Skip to main content
Log in

QSAR and pharmacophore analysis of thiosemicarbazone derivatives as ribonucleotide reductase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of α-N-heterocyclic carboxaldehyde thiosemicarbazones derivatives exhibit anticancer activity by inhibiting ribonucleotide reductase (RNR) enzyme was considered for the present computational study. The validated quantitative structure activity relationship (QSAR) models constructed with vsurf (HB7, WP7 and DW23) and molar refractivity (SMR_VSA5) descriptors yielded the cross-validated correlation coefficient of >0.6, shows that the models have sufficient predictive ability. The SMR_VSA5 descriptor is the main contributor for the activity prediction in all models, which measure the steric factors and bulkiness of the given molecules. The negative contribution of the molar refractivity descriptor shows that the molecular volume should be low with its polar properties. The vsurf descriptors are dependent on the structure connectivity and conformation (dimensions are measured in Å) which are useful in surface property prediction. The vsurf descriptors reveal that the surface polarity, hydrogen bond donor properties and hydrophilic contact surface of the molecules are important for the activity. The pharmacophore analysis results obtained from this study shows that the distance between the aromatic/hydrophobic and the PiN sites to the H-bond donor and acceptor groups should be connected with almost the same distance for significant RNR inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander G, Alexander T (2002) Beware of Q2. J Mol Graphs Model 20:269–276

    Article  Google Scholar 

  • Balaji S, Karthikeyan C, Moorthy NSHN, Trivedi P (2004) QSAR modelling of HIV-1 reverse transcriptase inhibition by benzoxazinones using a combination of P_VSA and pharmacophore feature descriptors. Bioorg Med Chem Lett 14:6089–6094

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira NMFSA, Pereira S, Fernandes PA, Ramos MJ (2005) Overview of ribonucleotide reductase inhibitors: an appealing target in anti-tumour therapy. Curr Med Chem 12(11):1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira NMFSA, Fernandes PA, Ramos MJ (2006) Enzyme ribonucleotide reductase: unraveling an enigmatic paradigm of enzyme inhibition by furanone derivatives. J Phys Chem B 110(42):21272–21281

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira NMFSA, Fernandes PA, Ramos MJ (2007a) Ribonucleotide reductase: a critical enzyme for cancer chemotherapy and antiviral agents. Recent Pat Anticancer Drug Discov 2:11–29

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira NMFSA, Fernandes PA, Ramos MJ (2007b) Understanding ribonucleotide reductase inactivation by gemcitabine. Chem Eur J 13(30):8507–8515

    Article  PubMed  CAS  Google Scholar 

  • Cook RD (1979) Influential observation in linear regression. J Am Stat Assoc 74(365):169–174

    Google Scholar 

  • Cruciani G, Crivori P, Carrupt PA, Testa B (2000a) Molecular fields in quantitative structure permeation relationships: the Volsurf approach. J Mol Struct: Theochem 503(1–2):17–30

    Article  CAS  Google Scholar 

  • Cruciani G, Pastor M, Guba W (2000b) Volsurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 11(2):S29–S39

    Article  PubMed  CAS  Google Scholar 

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression. I. Biometrika 37:409–428

    CAS  Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression II. Biometrika 38:159–179

    PubMed  CAS  Google Scholar 

  • Fernandes PA, Ramos MJ (2003) Theoretical studies on the mechanism of Inhibition of ribonucleotide reductase by (E)-2′-fluromethylene-2′-deoxycitidine-5′-diphosphate. J Am Chem Soc 125(20):6311–6322

    Article  PubMed  CAS  Google Scholar 

  • Finch RA, Liu M, Grill SP, Rose WC, Loomis R, Vasquez KM, Cheng Y, Sartorelli AC (2000) Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone): a potent inhibitor of ribonucleotide reductase activity with broad- spectrum antitumor activity. Biochem Pharmacol 59:983–991

    Article  PubMed  CAS  Google Scholar 

  • Ishiki HM, do Amaral AT (2009) Three-dimensional quantitative structure activity relationship study of antitumor 2-formylpyridine thiosemicarbazones derivatives as inhibitors of ribonucleotide reductase. QSAR Comb Sci 28:1334–1345

    Article  CAS  Google Scholar 

  • Kolberg M, Strand KR, Graff P, Andersson KK (2004) Structure, function and mechanism of ribonucleotide reductases. Biochimica et Biophysica Acta (BBA) Proteins Proteomics 1699(1–2):1–34

    CAS  Google Scholar 

  • Krishnan K, Prathiba K, Jayaprakash V, Basu A, Nibha M, Zhou B, Hu S, Yen Y (2008) Synthesis and ribonucleotide reductase inhibitory activity of thiosemicarbazone. Bioorg Med Chem Lett 18:6248–6250

    Article  PubMed  CAS  Google Scholar 

  • Lin A (2002) QuaSAR-descriptors. J Chem Comput Group. http://www.chemcomp.com/Journal_of_CCG/Features/descr.htm

  • MOE 2007.02 Chemical Computing Group Inc., Montreal, H3A 2R7 Canada, http://www.chemcomp.com

  • Navarra P, Preziosi P (1999) Hydroxyurea: new insights on an old drug. Crit Rev Oncol Hematol 29:249–255

    Article  PubMed  CAS  Google Scholar 

  • Norlund P, Reichard P (2006) Ribonucleotide reductase. Annu Rev Biochem 75:681–706

    Article  Google Scholar 

  • Radivoyevitch T, Kashlan OB, Cooperman BS (2005) Rational polynomial representation of ribonucleotide reductase activity. BMC Biochem 6:8

    Article  PubMed  Google Scholar 

  • Raichurkar AV, Kulkarni VM (2003) Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA. J Med Chem 46:4419–4427

    Article  PubMed  CAS  Google Scholar 

  • Ren S, Wang R, Komatsu K, Bonaz-Krause P, Zyrianov Y, McKenna EE, Csipke C, Tokes ZA, Lien EJ (2002) Synthesis, biological evaluation and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J Med Chem 45:410–419

    Article  PubMed  CAS  Google Scholar 

  • Robert MO (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • Shao J, Zhou B, Chu B, Yen Y (2006) Ribonucleotide reductase inhibitors and future drug design. Curr Cancer Drug Targets 6:409–431

    Article  PubMed  CAS  Google Scholar 

  • Statistica 8.0 statistical software (2008) StatSoft, Inc, Tulsa, OK, USA

  • Szekeres T, Fritzer-Szekeres M, Elford HL (1997) The enzyme ribonucleotide reductase: target for antitumor and anti-HIV therapy. Crit Rev Clin Lab Sci 34:503–528

    Article  PubMed  CAS  Google Scholar 

  • Tsimberidou AM, Alvarado Y, Giles FJ (2002) Evolving role of ribonucleoside reductase inhibitors in hematologic malignancies. Expert Rev Anticancer Ther 2:437–448

    Article  PubMed  CAS  Google Scholar 

  • Wildman SA, Crippen GM (1999) Prediction of physiochemical parameters by atomic contributions. J Chem Inf Comput Sci 39(5):868–873

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors (N.S.H.N. Moorthy) gratefully acknowledges the Foundation of Science and Technology (FCT), Portugal for Postdoctoral Grant (SFRH/BPD/44469/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Hari Narayana Moorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moorthy, N.S.H.N., Cerqueira, N.M.F.S.A., Ramos, M.J. et al. QSAR and pharmacophore analysis of thiosemicarbazone derivatives as ribonucleotide reductase inhibitors. Med Chem Res 21, 739–746 (2012). https://doi.org/10.1007/s00044-011-9580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9580-x

Keywords

Navigation