Skip to main content
Log in

Physical and Mechanical Properties of Serpentinized Ultrabasic Rocks in NW Turkey

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Serpentinized ultrabasic rocks crop out at various places in the northwestern part of Turkey. They are the foundation rocks of some architecture and the ground under road bases in many areas. They are also frequently used for indoor work such as tables, shafts, pilasters, jambs for chimney pieces and ornaments of different kinds. Owing to their economic importance, in situ geophysical and geotechnical studies were conducted to determine their dynamic engineering parameters such as: P- and S-wave velocities, Poisson’s ratio, rigidity modulus, elasticity modulus, bulk modulus, natural period, safe bearing capacity, and bearing coefficient. Geophysical and geotechnical laboratory tests were performed on cylindrical specimens cored across and along the foliation planes: ultrasonic measurements of compressional pulse velocity (UPV), uniaxial compressive strength (UCS), point load index (Is(50)), and static elasticity modulus (Es); effective porosity (n), dry unit weight (DUW), and saturated unit weight (ϒs) sets of the rock specimens were determined. Finally, statistical correlations were performed by regression analysis to evaluate the relationships between UCS and Is(50), UPV, Es; UPV and Is(50), DUW, ϒs, n, and Es.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arik, F., Aydin, U. (2011), Mineralogical and Petrographical characteristics of the Aladag skarn deposit (Ezine/Canakkale-West Turkey), Scientific Research and Wasays. 6(3), 592–606.

  • ASTM (2002), D 3148 Standard Test Method for Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression.

  • ASTM (2008), ASTM D4543-08, Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and verifying Conformance to Dimensional and Shape Tolerances.

  • ASTM (2010), ASTM D7012-10, Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core specimens under varying States of Stress and Temperatures.

  • ASTM (2001), Standard practice for preparing rock core specimens and determining dimensional and shape tolerances. American Society for Testing and Materials. D4543.

  • ASTM (2008), D5731-08, Standard test method for the determination of the point load strength index of rock and Application to Rock Strength Classification.

  • Beceletto, L., Jenny, C. (2004), Geology and Correlation of the Ezine Zone: A Rhodope Fragment in NW Turkey. J. Earth Sci. (Turkish J. Earth Sci.), 13, 145–176.

  • Bieniawski, Z.T. (1975), Point load test in geotechnical practice. Eng Geol. 9(1), 1–11.

  • Bilgin, I. (1999), Ezine (Çanakkale ofiyoliti) metamorfitlerinin jeolojisi, Phd. Thesis. Istanbul Univ. Fen Bil. 156.

  • Bingöl, E., Akyürek, B. ve Korkmazer, B.(1973), Biga Yarımadası’nın Jeolojisi ve Karakaya formasyonunun bazı özellikleri, Cumhuriyetin 50. yılı Yerbilimleri Kongresi Tebligleri kitabı, 70–76.

  • Broch, E., Franklin, J.A. (1972), Point-load strength test, Int J Rock Mech Min Sci. 9(6), 669–97.

  • Cargill, J.S., Shakoor, A.(1990). Evaluation of empirical methods for measuring the uniaxial compressive strength, Int J Rock Mech Min Sci. 27, 495–503.

  • Castagna, J.P., Batzle, M.L., Eastwood, R.L. (1985), Relationships between compressional-wave and shear wave velocities in clastic silicate rocks, Geophysics. 50, 571–581.

  • Chary, K.B., Sarma, L.P., Prasanna Lakshmi, K.J., Vijayakumar, N.A., Naga Lakshmi, V., and Rao M.V.M.S., (2006), Evaluation of Engineering properties of rock using ultrasonic pulse velocity and uniaxial compressive strength, Proc. National seminar on Non-Destructive Evaluation, Dec.7–9, Hyderabad, 379–385.

  • Chau, K.T. and Wong, R.H.C.. (1996), Uniaxial Compressive Strength and Point Load Strength of Rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33, 2, 183–188.

  • Chirstensen, N.I. (2004), Serpentinites, peridodites, and Seismology. Nt. Geol. Rev. 46, 795–815.

  • Courtier, A., Hart, D., Chiristensen,. N.I. (2004), Seismic properties of leg 195 serpentinites and their geophysical implications, Proc. Ocean Drill. Program Sci. Results 195.

  • D’Andrea, D.V., Fisher, R.L., Fogelson, D.E. (1964), US department of the interior. Bureau of Mines. Report of Investigations. 6702, 1–23.

  • D’Andrea, D.V., Fisher, RL. and Fogelson, DE. (1964), Prediction of compression strength from other rock properties, Colo Sch Mines Q, 59(4B), 623–40.

  • Diamantis, K., Gartzos, E., Migiros, G. et al. (2009), Study on uniaxial compressive sterngth. point load strength index. Dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Engineering Geology, 108, 199–207.

  • Feddock, J., Waters, P., Padgett, P., Unrug, K., and Popp, J. (2003). Determination of Rock Strength Properties Using Geophysical and Ultrasonic Logging in Exploration Drill Holes, Proceedings of the 22nd International Ground Control in Mining Conference, Morgantown, WV, 157–161.

  • Forster, IR. (1983), The influence of core sample geometry on the axial point-load test, Int J Rock Mech Min Sci 20, 291–295.

  • Gardner, G.H.F., Gardner, L.W., Gregory, A.R. (1974), Formation velocity and density, the diagnostic basis for stratigraphy. Geophysics 39, 770–780.

  • General directorate of Mineral Research and Exploration (2005), Geological map of Ayvalık i16 and j16 quadrangles.

  • Ghosh, D.K. and M., Srivastava, M. (1991), Point-load strength: An index for classification of rock material, Bulletin of Engineering Geology and the Environment. 44,1 27–33, doi:10.1007/BF02602707.

  • Goktan, R.M., Hydan, C. (1993), A suggested improvement to the Schmidt rebound hardness ISRM suggested method with particular reference to rock machineability, International Journal of Rock Mechanics and Mining Sciences, 30, 3, 321–326.

  • Gunsallus, KL. and Kulhawy, FH. (1984), A comparative evaluation of rock strength measures, Int J Rock Mech Min Sci v: 21, 233–48.

  • Hassani, FP, Scoble, MJ. and Whittaker, BN. (1980), Application of point load index test to strength determination of rock and proposals for new size-correction chart, In: Proceedings of the 21st US Symposium on Rock Mechanics. Rolla, 543–564.

  • Hamilton, L. (1978), Sound velocity density relations in sea floor sediment, J Acoustic Soc am 63, 366–377.

  • Helvatjoglu M.-Antoniadesa, Y. Papadogiannis, Y., Lakes, R.S., Dionysopoulos, P., Papadogiannis D. (2006), Dynamic and static elastic moduli of packable and flowable composite resins and their development after initial photo curing, Dental Materials, 22, 450–459.

  • Hoek, E. and Brown, E. T. (1980), Empirical strength criterion for rock masses, J. Geotech. Eng. Div. 106(GT9), 1013–1035.

  • ISRM. (2007), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, (Ulusay, R. and Hudson, J.A., Editors), Kozan Ofset Matbaacılık. Ankara.

  • Kahraman, S. (2001), Evaluation of simple methods for assessing the uniaxial compressive strength of rock, International Journal of Rock Mechanics and Mining Sciences, 38, 981–994.

  • Kahraman, S., Bilgin, N., Feridunoglu, C. (2003), Dominant rock properties affecting the penetration rate of percussive drills, International Journal of Rock Mechanics and Mining Sciences. 40, 711–723.

  • Kahraman, S., Yeken, T., (2008), Determination of physical properties of carbonate tocks from P-wave velocity, Bull. Engineering Geol Environ 67, 227–281.

  • Kalafatcıoglu, A. (1963), Ezine civarının ve Bozcaadanın jeolojisi. kalker ve serpantinlerin yaşı, MTA dergisi 60, 61–70.

  • Koumantakis, J. (1982), Compertement des peridotites et serpentinites de la Grece en travaux public. Leur propretes physiques et mechaniques. Bull. IAEG 25, 53–60.

  • Kurtulus, C. (2000), Sismik Yöntemlerle belirlenen Ampirik Taşıma gücü bağıntısı ve Uygulaması, Uygulamalı Yerbilimleri Dergisi KO.Ü. 1, 6, 51–59.

  • Kurtulus, C. (2002), Sismik Arama, Teori ve Uygulama, Kocaeli University Publications, 55.

  • Kurtulus, C., Sertcelik, F., Canbay,.M., Sertcelik, I.(2010), Estimation of Atterberg limits and bulk mass density of an expansive soil from P-wave velocity measurements, Bull Eng Geol Environ 69, 153–154.

  • Kurtulus, C., Irmak, T.S., Sertcelik, I.(2010), Physical and mechanical properties of Gokceada: Imbros (NE Aegean Sea) Island andesites, Bull Eng Geol Environ doi:10.1007/s10064-010-0270-6.

  • Koprubasi, N.(2007), Ust manto ergime proseslerinde platin grubu elementlerin davranisi, Phd thesis. Kocaeli Univ. Fen Bil. 171.

  • Marinos, P., and Hoek, E. (2001) Estimating the geological properties of heterogeneous rock masses such as flysch. Bulletin of Engineering Geology and Environment, 60, 85–92.

  • Marinos, P., Hook, E., Marinos, V. (2006), Variability of engineering properties of rock masses quantified by the geological strength index: The case of ophiolites with special emphasis on tunneling, Bull. Eng. Geol. Environ. 65, 129–142.

  • Morgan, N.A. (1969), Physical properties of marine sediments as related to seismic velocities, Geophysics 34, 529–545.

  • Okay, A.J., Siyako, M.A., Burkan, K.A. (1990), Geology and tectonic evolution of Biga Peninsula, Bull. Turk. Petrol. Geol. Assoc. 2/1, 83–121.

  • Okay, A.J., Satır, M., Maluski, H., Siyako, M, Moni, P., Metzger, R., Akyüz, S. (1996), Paleo-and Neotethyan events in northwest Turkey. In: Yin A, Harrison M(eds) Trctonics of Asia. Cambridge University Press, Cambridge, 420–441.

  • Paventi, M., Scoble, M., Stead, D. (1996), Characteristics of a complex serpentinised ultramafic rock mass at the Birchtree Mine. Manitoba. In: Mitri. H. Aubertin (Ed.), North American Rock Mechanics Symposium, Rotterdam, 339–346.

  • Rao, M.V.M.S. Ramana, Y.V. (1974), Dilatant behaviour of ultramafic rocks during fracture. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11. Pergamon press, 193–203.

  • Read, J.R.L., Thornten, P.N. and Regan W.M. (1980), A rational approach to the point load test, In: Proceedings Aust-N.Z.Geomechanics. 2, 35–9.

  • Stavrogin, A.N., Zaretskii-Feoktistov G.G., and Tanov G. N. (1984), Journal of Mining Science, 5, 343–350, doi: 10.1007/BF02498882.

  • Song, I., Suh, M., Woo Yong-Kyun, Hao T. (2004), Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements, Engineering Geology. 72, 293–308.

  • Shon, J.H. (1998), Physical properties of rocks: Fundamentals and principles of petrophysics, Elsevier. Oxford. 582.

  • Tepnarong, P. (2007), Estimation of triaxial compressive strength of rocks using modified point load testing, Rock Mechanics, Fuenkajorn and Phien-wej (eds).

  • Tezcan, S.S., Ozdemir, Z., Keçeli, A., Erkal, A. (2007), Zemin Emniyet Gerilmesinin Sismik Yöntem ile Belirlenmesi. CV-387, T.C. Süleyman Demirel Üniversitesi, 5’inci Yil Mühendislik Mimarlik Sempozyumu. 14-16 Kasim, Isparta.

  • Turgut, M., (2002), Ezine Bayramiç (Çanakkale) havzasının stratigrafisi ve tektonic özellikleri, Uygulamalı Yerbilimleri Dergisi. 2, 1, 99–111.

  • Yasar, E., Erdogan, Y. (2004). Correlation sound velocity with density, compressive strength and Young’s modulus of carbonate rocks, Int. J. Rock Mech. Min. Sci. 41, 871–875.

  • Youash, Y. (1970), Dynamic physical properties of rocks: Part 2. Experimental result, In: Proc. 2nd Congr. Int. Soc. Rock Mech. Beograd. 1, 185–195.

  • Vasconcelos, G., Loureço, P.B., Alves, C.S.A. and Pamplona, J. (2007), Prediction of the mechanical properties of granites by ultrasonic pulse velocity and Schmidt hammer hardness, North American Masonry Conference, June 3–6, St Louis, Missouri, USA, 980–991.

  • Wijk, G.(1980), The point load test for the tensile strength of rock, Geotechnical Testing; Journal, 3, 49–54.

  • Zacoeb, A., Ishibashi, K and Ito Y. (2006), Estimating the Compressive Strength of Drilled Concrete Cores by Point Load Testing. Proceeding of the 29th JCI Annual Meeting, Sendai, Japan. 525–530.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kurtulus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtulus, C., Bozkurt, A. & Endes, H. Physical and Mechanical Properties of Serpentinized Ultrabasic Rocks in NW Turkey. Pure Appl. Geophys. 169, 1205–1215 (2012). https://doi.org/10.1007/s00024-011-0394-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-011-0394-z

Keywords

Navigation