration 50% (IC50) against promastigote forms varied from 8.62 to 34.36 µM. In the evaluation of cytotoxicity, values of CC50 in peritoneal macrophages varied from 31.80 to 196.38 µM. Data showed that compounds JW-16.2 and GT-14 were the most promising in the series as they displayed the highest CC50 (184.58 and 196.38 μM), SI (19 and 15), low hemolytic activity, induced NO production in uninfected and infected macrophages and reduced survival of amastigotes (24.39 and 16.51 μM). Ultrastructural alterations, such as shrinkage of the cell body, shortening of the flagellum, and vacuolization of the cytoplasm, were identified. Promastigote forms treated with compounds GT-14 showed depolarization of mitochondria. Therefore, both compounds are promising due to low cytotoxicity to mammalian cells and leishmanicidal action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aliança A et al. (2017) In vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives. Eur J Pharm Sci 105:1–10

    PubMed  Google Scholar 

  • Basmaciyan L et al. (2018) Temporal analysis of the autophagic and apoptotic phenotypes in Leishmania parasites. Micro Cell 5:404–417

    CAS  Google Scholar 

  • Becerra MC et al. (2012) In vitro activity of N-benzenesulfonylbenzotriazole on Trypanosoma cruzi epimastigote and trypomastigote forms. Exp Parasitol 131:57–62

    CAS  PubMed  Google Scholar 

  • Bharti SK et al. (2010) Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur J Med Chem 45:651–660

    CAS  PubMed  Google Scholar 

  • Bozdag-Dundar O et al. (2007) Synthesis and antimicrobial activity of some new thiazolyl thiazolidine-2,4-dione derivatives. Bioorg Med Chem 15:6012–6017

    PubMed  Google Scholar 

  • Braga MV et al. (2004) Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Agents 24:72–78

    CAS  PubMed  Google Scholar 

  • Brasil (2019) Guia de Vigilância em Saúde. Ministério da Saúde, Brasília, https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_3ed.pdf. Accessed 20 Dec 2019

  • Britta EA et al. (2014) Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-nitrobenzaldehyde thiosemicarbazone derived from Slimonene. BMC Microbiol 14:236

    PubMed  PubMed Central  Google Scholar 

  • Britta EA et al. (2015) 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi. Parasitol 142:978–988

    CAS  Google Scholar 

  • Caldas LA et al. (2019) Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from Calea pinnatifida Asteraceae. Bioorg Chem 83:348–353

    CAS  PubMed  Google Scholar 

  • Caputto ME et al. (2011) Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents. Bioorg Med Chem 19:6818–6826

    CAS  PubMed  Google Scholar 

  • Cardoso MVO et al. (2014) 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: structural design, synthesis and pharmacological evaluation. Eur J Med Chem 86:48–59

    CAS  PubMed  Google Scholar 

  • Carvalho EB (2007) Efeito da bomba de infusão de soluções sobre o grau de hemólise em concentrado de hemácias. Rev Bras Hematol Hemoter 29:149–152

    Google Scholar 

  • Costa LB et al. (2016) Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg Med Chem 24:1608–1618

    CAS  PubMed  Google Scholar 

  • Da Silva AC et al. (2017) Aryl thiosemicarbazones: In vitro and immunomodulatory activities against L. amazonensis. Exp Parasitol 177:57–65

    PubMed  Google Scholar 

  • De Athayde-filho PF et al. (2000) Mesoionic compounds: amphiphilic heterocyclic betaines. synthesis. Synthesis 2000:1565–1568

    Google Scholar 

  • De Macedo-Silva ST (2011) Antiproliferative, ultrastructural, and physiological effects of amiodarone on promastigote and amastigote forms of Leishmania amazonensis. Mol Biol Int 2011:1–12

    Google Scholar 

  • De Oliveira Filho GB et al. (2015) Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg Med Chem 23:7478–7486

    PubMed  Google Scholar 

  • De Oliveira Filho GB et al. (2017) Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur J Med Chem 141:346–361

    PubMed  Google Scholar 

  • El-Hani CN et al. (2012) Apoptosis and apoptotic mimicry in Leishmania: an evolutionary perspective. Front Cell Infect Microbiol 2:1–6

    Google Scholar 

  • Espíndola JWP et al. (2015) Synthesis and structureeactivity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur J Med Chem 101:818–835

    PubMed  Google Scholar 

  • Franzen RG (2000) Recent advances in the preparation of heterocycles on solid support: a review of the literature. J Comb Chem 2:195–214

    CAS  PubMed  Google Scholar 

  • Garzoni LR et al. (2004) Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi. Int J Antimicrob Agents 23:273–285

    CAS  PubMed  Google Scholar 

  • Ghosh M et al. (2013) Immunomodulatory effects of antileishmanial drugs. J Antimicrob Chem 68:2834–2838

    CAS  Google Scholar 

  • Glisoni RJ et al. (2012) Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-bcyclodextrin. Eur J Pharm Sci 47:596–603

    CAS  PubMed  Google Scholar 

  • Gomes PM et al. (2016) Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur J Med Chem 111:46–57

    CAS  PubMed  Google Scholar 

  • Hernandes MZ et al. (2010) Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg Med Chem 18:7826–7835

    CAS  PubMed  Google Scholar 

  • Holzmuller P et al. (2002) Nitric oxide-mediated proteasome-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis Amastigotes. Infect Immun 70:3727–3735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi J et al. (2014) A comparative evaluation of efficacy of chemotherapy, immunotherapy and immunochemotherapy in visceral leishmaniasis—an experimental study. Parasitol Intern 63:612–620

    CAS  Google Scholar 

  • Kalegari M et al. (2011) Phytochemical constituents and preliminary toxicity evaluation of leaves from Rourea induta Planch. (Connaraceae). Braz J Pharm Sci 47:635–642

    CAS  Google Scholar 

  • Kaushik NK et al. (2013) Biomedical Importance of Indoles. Molecules 18:6620–6662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G et al. (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    CAS  PubMed  Google Scholar 

  • Liesen AP et al. (2008) Métodos de obtenção, reatividade e importância biológica de 4-tiazolidinonas. Quím Nova 31:369–376

    CAS  Google Scholar 

  • Lima-Junior DS et al. (2013) Inflammasome-derived IL-1ß production induces nitric oxide-mediated resistance to Leishmania. Nat Med 19:909–915

    CAS  PubMed  Google Scholar 

  • Lipinski CA et al. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  • Lüder CG et al. (2010) Impact of protozoan cell death on parasite-host interactions and pathogenesis. Parasit Vectors 3:116

    PubMed  PubMed Central  Google Scholar 

  • Lukmantara AY et al. (2013) Synthesis and biological evaluation of substituted 2-benzoylpyridine thiosemicarbazones: novel structure-activity relationships underpinning their anti-proliferative and chelation efficacy. Bioorg Med Chem Lett 23:967–974

    CAS  PubMed  Google Scholar 

  • Melo JOF et al. (2006) Heterocíclicos 1,2,3-triazólicos: histórico, métodos de preparação, aplicações e atividades farmacológicas. Quím Nova 29:569–579

    CAS  Google Scholar 

  • Menna-Barreto RF et al. (2009) Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40:157–168

    CAS  PubMed  Google Scholar 

  • Muylder G et al. (2011) A screen against Leishmania intracellular Amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLOS Negl Trop Dis 5:e1253

    PubMed  PubMed Central  Google Scholar 

  • Pavan FR et al. (2010) Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur J Med Chem 45:1898–1905

    CAS  PubMed  Google Scholar 

  • Pinto EG et al. (2014) Potential of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against Leishmania (L.) infantum: biological activity and structureactivity relationships. PLoS ONE 9:e105127

    PubMed  PubMed Central  Google Scholar 

  • Preté PSC et al. (2011) Multiple stages of detergent-erythrocyte membrane interaction—a spin label study. Biochim. Biophys Acta 1808:164–170

    PubMed  Google Scholar 

  • Santiago EDF (2014) Evaluation of the Anti-Schistosoma mansoni Activity of Thiosemicarbazones and Thiazoles. Antimicrob Agents Chem 58:352–363

    Google Scholar 

  • Sudo RT et al. (2010) Interaction of morphine with a new alpha2-adrenoceptor agonist in mice. J Pain 11:71–78

    CAS  PubMed  Google Scholar 

  • Sundar S, Chakravarty J (2015) Investigational drugs for visceral leishmaniasis. Expert Opin Investig Drugs 24:43–59

    CAS  PubMed  Google Scholar 

  • Verma A, Saraf SK (2008) 4-Thiazolidinone and a biologically active scaffold. Eur J Med Chem 43:897–905

    CAS  PubMed  Google Scholar 

  • World and Health Organization (WHO) (2020) Leishmaniasis Fact Sheet, http://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis, Accessed 10 May 2020

  • Yamamoto ES et al. (2015) The effect of ursolic acid on Leishmania (Leishmania) amazonensis is related to programmed cell death and presents therapeutic potential in experimental cutaneous leishmaniasis. PLoS ONE 10:e0144946

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Gabriel Gazzoni and Jana Sandes for the scientific and operational support provided. This work has been carried out with the support of the Co-ordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES) and Oswaldo Cruz Foundation (Fiocruz-Pernambuco)—Brazil.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) and PROEP FIOCRUZ/CNPq, process number 400629/2019-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Marques Queiroz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz, C.M., de Oliveira Filho, G.B., Espíndola, J.W.P. et al. Thiosemicarbazone and thiazole: in vitro evaluation of leishmanicidal and ultrastructural activity on Leishmania infantum. Med Chem Res 29, 2050–2065 (2020). https://doi.org/10.1007/s00044-020-02619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02619-z

Keywords

Navigation