Skip to main content
Log in

Nutrient uptake and macroinvertebrate community structure in a highly regulated Mediterranean stream receiving treated wastewater

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Streamflow augmentation with treated wastewater has been suggested as a strategy for increasing flow in streams, but at the same time, concern has been raised regarding the possible deterioration of water quality. In this study, the spatial and temporal distributions of nutrient uptake rates and macroinvertebrates were measured in a Mediterranean lowland stream (Yarqon, Israel), upstream and downstream of treated wastewater input. Over the last decade, the average downstream reach’s nutrient demand, depicted as the uptake velocities of NH4 +–N, NO3 –N, and PO4 3−–P, increased by factors of 50, 10, and 6, respectively. The decrease in the ambient concentration of NH4 +–N, from an average of 39 to 2.8 mg L−1 after upgrading the effluent quality, was the main reason for the observed improvements in uptake velocities. Nevertheless, the uptake length in the Yarqon Stream after the improvement in the quality of the treated wastewater was improved only for NH4 +–N, and deteriorated for NO3 –N, and PO4 3−–P. Following the improvement in water quality, the uptake velocities and the macroinvertebrate communities in the downstream section are currently not significantly different from those in the upstream section. The macroinvertebrate assemblage structure reveals that tolerant taxa dominate the stream, and the increase of the taxa richness in the downstream section is attributed to rare and more sensitive taxa that recolonized this section following water quality improvement. The results suggest that improving the quality of the treated wastewater that is used for stream flow augmentation can have a positive effect on nutrient uptake velocities and macroinvertebrate assemblage structure. However, further ecological and economical cost-benefit analysis is needed to evaluate the feasibility of using treated wastewater augmentation for Mediterranean stream restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA (1998) Standard Methods for the examination of water and wastewater, 20th edn. United Book Press, Baltimore

    Google Scholar 

  • Arce MI, Schiller D, Gómez R (2014) Variation in nitrate uptake and denitrification rates across a salinity gradient in Mediterranean semiarid streams. Aquat Sci 76:295–311. doi:10.1007/s00027-014-0336-9

    Article  CAS  Google Scholar 

  • Barbour M, Gerritsen J, Snyder B, Stribling J (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. EPA 841-B-99-002. US Environmental Protection Agency, Office of Water, Washington, D.C

  • Beisel J, Usseglio-polatera P, Thomas S, Moreteau J (1998) Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389:73–88

    Article  Google Scholar 

  • Bernal S, von Schiller D, Martí E, Sabater F (2012) In-stream net uptake regulates inorganic nitrogen export from catchments under base flow conditions. J Geophys Res 117:1–10. doi:10.1029/2012JG001985

    Google Scholar 

  • Bernot MJ, Tank JL, Royer TV, David MB (2006) Nutrient uptake in streams draining agricultural catchments of the midwestern United States. Freshw Biol 51:499–509. doi:10.1111/j.1365-2427.2006.01508.x

    Article  CAS  Google Scholar 

  • Bixio D, Thoeye C, De Koning J et al (2006) Wastewater reuse in Europe. Desalination 187:89–101. doi:10.1016/j.desal.2005.04.070

    Article  CAS  Google Scholar 

  • Brooks BW, Riley TM, Taylor RD (2006) Water quality of effluent-dominated ecosystems: ecotoxicological, hydrological, and management considerations. Hydrobiologia 556:365–379. doi:10.1007/s10750-004-0189-7

    Article  CAS  Google Scholar 

  • Buendia C, Gibbins C, Vericat D et al (2013) Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecol Indic 25:184–196. doi:10.1016/j.ecolind.2012.09.027

    Article  Google Scholar 

  • Cairns J, Pratt JR (1993) A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring benthic macroinvertebrates. Chapman & Hall, New York, pp 195–233

    Google Scholar 

  • Carey RO, Migliaccio KW (2009) Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review. Environ Manage 44:205–217. doi:10.1007/s00267-009-9309-5

    Article  PubMed  Google Scholar 

  • Cobelas MA, Rojo C, Angeler DG (2005) Mediterranean limnology: current status, gaps and the future. J Limnol 64:13–29

    Article  Google Scholar 

  • Coimbra CN, Graça MA, Cortes RM (1996) The effects of a basic effluent on macroinvertebrate community structure in a temporary Mediterranean river. Environ Pollut 94:301–307

    Article  CAS  PubMed  Google Scholar 

  • Comas J, Llorens E, Poch M, Markakis G, Battin T, Gafny S, Maneux E, Marti E, Morais M, Puig MA, Pusch M, Riera JL, Sabater F, Solimini AG, Vervier P (2002) The STREAMES Project: linking heuristic and empirical knowledge into an expert system to assess stream managers. In: Rizzoli AE, Jakeman AJ (eds) Integrated assessment and decision support. The National Environmental Modeling and Software Society, Como, Italy, pp 444–449

  • Connolly NM, Crossland MR, Pearson RG (2004) Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. J N Am Benthol Soc 23:251–270. doi:10.1899/0887-3593(2004)023<0251:EOLDOO>2.0.CO;2

    Article  Google Scholar 

  • Covino TP, Mcglynn BL, Mcnamara RA (2010) Tracer additions for spiraling curve characterization (TASCC): quantifying stream nutrient uptake kinetics from ambient to saturation. Limnol Oceanogr Meth 8:484–498

    Article  CAS  Google Scholar 

  • Death RG (2010) Disturbance and riverine benthic communities: what has it contributed to general ecological theory? River Res Appl 25:15–25. doi:10.1002/rra

    Article  Google Scholar 

  • Dewson ZS, James ABW, Death RG (2007) A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J N Am Benthol Soc 26:401–415. doi:10.1899/06-110.1

    Article  Google Scholar 

  • Dodds WK, Evans-White MA, Gerlanc NM et al (2000) Quantification of the nitrogen cycle in a Prairie stream. Ecosystems 3:574–589

    Article  CAS  Google Scholar 

  • Dufour S, Piegay H (2009) From the myth of a lost paradise to targeted river restoration: forget natural references and focus on human benefits. River Res Appl 25:568–581. doi:10.1002/rra

    Article  Google Scholar 

  • Earl SR, Valett MH, Webster JR (2006) Nitrogen saturation instream ecosystems. Ecology 87:3140–3151

    Article  PubMed  Google Scholar 

  • Ensign SH, Doyle MW (2006) Nutrient spiraling in streams and river networks. J Geophys Res Biogeosci 111:G04009. doi:10.1029/2005JG000114

    Article  Google Scholar 

  • Feld CK, Birk S, Bradley DC et al (2011) From natural to degraded rivers and back again: a test of restoration ecology theory and practice. Adv Ecol Res 44:119–209. doi:10.1016/B978-0-12-374794-5.00003-1

    Article  Google Scholar 

  • Ferree MA, Shannon RD (2001) Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Res 35:1–6

    Article  Google Scholar 

  • Fontaine B, Bouchet P, Vanachterberg K et al (2007) The European union’s 2010 target: putting rare species in focus. Biol Conserv 139:167–185. doi:10.1016/j.biocon.2007.06.012

    Article  Google Scholar 

  • Gafny S (2005) The springs of Yavne’el stream. Report submitted to the Reserves and Parks Authority, p 272 (in Hebrew)

  • Gafny S, Gasith A (2005) Rainpools in Israel. Report submitted to the Reserves and Parks Authority, p 34 (in Hebrew)

  • Gafny S, Goren M, Gasith A (2000) Habitat condition and fish assemblage structure in a coastal Mediterranean stream (Yarqon, Israel) receiving domestic effluent. Hydrobiologia 422(423):319–330

    Article  Google Scholar 

  • Gafny S, Taub M, Goren M (2008) The effect of recreation activity in the Hula Valley on fish and invertebrate assemblages, with emphasis on trampling and sailing activities in various substrates and water velocities. Report submitted to the (NPA), p 34 (in Hebrew)

  • Haggard BE, Stanley EH, Storm DE (2005) Nutrient retention in a point-source-enriched stream. J N Am Benthol Soc 24:29–47

    Article  Google Scholar 

  • Halaburka BJ, Lawrence JE, Bischel HN, Hsiao J, Plumlee MH, Resh VH, Luthy RG (2013) Economic and ecological costs and benefits of stream flow augmentation using recycled water in a California coastal stream. Environ Sci Technol 47: 10735–10743

    Article  CAS  PubMed  Google Scholar 

  • Haslam SM (1994) River pollution: an ecological perspective. John Wiley & Sons, NY

    Google Scholar 

  • Hering D, Borja A, Carvalho L, Feld CK (2013) Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia 704:1–9. doi:10.1007/s10750-012-1438-9

    Article  Google Scholar 

  • Hershkowitz Y (2002) The use of macroinvertebrate community for biomonitoring streams in Israel: the Yarqon stream as model. PhD thesis, p 103

  • Howarth RW, Billen G, Swaney D et al (1996) Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139

    Article  CAS  Google Scholar 

  • Kaller MD, Kelso WE (2006) Association of macroinvertebrate assemblages with dissolved oxygen concentration and wood surface area in selected subtropical streams of the southeastern USA. Aquat Ecol 41:95–110. doi:10.1007/s10452-006-9046-2

    Article  Google Scholar 

  • Karr J, Chu E (1999) Restoring life in running waters: better biological monitoring. Covelo, California

    Google Scholar 

  • Karr J, Chu E (2000) Sustaining living rivers. Hydrobiologia 422(423):1–14

    Article  Google Scholar 

  • Keizer-Vlek HE, Verdonschot PFM, Verdonschot RCM, Goedhart PW (2012) Quantifying spatial and temporal variability of macroinvertebrate metrics. Ecol Indic 23:384–393. doi:10.1016/j.ecolind.2012.04.025

    Article  Google Scholar 

  • Kemp MJ, Dodds WK (2002) The influence of ammonium, nitrate, and dissolved oxygen concentrations on uptake, nitrification, and denitrification rates associated with prairie stream substrata. Limnol Oceanogr 47:1380–1393

    Article  CAS  Google Scholar 

  • Kugler Y (1985) Insects. In: Alon A (ed) Plants and Animals of the Land of Israel, vol. 3, p 446

  • Lecerf A, Richardson JS (2010) Biodiversity-ecosystem function research: insights gained from streams. River Res Applic 54:45–54. doi:10.1002/rra.1286

    Article  Google Scholar 

  • Lenat DR (1988) Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J N Am Benthol Soc 7:222–233

    Article  Google Scholar 

  • Ligeiro R, Hughes RM, Kaufmann PR et al (2013) Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecol Indic 25:45–57. doi:10.1016/j.ecolind.2012.09.004

    Article  Google Scholar 

  • López-Doval JC, Ginebreda A, Caquet T et al (2012) Pollution in mediterranean-climate rivers. Hydrobiologia. doi:10.1007/s10750-012-1369-5

    Google Scholar 

  • Marti E, Sabater F (1996) High variability in temporal and spatial nutrient retention in Mediterranean streams. Ecology 77:854–869

    Article  Google Scholar 

  • Marti E, Aumatell J, Gode L et al (2004) Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J Environ Qual 33:285–293

    Article  CAS  PubMed  Google Scholar 

  • Mason CF (1996) Biology of freshwater pollution, 3rd edn. Longman, Harlow, p 356

  • Menezes S, Baird DJ, Soares AMVM (2010) Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J Appl Ecol 47:711–719. doi:10.1111/j.1365-2664.2010.01819.x

    Article  Google Scholar 

  • Merseburger GC, Marti E, Sabater F (2005) Net changes in nutrient concentrations below a point source input in two streams draining catchments with contrasting land uses. Sci Total Environ 347:217–229. doi:10.1016/j.scitotenv.2004.12.022

    Article  CAS  PubMed  Google Scholar 

  • Merseburger G, Marti E, Sabater F, Ortiz JD (2011) Point-source effects on N and P uptake in a forested and an agricultural Mediterranean streams. Sci Total Environ 409:957–967. doi:10.1016/j.scitotenv.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  • Mulholland PJ, Tank JL, Webster JR et al (2002) Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study. J N Am Benthol Soc 21:544–560

    Article  Google Scholar 

  • Newbold JD, Elwood JW, O’Neill RV, Van Winkle W (1981) Measuring nutrient spiralling in streams. Can J Fish Aquat Sci 38:860–863. doi:10.1139/f81-114

    Article  Google Scholar 

  • O’Brien JM, Dodds WK (2008) Ammonium uptake and mineralization in prairie streams: chamber incubation and short-term nutrient addition experiments. Freshw Biol 53:102–112. doi:10.1111/j.1365-2427.2007.01870.x

    Google Scholar 

  • Payn RA, Webster JR, Mulholland PJ et al (2005) Estimation of stream nutrient uptake from nutrient addition experiments. Limnol Oceanogr Meth 3:174–182

    Article  CAS  Google Scholar 

  • Pennak RW (1978) Fresh-water invertebrates of the United States. John Wiley and Sons Inc., Toronto, p 803

    Google Scholar 

  • Plumlee MH, Gurr CJ, Reinhard M (2012) Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds. Sci Total Environ 438:541–548. doi:10.1016/j.scitotenv.2012.08.062

    Article  CAS  PubMed  Google Scholar 

  • Rabinski I (2007) Effect of point source pollution and related environmental conditions on the structure of fine sediment invertebrate and benthic algae communities in the Yarqon River. MSc thesis, Tel-Aviv University

  • Rakocinski CF (2012) Evaluating macrobenthic process indicators in relation to organic enrichment and hypoxia. Ecol Indic 13:1–12. doi:10.1016/j.ecolind.2011.04.031

    Article  CAS  Google Scholar 

  • Reice SR, Wohlenberg M (1993) Monitoring freshwater benthic macroinvertebrates and benthic processes: measures for assessment of ecosystem health. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring benthic macroinvertebrates. Chapman & Hall, New York, pp 287–305

    Google Scholar 

  • Samocha M (1972) Ephemeroptera of Israel. M.Sc. Thesis, Tel–Aviv University, p 111

  • Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van Drecht G, Dumont E, Fekete BM, Garnier J, Harrison JA (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cycles 24:GB0A08. doi:10.1029/2009GB003587

    Google Scholar 

  • Singer A (2007) The soils of Israel. Springer, Berlin

    Google Scholar 

  • Skoulikidis NT, Vardakas L, Karaouzas I et al (2011) Assessing water stress in Mediterranean lotic systems: insights from an artificially intermittent river in Greece. Aquat Sci 73:581–597. doi:10.1007/s00027-011-0228-1

    Article  Google Scholar 

  • Solimini AG, Gulia P, Monfrinotti M, Carchini G (2000) Performance of different biotic indices and sampling methods in assessing water quality in the lowland stretch of the Tiber River. Hydrobiologia 422/423:197–208

    Article  CAS  Google Scholar 

  • Stream Solute Workshop (1990) Concepts and methods for assessing solute dynamics in stream ecosystems—concepts and methods for assessing solute dynamics in stream ecosystems. J N Am Benthol Soc 9:95–119

    Article  Google Scholar 

  • Sundermann A, Gerhardt M, Kappes H, Haase P (2013) Stressor prioritisation in riverine ecosystems: which environmental factors shape benthic invertebrate assemblage metrics? Ecol Indic 27:83–96. doi:10.1016/j.ecolind.2012.12.003

    Article  Google Scholar 

  • Tal A (2006) Seeking sustainability: Israel’s evolving water management strategy. Science 313:1081–1084. doi:10.1126/science.1126011

    Article  CAS  PubMed  Google Scholar 

  • Von Schiller D, Marti E, Riera JL et al (2008) Inter-annual, annual, and seasonal variation of P and N retention in a perennial and an intermittent stream. Ecosystems 11:670–687. doi:10.1007/s10021-008-9150-3

    Article  Google Scholar 

  • Wallace JB (1990) Recovery of lotic macroinvertebrate communities from disturbance. Environ Manage 14:605–620. doi:10.1007/BF02394712

    Article  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP II (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24:706–723

    Article  Google Scholar 

  • Webster JR, Mulholland PJ, Tank JL et al (2003) Factors affecting ammonium uptake in streams—an inter-biome perspective. Freshw Biol 48:1329–1352

    Article  CAS  Google Scholar 

  • Yates AG, Bailey RC (2011) Effects of taxonomic group, spatial scale and descriptor on the relationship between human activity and stream biota. Ecol Indic 11:759–771. doi:10.1016/j.ecolind.2010.09.003

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by generous funding from the Ellis Goodman Family Foundation, by the European Commission FP5 project STREAMES (EVK1-CT-2000-00081), and by the Yarqon River Authority. We thank Dr. Gitay Yahel for help with the macroinvertebrate statistical analysis, and Dr. David Pargament, Jonathan Raz, and Philip Rubinzaft from the Yarqon River Authority and Irina Rabinski and Natasha Segal for technical assistance in the field and laboratory and for helpful discussions. We also thank two anonymous reviewers and the editor for providing constructive comments that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai Arnon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnon, S., Avni, N. & Gafny, S. Nutrient uptake and macroinvertebrate community structure in a highly regulated Mediterranean stream receiving treated wastewater. Aquat Sci 77, 623–637 (2015). https://doi.org/10.1007/s00027-015-0407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0407-6

Keywords

Navigation