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Dispersion Relations in the Noncommutative φ3

and Wess–Zumino Model in the Yang–Feldman
Formalism

Claus Döscher and Jochen Zahn

Abstract. We study dispersion relations in the noncommutative φ3 and Wess–
Zumino model in the Yang–Feldman formalism at one-loop order. Nonplanar
graphs lead to a distortion of the dispersion relation. We find that the strength
of this effect is moderate if the scale of noncommutativity is identified with
the Planck scale and parameters typical for a Higgs field are employed. The
contribution of the nonplanar graphs is calculated rigorously using the frame-
work of oscillatory integrals.

1. Introduction

We discuss dispersion relations for quantum field theories on the noncommutative
Minkowski space, which is generated by coordinates qμ subject to the commutation
relations

[qμ, qν ] = iσμν .

Here σ is an antisymmetric matrix. Such commutation relations are motivated
from Gedanken experiments on limitations of the localization of experiments [11].
They are also obtained as a limit of open string theory in the presence of a con-
stant background B-field [35]. We emphasize that for the space-time uncertainty
relations derived in [11] it is crucial that σ is nondegenerate, in particular σ0i �= 0,
i.e., one has space/time noncommutativity. Thus, we focus on this case. We remark
that such a σ can not be obtained as a limit of string theory [36].

There are several inequivalent approaches to quantum field theory on the
noncommutative Minkowski space (NCQFT). In the modified Feynman rules orig-
inally proposed in [15] for both the noncommutative Euclidean and the Minkowski
space, one simply attaches a phase factor depending on the momenta, the so-called
twisting, to each vertex. In cases where the twistings do not cancel, one speaks
of a non-planar diagram. Then an oscillating phase remains in the loop integral.
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It is part of the folklore of NCQFT that this makes the loop integral convergent.
However, to the best of our knowledge, the precise meaning of these integrals
has never been stated. They are not absolutely convergent and are, with the ex-
ception of the tadpole, no Fourier transformations. It is one of the goals of this
paper to give a precise definition for such integrals. Furthermore, to the best of
our knowledge, all calculations in this approach were done in the Euclidean set-
ting. However, since there is no Osterwalder–Schrader theorem for field theories
on the noncommutative Minkowski space, the relation between calculations in the
Euclidean and the Lorentzian metric is obscure in the case of space/time noncom-
mutativity. In fact there are hints that if such a relation exists at all, it must be
quite complicated [4, p. 84 f.].

If one accepts the formal nature of the loop calculations and the transition
to the Euclidean signature, the picture is as follows: If k is the outer momentum
of a nonplanar loop, one can argue heuristically that an original f(Λ)-divergence,

where Λ is the UV cutoff, becomes regularized to f(
∣
∣(kσ)2

∣
∣
− 1

2 ). Thus, a UV-
divergence becomes an IR-divergence. This is the so-called UV-IR mixing first
discussed in [28]. In the case of space/time noncommutativity this approach leads
to a violation of unitarity [20]. In the case of space/space noncommutativity, some
general results, in particular a PCT theorem, were proven, see [2] and references
therein.

The Hamiltonian approach [11,24] leads to a unitary theory also in the case
of space/time noncommutativity. In some cases these theories are UV-finite [5,6].
However, in the case of space/time noncommutativity, the interacting field does,
at tree level, not fulfill the classical equations of motion [4, 22]. In the case of
electrodynamics, this leads to a violation of the Ward identity [31]1.

Another proposal is to consider Euclidean self-dual theories in the sense of [23]
by adding a confining potential. In this approach the renormalizability of the φ4-
model has been shown to all orders [21]. However, there is no indication that these
models are related to NCQFT on Minkowski spacetime.

Thus, the most promising approach to NCQFT in the case of space/time
noncommutativity is the Yang–Feldman approach [39]. It can also be employed in
situations where a Hamiltonian quantization is problematic. In particular, it was
used in the context of nonlocal field theories, see, e.g., [26, 29]. In the context of
NCQFT, it was first proposed in [7]. Here the UV-IR mixing manifests itself as a
distortion of the dispersion relation in the infrared. In the case of the φ4-model,
this effect has been shown to be very strong [8]. This is to be expected, since
the underlying UV-divergence is quadratic. Thus, it is natural to ask whether the
effects are weaker in theories that are only logarithmically divergent2. This is the

1In [22], a different time-ordering, with respect to light-cone coordinates was proposed. While
Feynman rules can be formulated quite elegantly in this setting, actual computations seem to be
rather involved.
2One has to bear in mind that it is not clear if the usual power counting arguments can be
applied in the Yang–Feldman approach, in particular in the presence of twisting factors. This
will become clearer in Section 3.
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aim of the present paper where we consider the φ3 and the Wess–Zumino model
at the one-loop level. It turns out that the effect is indeed quite weak if one uses
the Planck scale as the scale of noncommutativity and uses parameters typical for
a Higgs field. The contributions of the nonplanar graphs, which are made finite
by an oscillating factor, are treated in a rigorous way by the use of the theory of
oscillatory integrals [33]. To our knowledge this has not been done before.

A remark on the issue of Lorentz invariance is in order here. We will see
that the self-energy for an outer momentum k is of the form Σ(k2, (kσ)2). It is
thus invariant under Lorentz transformations if σ transforms as a tensor, as has
been proposed in [11]. Since the group velocity compares the energy of waves of
different wavelengths, observed from a fixed reference frame, it should be computed
for fixed σ. Thus, the dispersion relation can be distorted even though the theory
is invariant under a boost of the reference frame3. In the same context, one should
remark that we do not use the concept of twisted Poincaré invariance [30,41] here.
However, if the interaction term is given by the �-product and the interacting
field is defined via the the Yang–Feldman formalism, one would recover the results
presented here, cf. [41].

The noncommutative φ3-model has already been treated in [28, 32] in the
context of the modified Feynman rules, in [6] in a Hamiltonian setting, and in [19]
in the Euclidean self-dual setting.

The noncommutative Wess–Zumino model was first discussed in [17] for
space/space noncommutativity in the setting of the modified Feynman rules. It
was shown that the UV-IR mixing is much weaker as in the φ4-theory, so that the
theory is renormalizable to all orders.

The paper is organized as follows: In Section 2 we discuss how to com-
pute momentum-dependent mass and field strength renormalization in the Yang–
Feldman approach and to extract the corresponding group velocity. In Section 3
we apply this machinery to the noncommutative φ3-model at second order, i.e.,
for one loop. In particular, we compute the distortion of the group velocity for
parameters typical for a Higgs field. In Section 4 we treat the noncommutative
Wess–Zumino model, also at one-loop order. We show and discuss the fact that
the local SUSY current is not conserved in the interacting case. We also compute
the momentum dependent mass and field strength normalization and show that
the distortion of the group velocity is simply twice that of the φ3-case. The oscil-
lating integrals so far have only been calculated formally. A rigorous calculation
in the sense of oscillatory integrals is presented in Section 5. It turns out that the
formal results are indeed correct. We conclude with a summary and an outlook.

2. Dispersion relations in the Yang–Feldman formalism

We want to discuss how to compute (possibly momentum dependent) mass and
field strength renormalizations in the Yang–Feldman formalism. In this formalism,

3See also the discussion in [9], in particular the distinction between observer and particle Lorentz
transformations.
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the interacting field is recursively defined as a formal power series in the coupling
constant. As an example, we consider a commutative scalar theory and a localized
mass term as interaction, i.e., we have the equation of motion

(� + m2)φ(x) = −m̄2g(x)φ(x) ,

where g is a test function. Making the ansatz

φ =
∞∑

n=0

m̄2nφn

for the interacting field, this leads to the equations

(� + m2)φ0 = 0 ,

(� + m2)φn = −gφn−1 , n ≥ 1 .

Obviously, φ0 is a free field. We identify it with the incoming field. Then the higher
order terms are given recursively by

φn = ΔR × (gφn−1) , n ≥ 1 ,

where × denotes the convolution and ΔR the retarded propagator at mass m. We
define the observable

φ(f) =
∫

d4x f(x)φ(x) =
∫

d4k f̂(−k)φ̂(k) , (1)

where the hat denotes the Fourier transform. We are now interested in the Wight-
man two-point function

〈

φ(f)φ(h)
〉

(2)

of the interacting field. The vacuum state here is the vacuum state for the free
field φ0, i.e., in order to compute the above, one has to express φ solely in terms
of φ0 and then determine the vacuum expectation value. At zeroth order in m̄2,
we obtain the usual free two-point function

〈

φ0(f)φ0(h)
〉

= (2π)2
∫

d4k f̂(−k)ĥ(k)Δ̂+(k)

= 2π

∫

d4k f̂(−k)ĥ(k)θ(k0)δ(k2 − m2) . (3)

At first order in m̄2, we get
〈

φ1(f)φ0(h)
〉

+ 〈φ0(f)φ1(h)〉

= −(2π)2
∫

d4kd4l f̂(−k)ĥ(l)ĝ(k − l)
{

Δ̂R(k)Δ̂+(l) + Δ̂+(k)Δ̂A(l)
}

.

Here ΔA is the advanced propagator. It has been shown in [14] that, under quite
general assumptions, in the adiabatic limit g → 1, i.e., ĝ → (2π)2δ, this becomes

−2π

∫

d4k f̂(−k)ĥ(k)θ(k0)δ′(k2 − m2) . (4)
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Obviously, this can be interpreted as the first order term in an expansion of
Δ+(m2 + m̄2, · ) around m2, cf. (3).

When considering noncommutative field theories, the following changes have
to be made: Fields and test functions are now functions of the noncommuting
coordinates qμ, so that products are given by

f(q)h(q) = (2π)−4

∫

d4kd4l f̂(k)ĥ(l)e−ikqe−ilq

=
∫

d4k e−ikq

∫

d4l f̂(k − l)ĥ(l)e
i
2 kσl . (5)

Here f̂ denotes the Fourier transform of the Weyl symbol of f(q). Alternatively,
one could use functions of x and the Weyl–Moyal �-product. The integral (trace)
is defined as usual as ∫

d4q f(q) = (2π)2f̂(0) .

Then, analogously to (1), we have

φ(f) =
∫

d4q f(q)φ(q) =
∫

d4k f̂(−k)φ̂(k) .

The Yang–Feldman series can be set up exactly as before, i.e., φ0 is the free field
and for n ≥ 1, we have4

φn(q) =
∫

d4x ΔR(x)g(q − x)φn−1(q − x)

= (2π)−2

∫

d4k Δ̂R(k)e−ikq

∫

d4l ĝ(k − l)φ̂n−1(l)e
i
2 kσl .

It was shown in [14] that also in this case one obtains (4) as the first order contri-
bution to the two-point function in the adiabatic limit ĝ(k) → (2π)2δ(k).

2.1. Interactions

Now we consider truly interacting models. For simplicity we start with a scalar
field theory on the ordinary Minkowski space. The coupling constant is denoted
by λ. When computing the two-point function (2), one finds again (3) as the
zeroth order contribution. In the models discussed in this paper, there is no O(λ)
contribution5. At second order, one finds the three terms

〈

φ2(f)φ0(h)
〉

+
〈

φ0(f)φ2(h)
〉

+
〈

φ1(f)φ1(h)
〉

. (6)

4Here the infrared cutoff was implemented by multiplying the “interaction term” m̄2φ(q) in the
equation of motion with a “test function” g(q) from the left. One can also use more symmetric

products, for details see [14].
5In the φ3-model, the first order term φ1 is a product of two free fields φ0, cf. section 3. The

two-point function at first order is thus a vacuum expectation value of a product of three free

fields and vanishes. This is completely analogous to conventional quantization schemes. Of course
the discussion can be done for models with a first order contribution, e.g. φ4.
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As we will see later, the third term is a contribution to the continuous spectrum
and thus not interesting at the moment. In order to treat the first two terms, we
notice that in the models discussed here, φ2 is formally of the form

φ2 = (2π)−2ΔR ×
(

g
(

Σ̌ × (gφ0)
))

+ n.o. , (7)

where n.o. stands for a term that is normal ordered and whose spectrum has
no overlap with the positive or negative mass shell if the support of ĝ is chosen
small enough. Thus, this term drops out in the first two terms in (6). As shown
below, Σ̌ can be identified with the inverse Fourier transform of the self-energy. It
will in general be divergent and has to be renormalized, which we assume in the
following. Then the first term in (7) is quite similar to φ1 in the case of a mass
term as interaction. It is thus not very surprising that, using the same techniques
as in [14], one can show (for details see [13,40]) that in the adiabatic limit g → 1,
one obtains

−(2π)2
∫

d4k f̂(−k)ĥ(k)Σ(k)
∂

∂m2
Δ̂+(k) , (8)

for the first two terms in (6) under the condition that Σ(k) = Σ(−k) in a neighbor-
hood of the mass shell. Here Σ is the Fourier transform of Σ̌ and can be identified
with the self-energy. In the commutative case, Σ(k) is only a function of k2, and
(8) corresponds to a mass and field strength renormalization

δm2 = −λ2Σ(m2) ,

δZ = −λ2 ∂

∂k2
Σ(m2) .

In the noncommutative case, a rigorous adiabatic limit meets serious diffi-
culties because of UV-IR mixing effects. Intuitively, this can be understood as
follows: Because of the UV-IR mixing, an infrared cutoff is also an ultraviolet cut-
off. Hence, as long as the adiabatic limit is not carried out, there is no ultraviolet
divergence and thus no need for renormalization6. However, in the adiabatic limit,
the ultraviolet divergences show up again, so one would have to deal with ultra-
violet and infrared divergences at the same time. While this seems to be feasible
for logarithmically divergent models, it will be quite difficult in the general case.
For details we refer to [13, 40]. We thus take a pragmatic point of view and work
formally, i.e., without infrared cutoff. In analogy to (7), we write φ2 in the form

φ̂2(k) = (2π)2Δ̂R(k)Σ(k)φ̂0(k) + n.o.

and take this as an implicit definition of Σ (again, we assume Σ to be renormalized).
If then Σ(k) = Σ(−k) in a neighborhood of the mass shell, we use (8) as the sum
of the first two terms in (6). Now Σ(k) is in general not only a function of k2,

6In fact, this depends on the cutoff scheme. But for any reasonable cutoff scheme there are always
terms that are finite under the infrared cutoff, but diverge in the adiabatic limit.
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but also of (kσ)2. Thus, we obtain momentum-dependent mass and field strength
renormalizations:

δm2
(

(kσ)2
)

= −λ2Σ
(

m2, (kσ)2
)

, (9)

δZ
(

(kσ)2
)

= −λ2 ∂

∂k2
Σ

(

k2, (kσ)2
)

|k2=m2 . (10)

Remark 2.1. As suggested in [7], we do not subtract these terms (despite their
naming), since they are neither local, nor, in general, divergent. We remark, how-
ever, that such a subtraction has been proposed in [25].

2.2. The group velocity

The sum of the zeroth order term (3) and the second order contribution (8) can
be interpreted as the expansion (in λ) of

2π

∫

d4k f̂(−k)ĥ(k)θ(k0)δ
(

k2 − m2 + λ2Σ
(

k2, (kσ)2
))

+ O(λ4) . (11)

This can be interpreted as a change of the dispersion relation.

Remark 2.2. This modification of the dispersion relation is a manifestation of
the breaking of particle Lorentz invariance, cf. the discussion in the introduction.
However, particle Lorentz invariance of the asymptotic fields is a crucial ingredient
of scattering theory and the LSZ relations, which are part of the foundations of
quantum field theory. In this sense, the conceptual basis of the present approach
is rather shaky. In the following, we will take a phenomenological standpoint and
compute the distortion of the dispersion relation for different models in order to
check if they are realistic.

We now discuss how to extract the group velocity in the above setting.
From (11), and allowing for a finite local mass and field strength renormaliza-
tion, we get the dispersion relation

F (k) = k2 − m2 + λ2
(

Σ
(

k2, (kσ)2
)

− α + βk2
)

+ O(λ4) = 0 . (12)

For a given spatial momentum k we want to compute the corresponding k0 that
solves (12) as a formal power series in λ. We find

k0 = ωk − λ2 1
2ωk

(

Σ
(

m2, (k+σ)2
)

− α + βm2
)

+ O(λ4) . (13)

Note that in ωk =
√

|k|2 + m2 and k+ = (ωk,k) the bare mass m enters. The
group velocity is then given by

∇k0 =
k
ωk

+ λ2 k
2ω3

k

(

Σ
(

m2, (k+σ)2
)

− α + βm2
)

− λ2 1
2ωk

∇(k+σ)2
∂

∂(kσ)2
Σ

(

m2, (k+σ)2
)

+ O(λ4) .
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By comparison with (13), we get

∇k0 =
k
k0

− λ2∇(k+σ)2

2k0

∂

∂(kσ)2
Σ

(

m2, (k+σ)2
)

+ O(λ4) .

In order to make things more concrete, we choose a particular σ, namely,

σ = σ0 = λ2
nc

(
0 −

0

)

. (14)

Then we have
(kσ0)2 = −λ4

nc(k
2 + 2 |k⊥|2) (15)

with k⊥ = (k1, 0, k3). We also define k|| = (0, k2, 0). Thus, in the case σ = σ0, we
find

∇k0 =
k||
k0

+
k⊥
k0

(

1 + 2λ2λ4
nc

∂

∂(kσ)2
Σ

(

m2, (k+σ0)2
)
)

+ O(λ4) . (16)

Remark 2.3. This treatment differs slightly from the one given in [8]. There, Σ
is not Taylor expanded in λ. Then the argument of Σ in (16) is not restricted to
the mass m shell. It follows that by tuning α and β one can make the deviation
arbitrarily small, which is not possible here.

Remark 2.4. The modification of the dispersion relation can be interpreted as an
effect of the momentum-dependent mass renormalization (9), since λ2Σ in (16) can
be replaced by −δm2. The momentum-dependent field strength renormalization
(10), on the other hand, multiplies, in momentum space, the free propagators, in
particular the retarded propagator. In position space, this can be interpreted as a
smearing of the source, and thus as a non-local effect. In [40], this is explained in
more detail, and the effect is computed for the case of noncommutative supersym-
metric electrodynamics. In particular, it is shown that, surprisingly, the range of
this nonlocality is independent from the scale of noncommutativity.

3. The φ3-model

We now apply the above tools to the noncommutative φ3-model and compute the
momentum-dependent mass and field strength renormalization and the distortion
of the group velocity at second order. We start from the equation of motion

(� + m2)φ = λφ2 .

The Yang–Feldman ansatz φ =
∑

n λnφn, and the identification of φ0 with the
incoming field then leads to

φ1 = ΔR × (φ0φ0) ,

φ2 = ΔR × (φ1φ0 + φ0φ1) .

We substract the tadpole from the start, i.e., we use normal ordering and redefine

φ1 = ΔR × ( :φ0φ0:) .
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Now we want to compute the two-point function of the interacting field. At
zeroth order, we find the usual result (3). At first order, there is no contribution.
At second order, there are the three terms (6). We first focus on the sum of the
first two terms. As discussed in the previous section, we treat it by computing the
self-energy Σ(k). Performing the contractions in φ2, we obtain

φ̂2(k) = (2π)2Δ̂R(k)φ̂0(k)

×
∫

d4l Δ̂R(k − l)
{

Δ̂+(−l)
(

1 + e−ikσl
)

+ Δ̂+(l)(1 + eikσl)
}

+ n.o.

Thus, Σ is given by

Σ(k) =
∫

d4l Δ̂R(k − l)
{

Δ̂+(−l)(1 + e−ikσl) + Δ̂+(l)(1 + eikσl)
}

.

This can be split into a planar part not involving the phase factors and a nonplanar
part. The planar part is precisely half of the self-energy of the commutative φ3

model.
For the following consideration, it is important that we are only interested in

Σ(k) in a small neighborhood of the mass shell. But also the loop momentum l is
confined to the mass shell, so if (m− ε)2 < k2 < (m+ ε)2, then either (k− l)2 < ε2

or (k − l)2 > (2m − ε)2. Thus, the singularity of Δ̂R(k − l) is not met and the
iε-prescription does not matter: One may simply write

Δ̂R(k − l) = (2π)−2 −1
(k − l)2 − m2

= (2π)−2 −1
k2 − 2k · l .

We begin by discussing the planar part

Σpl(k) =
∫

d4l Δ̂R(k − l)
{

Δ̂+(−l) + Δ̂+(l)
}

. (17)

As usual, this expression is not well-defined. Because of the preceding remark, it is
straightforward to show that at least formally Σpl(k) = Σpl(−k) in a neighborhood
of the mass shell. It has been shown in [7] that

ΔR · (Δ+ + Δ−) = Δ2
F − Δ2

−

holds. Here Δ2
− is well-defined, while Δ2

F has the usual logarithmic divergence.
Alternatively, one may argue with the following formal calculation: Because of
Lorentz invariance, we may choose k = (k0,0). Then

Σpl(k) = − (2π)−3

∫
d3l

2ωl

(
1

k2
0 − 2k0ωl

+
1

k2
0 + 2k0ωl

)

= − 2(2π)−2

∫ ∞

0

dl
l2

ωl(k2
0 − 4ω2

l )
, (18)

which diverges logarithmically. We note that it is necessary to consider the sum of
the two terms in (17). The individual terms are linearly divergent. It is a priori not
clear if the same cancellation takes place in the presence of the twisting factors,
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i.e., in the nonplanar part. Hence, the validity of power counting arguments for
noncommutative field theories in the Yang–Feldman formalism is doubtful.

Finally, we remark that the field strength renormalization is finite. Using
(10), one computes

δZ = (2π)−2
3 − 2π√

3

12m2
. (19)

3.1. The nonplanar part

We now want to discuss the nonplanar part of Σ(k), i.e.,

Σnp(k) =
∫

d4l Δ̂+(l)eikσl
(

Δ̂R(k − l) + Δ̂R(k + l)
)

, (20)

for k in a neighborhood of the mass shell. In particular, we want to show that it
is finite and that Σnp(k) = Σnp(−k) there. Note that the above integral is neither
absolutely convergent nor a Fourier transformation (since k does not only appear
in the phase factor). In the following, we compute this integral in a formal way.
In Section 5 we show that (20) can be defined as an oscillatory integral and that
a calculation in this framework gives the same result as our formal calculation.

First of all we note that if Σnp(k) is well defined, then it is invariant under
the Lorentz transformation

k → kΛ , σ → Λ−1σΛT −1
.

Thus, instead of computing the above at k, σ we may compute it at k′ = kΛ, σ′ =
Λ−1σΛT −1. Since at the one-loop level we are only interested in Σnp(k) in a neigh-
borhood of the mass shell, we may choose k′ = (

√
k2,0). Since σ′ is antisymmetric,

k′σ′ has vanishing time component. We denote its spatial component by k′σ′. Then
we have

Σnp(k) = −(2π)−3

∫
d3l

2ωl

(

e−ik′σ′ · l

k2 − 2
√

k2ωl

+
e−ik′σ′ · l

k2 + 2
√

k2ωl

)

= −2(2π)−3

∫
d3l

2ωl

1
k2 − 4ω2

l

cos(k′σ′ · l)

= −2(2π)−2

∫ ∞

0

dl
l2

ωl(k2 − 4ω2
l )

sin l
√

−(kσ)2

l
√

−(kσ)2
. (21)

In the first step we used the the symmetry properties of the integrand. In the next
step we used (kσ)2 = (k′σ′)2 = − |(k′σ′)|2. Obviously, the integral is finite and
only a function of k2 and (kσ)2. Furthermore, Σnp(k) = Σnp(−k).

In order to estimate the strength of the distortion of the dispersion relation,
we calculate δm2((kσ)2) and δZ((kσ)2) numerically. We use the parameters σ = σ0

(cf. (14)), m = 10−17λ−1
nc and λ = m. If λnc is identified with the Planck length,

this corresponds to a mass of about 100 GeV, i.e., the estimated order of magni-
tude of the Higgs mass. The chosen value of λ is slightly above the expectation for
the cubic term in the Higgs potential (∼ 0.6m). Figure 1 shows the relative mass
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Figure 1. The relative mass correction m−2δm2((kσ)2) as a
function of the perpendicular momentum k⊥.

correction m−2δm2((kσ)2) as a function of the perpendicular momentum k⊥, ob-
tained with the numerical integration method of mathematica (for the definition
of k⊥, see Section 2.2). We see that the relative mass shift is of order 1 for small
perpendicular momenta. This might look like a strong effect. However, we have the
freedom to apply a finite mass renormalization in order to restore the rest mass.
The important question is rather how strong the momentum dependence of the
mass renormalization is. As can be estimated from Figure 1, it is at the %-level
for perpendicular momenta of the order of the mass. As a consequence, also the
distortion of the group velocity is of this order, as we will show below.

The plot for δZ((kσ)2) for the same parameters is not very interesting, since
δZ is constant, −1.32477 · 10−3, within machine precision. This coincides with the
planar contribution (19). The reason for this is easily understood: If one differen-
tiates the integrand in (21) with respect to k2, one obtains a function that, even
without the factor

sin l
√

−(kσ)2

l
√

−(kσ)2
,

is integrable. Without this factor, it would coincide with the corresponding planar
expression obtained by differentiating (18). But the above factor deviates from 1
appreciably only for l ∼ (−(kσ)2)−

1
2 , i.e., for very high energies, where the rest of

the integrand is negligible.
According to equation (16), the deviation of the group velocity from the

phase velocity in the perpendicular direction is, to lowest order in λ, given by
2λ2λ4

nc
∂

∂(kσ)2 Σnp. Figure 2 shows this quantity for the same parameters as above.
The deviation is biggest for small perpendicular momenta and at the %-level.
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Figure 2. The distortion of the group velocity in perpendicular
direction as a function of the perpendicular momentum k⊥.

We see that in the φ3 model the distortion of the dispersion relation is mod-
erate for realistic masses and couplings. This is in sharp contrast to the situation
in the φ4 model, where realistic dispersion relations could only be obtained for
masses close to the noncommutativity scale [4].

3.2. The 2-particle spectrum

We now discuss the third term in (6). We obtain

(2π)4
∫

d4kf̂(−k)ĥ(k)Δ̂R(k)Δ̂A(k)
(

(Δ+ ·Δ+)̂(k) + (Δ+ �2σ Δ+)̂(k)
)

.

Here �2σ is the �-product at 2σ, i.e., the product corresponding to the twisting
factor eikσl. Like Δ+ ·Δ+, Δ+ �2σ Δ+ is a well-defined distribution, as can be seen
in momentum space. It has its support above the 2m mass shell, thus this term
corresponds to the multi-particle spectrum. Using Lorentz invariance as above,
one can compute

(Δ+ �2σ Δ+)̂(k) = θ(k2 − 4m2)(2π)−3
sin

(√

−(kσ)2
√

1
4k2 − m2

)

2
√

k2
√

−(kσ)2
.

In the limit (kσ)2 → 0, this gives back the commutative result. Note that devia-
tions from the commutative case become appreciable for −(kσ)2 ∼ k−2, i.e. if

√
k2

or the transversal momentum k⊥ is of the order λ2
nc√
k2 . This is obviously no threat

to phenomenology.
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4. The Wess–Zumino model

In this section we consider the Wess–Zumino model on the noncommutative Min-
kowski space. We use the standard supersymmetric noncommutative Minkowski
space, in which the (anti-) commutators involving the fermionic variables θ, θ̄ are
unchanged [10]. In order to arrive at the equations of motion for the component
fields, we start from the Lagrangean in superfield form, taking particular care for
the order of the fields in the different terms7.

In superfield form the Wess–Zumino model is given by the following La-
grangean8:

L = Φ̄Φ|θ2θ̄2 +
{(

m

2
ΦΦ +

λ

3
ΦΦΦ

)

|θ2 + h.c.
}

.

Here Φ is the chiral superfield

Φ = φ +
√

2θχ + θ2F − iθσμθ̄∂μφ +
i√
2
θ2∂μχσμθ̄ − 1

4
θ2θ̄2�φ ,

where φ and F are complex scalar fields and χ is a Weyl spinor. In component
fields the action is then, up to surface terms,

S =
∫

d4q

(

−i∂μχ̄σ̄μχ − φ∗�φ + F ∗F

+
{(

m

(

φF − 1
2
χχ

)

+ λ(φφF − χχφ)
)

+ h.c.
})

.

This leads to the equations of motion

F + mφ∗ + λφ∗φ∗ = 0

−�φ + mF ∗ + λ(φ∗F ∗ + F ∗φ∗) − λχ̄χ̄ = 0

iσ̄μ∂μχ − mχ̄ − λ(φ∗χ̄ + χ̄φ∗) = 0 .

We eliminate F using its equation of motion. Furthermore, we introduce the Ma-
jorana spinor

ψ =
1√
2

(
χα

χ̄α̇

)

, ψ̄ = ψ†γ0 =
1√
2
(χα, χ̄α̇)

and the projectors

P± =
1 ∓ iγ5

2
.

Using 2ψ̄P+ψ = χχ we get

(� + m2)φ = −2λψ̄P−ψ − mλ(φφ + φ∗φ + φφ∗) − λ2(φ∗φφ + φφφ∗)

(i/∂ − m)ψ = λP+(φψ + ψφ) + λP−(φ∗ψ + ψφ∗) .

7This is important, since for example the tadpole corresponding to the interaction term φ∗φφ∗φ
does not have a twisting factor, in contrast to the interaction term φ∗φ∗φφ, as has already been
noted in [3].
8In the following, we use the conventions of [38], except for the metric, which we choose to have
signature (+ −−−). Accordingly, we also changed the sign of σ0, and thus also of γ0 and γ5.
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4.1. The SUSY current

We first want to discuss the changes that noncommutativity brings in at the clas-
sical level. The equations of motion are the same, we only have to replace the
usual product by the noncommutative one. But there are some changes for the
currents. It is an interesting feature of noncommutative interacting theories that
the local9 currents associated to symmetries are in general not conserved [16, 42].
Examples are the energy-momentum tensor in the φ4-model [27] and in electrody-
namics [18]. Here we show that the local current associated to the supersymmetry
transformation is not conserved in the interacting case, i.e., for λ �= 0. We discuss
this in terms of the superfield Φ. The equation of motion is

−1
4
D̄2Φ̄ + mΦ + λΦΦ = 0 .

The local supercurrent is given by

Vαα̇ =
1
2
[DαΦ, D̄α̇Φ̄] + i{/∂αα̇Φ, Φ̄} − i{Φ, /∂αα̇Φ̄} .

Here we used a symmetrized version of the usual current, since this is usually
advantageous in the noncommutative case. By standard methods (see, e.g., [37])
one can show that

D̄α̇Vαα̇ =
1
2
{DαΦ, D̄2Φ̄} − 1

4
{Φ,DαD̄2Φ̄}

holds. Using the equation of motion, we get

D̄α̇Vαα̇ = 2
{

DαΦ, (mΦ + λΦΦ)
}

−
{

Φ,Dα (mΦ + λΦΦ)
}

= mDαΦ2 + λ
[

[DαΦ,Φ],Φ
]

.

The first term is already present in the commutative case. It does not affect the
charge corresponding to the supersymmetry transformation, but simply expresses
the fact that the theory is not conformal. The second term, however, is a genuinely
noncommutative one. It also affects the SUSY charge. Since it is given by a commu-
tator, the non-conservation of the charge is relevant only at the noncommutativity
scale10. Like the non-conservation of the local energy-momentum tensor, this ef-
fect does not show up in a perturbative treatment of the corresponding quantum
theory, at least not at second order.

9By local we mean expressions that are polynomials of (derivatives) of fields, where the product
is the appropriate algebra product, i.e., (5) in the present case. Using different products (nonlocal
in our sense), it is possible to construct conserved currents, see, e.g., [1, 34].
10Such an effect is to be expected by heuristic considerations [12]: Charge conservation requires

that the production of a particle with positive charge is always accompanied by the production

of a particle with opposite charge at the same place. But because of the noncommutativity, it is
not possible to localize two particles at the same place, see, e.g., the discussion in [5].
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4.2. The self energy

Now we compute the self energy at the one-loop level. Using the equations of
motion, the first terms in the Yang–Feldman series are

φ1 = −ΔR ×
(

2ψ̄0P−ψ0 + m(φ∗
0φ0 + φ0φ

∗
0 + φ0φ0)

)

, (22)

ψ1 = SR ×
(

P+(φ0ψ0 + ψ0φ0) + P−(φ∗
0ψ0 + ψ0φ

∗
0)

)

, (23)

and the analogous formulas for the conjugate fields. The second order component
of φ is

φ2 = −ΔR ×
{

2ψ̄1P−ψ0 + 2ψ̄0P−ψ1 (24)

+ m(φ∗
1φ0 + φ∗

0φ1 + φ1φ
∗
0 + φ0φ

∗
1 + φ1φ0 + φ0φ1) (25)

+ (φ0φ0φ
∗
0 + φ∗

0φ0φ0)
}

(26)

Inserting (22) and (23) in (24) and (25) and contracting the free fields, one can
write φ2 in the form

φ̂2(k) = (2π)2Δ̂R(k)
(

Σ(k)φ̂0(k) + Σ′(k)φ̂∗
0(k)

)

+ n.o. ,

cf. (7).
For the computation of the graphs involving fermions, we need the formulae11

ŜR(k) = (−/k − m)Δ̂R(k) ,

ˆ̄SR(k) = (/k − m)Δ̂R(k) ,

〈 ˆ̄ψα(k)ψ̂β(p)
〉

=
1
2
(2π)2δ(k + p)(−/k + m)βαΔ̂+(k) .

The φ4 tadpole is obtained from the term (26) of φ2. We find the quadratically
divergent contribution

Σφ4−tp(k) = −2(2π)−2λ2

∫

d4lΔ̂+(l)(1 + eikσl) .

The φ3 tadpole is obtained from the term (25) by contracting the φ0s in φ1 or φ∗
1

among themselves. Due to the retarded propagator with zero momentum connect-
ing the loop with the line, the mass appearing in the interaction term cancels and
we get

Σφ3−tp(k) = 8(2π)−2λ2

∫

d4l Δ̂+(l) .

Note that no twisting factor appears.

The φ3 fish graph is obtained from the term (25) by contracting a φ0 in φ1 or φ∗
1

with the outer φ∗
0(f). We get

Σφ3−fish(k) = 3m2λ2

∫

d4lΔ̂+(l)(1 + eikσl)
(

Δ̂R(k − l) + Δ̂R(k + l)
)

.

11The factor 1/2 in the last line is due to the Majorana nature of the fermions.
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The Yukawa tadpole is obtained from (25) by contracting the fermions in φ1 or φ∗
1.

Since the trace of a single γ-matrix vanishes we only get a supplementary factor
4m and thus

ΣYuk(k) = −8(2π)−2λ2

∫

d4l Δ̂+(l) .

The fermion fish graph is obtained from the term (24). The relevant part of φ2,
i.e., the part involving φ0, is

φ̂2(k) = −4Δ̂R(k)
∫

d4ld4l′ cos
lσl′

2

×
{

ˆ̄ψ0(k − l)P−ŜR(l)P+ψ̂0(l − l′)φ̂0(l′)e−
i
2 kσl

+ ˆ̄ψ0(l − l′)P+
ˆ̄SR(l)P−ψ̂0(k − l)φ̂0(l′)e−

i
2 lσk

}

.

Contraction of the fermion fields now yields

−2(2π)2Δ̂R(k)φ̂0(k)
∫

d4l cos
lσk

2

×
{

tr
(

P−(−/l − m)P+(/k − /l − m)
)

Δ̂R(l)Δ̂+(k − l)e−
i
2 kσl

+ tr
(

P+(/l − m)P−(−/k + /l − m)
)

Δ̂R(l)Δ̂+(−k + l)e−
i
2 lσk

}

= −2(2π)2Δ̂R(k)φ̂0(k)
∫

d4l cos
lσk

2

×
{

tr
(

P−(/l − /k − m)P+(/l − m)
)

Δ̂R(k − l)Δ̂+(l)e−
i
2 lσk

+ tr
(

P+(/k + /l − m)P−(/l − m)
)

Δ̂R(k + l)Δ̂+(l)e−
i
2 lσk

}

.

With the usual γ matrix algebra, we get

Σψ−fish(k) = 2λ2

∫

d4l Δ̂+(l)(1 + eikσl)

×
(

(k − l) · lΔ̂R(k − l) − (k + l) · lΔ̂R(k + l)
)

.

Now we collect all our terms. The Yukawa tadpole and the φ3 tadpole cancel
(this has to be so in order to have a vanishing VEV of φ1). Using

(l2 − m2)Δ̂+(l) = 0 , (l2 − m2)Δ̂A(l) = −(2π)−2 ,

the combination of the other terms gives

Σ(k) = λ2
(

k2 + m2
)
∫

d4l Δ̂+(l)(1 + eikσl)
(

Δ̂R(k − l) + Δ̂R(k + l)
)

.

Apart from the prefactor (k2+m2), this is exactly the expression we already found
for the φ3-model. We remark that for the self-energy of the fermion, one obtains
the same result.
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The prefactor is to be expected: Assuming that the non-renormalization the-
orem still holds, we know that only the Φ̄Φ|θ2θ̄2-term gets renormalized. From the
free equations of motion

(1 + δZ)F − mφ∗ = 0 , (1 + δZ)�φ + mF ∗ = 0

we get, at first order in δZ,

(� + m2)φ = −δZ(� − m2)φ .

Note that in our terminology, this corresponds to both a field strength and a mass
renormalization. Explicitly, we have, after subtracting the planar part,

δm2(s) = −2m2Σnp(m2, s) , (27)

δZ(s) = −Σnp(m2, s) − 2m2 ∂

∂k2
Σnp(m2, s) . (28)

Here we used the Σnp from the previous section, cf. equation (21). From (27) we
conclude that for σ = σ0,m = 10−17λ−1

nc , λ = 1 the distortion of the group velocity
is twice as strong as in the φ3-model. Identifying φ with the Higgs field, an effect
of this magnitude might be measurable at the next generation of particle colliders.

As was already discussed in the previous section, the second term in (28) is
effectively constant for realistic momenta. The first term has already been plotted
in Fig. 1, apart from the sign. As discussed in Remark 2.4, a momentum-dependent
field strength renormalization leads to a nonlocal smearing. In order to estimate
its strength, one has to compute the Fourier transform of Σnp. In [40], such a
calculation is performed in the setting of noncommutative supersymmetric elec-
trodynamics.

Note that the mass and field strength renormalizations for the fermion com-
ponent are exactly the same.

5. Calculation in the sense of oscillatory integrals

The aim of this section is to show that (20) is well-defined in the sense of oscillatory
integrals, and that a calculation is this sense yields the same result as the formal
calculation done in Section 3.1. We use the theory of oscillatory integrals as given
in [33]. We first state the main definitions and results.

Let Ω be an open set in R
s.

Definition 5.1. A phase function on Ω×R
t is a continuous function φ : Ω×R

t → R

with

1. ∀λ ≥ 0, (k, l) ∈ Ω × R
t: φ(k, λl) = λφ(k, l),

2. φ is C∞ on Ω × (Rt\{0}),
3. (∇kφ,∇lφ) �= (0, 0) on Ω × (Rt\{0}).
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Definition 5.2. A C∞ function a : Ω × R
t → C is called symbol of order r ∈ R on

Ω × R
t if ∀K ⊂ Ω compact and for all multiindices α, β the seminorms

‖a‖K,α,β = sup
k∈K,l∈Rt

(1 + |l|)|β|−r|Dα
k Dβ

l a(k, l)|

are finite. The set of all such symbols with topology given by the seminorms will
be denoted by Sym(Ω, t, r).

A function a : Ω × R
t → C is called asymptotic symbol, if it can be written

as a = a1 + a2 with a1 ∈ Sym(Ω, t, r) and a2 having compact support in l and the
map k → a2(k, · ) is C∞ as a map from Ω to L∞(Rt).

If r < r′ then Sym(Ω, t, r) ⊂ Sym(Ω, t, r′) and the C∞ functions of compact
support are dense in Sym(Ω, t, r) in the topology of Sym(Ω, t, r′).

For a1 ∈ Sym(Ω, t, r1) and a2 ∈ Sym(Ω, t, r2) the product a1 · a2 is in Sym(Ω,
t, r1 + r2) and similar for asymptotic symbols.

Now we want to give a natural extension to expressions like
∫

dtl a(k, l)eiφ(k,l)

if the integral is not absolutely convergent:

Theorem 5.3. Let φ be a phase function. We can associate with φ a linear map
from the asymptotic symbols to D′(Ω) denoted by Tφ(a) and uniquely determined
by:

1. If a has compact support in l then Tφ(a)(k) =
∫

dtl a(k, l)eiφ(k,l) and is a C∞

function of k.
2. The restriction of Tφ to Sym(Ω, t, r) is a continuous function from Sym(Ω,

t, r) to D′(Ω).

Furthermore, one can show that the singular support of Tφ(a) is contained
in the set

{

k|∃l ∈ R
t\{0} with ∇lφ(k, l) = 0

}

. (29)

Remark 5.4. It is easy to see that the notion of asymptotic symbols can be gener-
alized further. The function a could be split even further into a = a1+a2+a3+ . . ..
For the additional terms, k → ai(k, · ) should again be a C∞ map, having compact
support in l, into some suitable space of functions or distributions. Example for
such spaces would be L∞(Rt), which was already used for the asymptotic symbols,
or the elements of E ′(Rt) which are C∞ around l = 0.12 The important point is that
the integrals

∫

dsk f(k)ai(k, l)eiφ(k,l) should each be well defined for f ∈ D(Ω),
one of these in the sense of oscillatory integrals, and their sum independent of the
splitting. So one could even allow for some k → ai(k, · ) to be distributions instead
of C∞ maps. This could, of course, increase the singular support beyond (29).

In our concrete case (20), we choose Ω to be an open neighbourhood of
the mass shell m such that for k ∈ Ω we have (k ± l+)2 �= m2. For example

12As the phase function does not have to be smooth in l = 0, ai(k. · ) should, e.g., not contain
derivatives of the δ function at that point.
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Ω = {k|m2 <
√

k2 < 3m
2 }. Furthermore, we have t = 3, φ = −kμσμν(|l| , l)ν and

a(k, l) =
1

(2π)3
1

2ωl

(
−1

(k − l+)2 − m2
+

−1
(k + l+)2 − m2

)

e−i(kσ)0(
√

l2+m2−|l|) .

a is an asymptotic symbol13 on Ω × R
3 of order -3.

From Theorem 5.3 we can see that the oscillatory integral is a well defined
distribution but do not know what it looks like. When trying to transform the
integral, difficulties arise from the fact that the usual techniques of variable trans-
formations are in general not allowed. Also the methods used in [33] for the proof
of Theorem 5.3 are not really suitable to make exact or numerical calculations.
Programs for numerical integration can only tackle absolutely convergent or os-
cillating improper Riemann14 integrals. At the end we are going to reduce the
oscillatory integral encountered here to an absolutely convergent integral.

First, the strategy will be to construct an asymptotic symbol with compact
support in l which approaches a in the topology of symbols15 of some higher order,
say, −2. The continuity of Tφ ensures that the result is independent from the way
a is approached.

What we already can deduce is that Tφ(a)(k) is a C∞-function of k since
∇lφ(k, l) is only zero for kμσμν lightlike and this can never happen on Ω.

For k ∈ Ω let Λk be the unique pure boost which takes the vector k to
Λkk = (

√
k2,0). It is easy to see that Λk is a C∞ function of k.

Let g ∈ D(R) have the property

g(x) =

{

1 if |x| ≤ 1 ,

0 if |x| ≥ 2 .

Define
Gn(k, l) := g

(

(Λkl+/n)2
)

,

where Λk is only the vector part of the transformation, i.e., a 3 × 4 matrix and
the square is the Euclidean square of a 3-vector. Gn is a C∞-function of k and l
and for given k, n it has compact support in l and ∀n lies in Sym(Ω, 3, 0).

Lemma 5.5. Gn → 1 in Sym(Ω, 3, 1) for n → ∞.

Proof. We have to show that ∀K ⊂ Ω compact and ∀α, β

sup
k∈K,l

(1 + |l|)|β|−1
∣
∣
∣Dα

k Dβ
l

(

g
(

(Λkl+/n)2
)

− 1
)∣
∣
∣ −−−−→

n→∞
0 . (30)

It is easy to see that ∀α

‖Dα
k Λk‖sup =: cα

k

13It is only asymptotic, since |l| is not differentiable at l = 0, and one has to use
√

l2 + m2−|l| ≤
C(1 + |l|)−1, cf. [33].
14An oscillating improper Riemann integral is, e.g., lima→∞

∫ a
0 dx 1/x sin x.

15We are a little bit sloppy here. To be precise, we would have to write a = a1 + a2 like above,
using a C∞ cutoff function around l = 0, and only approximate a1 by symbols of compact
support. It is easy to see that this gives the same result.
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is a continuous function of k on Ω and that one can find positive constants dβ such
that ∀β

‖Dβ
l l+‖Euclid ≤ dβ(1 + |l|)1−|β| .

With these one can construct Cα,β
k , which are positive continuous functions of k,

such that
|Dα

k Dβ
l (Λkl+)2| ≤ Cα,β

k (1 + |l|)2−|β| . (31)

First we show (30) for |α| = |β| = 0:
∣
∣g

(

(Λkl+/n)2
)

− 1
∣
∣ is only unequal to

zero if (Λkl+
n )2 ≥ 1. With C0,0

K := supk∈K C0,0
k we then get

1 + |l| ≥ n
1

√

C0,0
K

and with this

sup
k∈K,l∈Rt

(1 + |l|)−1
∣
∣g

(

(Λkl+/n)2
)

− 1
∣
∣ ≤ sup

x∈R

|g(x) − 1|
√

C0,0
K

1
n
−−−−→
n→∞

0 .

Now let α or β be unequal to zero: With (31) one can easily see that

∣
∣Dα

k Dβ
l g

(

(Λkl+/n)2
)∣
∣ ≤

|α|+|β|
∑

γ=1

∣
∣(∂γg)

(

(Λkl+/n)2
)∣
∣

1
n2γ

C̃γ
k (1 + |l|)2γ−|β| ,

where C̃γ
k are again positive continuous functions of k (and are also depending on

α and β). For each γ the function ∂γg(x) is only unequal to 0 if |x| < 2. It is not
hard to prove that one can estimate

(Λkl+)2 ≥ ak · (1 + |l|)2 − bk ,

where ak and bk are again positive continuous functions of k. If the argument of g
is smaller than 2 it follows

1 + |l|
n

≤

√

2 + bk

n2

ak
.

Now we can deduce

sup
k∈K,l∈Rt

(1 + |l|)|β|−1
∣
∣
∣Dα

k Dβ
l

(

g
(

(Λkl+/n)2
)

− 1
)∣
∣
∣

≤ sup
k∈K,l∈Rt

|α+|β||
∑

γ=1

∣
∣∂γg

(

(Λkl+/n)2
)∣
∣ C̃γ

k

(1 + |l|)2γ−1

n2γ

≤
|α|+|β|
∑

γ=1

sup
x∈R

|∂γg(x)| C̃γ
K

(

2 + bK

n2

aK

)γ− 1
2 1

n
−−−−→
n→∞

0 ,

with aK = supk∈K ak. This completes the proof. �
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With the above result it follows that Gn · a has compact support in l for
given k and approaches a in the topology of Sym(Ω, 3,−2). Calculating the inte-
gral (20), with f ∈ D(Ω), we get

1
(2π)3

∫

d4k
d3l

2ωl
f(k)g

(

(Λkl+/n)2
)
(

−1
(k − l+)2 − m2

+
−1

(k + l+)2 − m2

)

e−ikσl+ .

(32)
This integral is absolutely convergent, so the usual techniques for manipulating
integrals are allowed. We perform a k-dependent nonlinear transformation on l:
l′ = Λkl+. The integration measure does not change and, of course, l+ = Λ−1

k l′+.
The prime will be dropped again and we get:

1
(2π)3

∫

d4kf(k)
∫

d3l

2ωl

(
−1

(k − Λ−1
k l+)2 − m2

+
−1

(k + Λ−1
k l+)2 − m2

)

× g
(

(l/n)2
)

e−ikσΛ−1
k l+ . (33)

It holds

(k ± Λ−1
k l+)2 =

(

Λ−1
k

(

(
√

k2,0) ± l+
))2

= k2 + m2 ± 2ωl

√
k2 .

Thus, the sum of the two fractions in (33) is −2
k2−4ω2

l
. Define σ′ = Λ−1

k

T
σΛ−1

k .

σ′ is again antisymmetric, so (
√

k2,0)μσ′
μν has vanishing time component. Let

(
√

k2,0)σ′ be its spatial part. Its length is
√

−
(

(
√

k2,0)σ′
)2 =

√

−(kσ)2 .

The expression in the exponent in (33) now becomes

kσΛ−1
k l+ =

(√
k2,0

)

σ′l+ = −
(√

k2,0
)

σ′ · l .

We use spherical coordinates for l where the z−axis is along (
√

k2,0)σ′. The
exponent equals

√

−(kσ)2l cos(θ), and after performing the φ and θ integration
we get (dropping the k-integration)

−2(2π)−2

∫ ∞

0

dl g
(

(l/n)2
) l2

ωl(k2 − 4ω2
l )

sin(l
√

−(kσ)2)
l
√

−(kσ)2
.

For n → ∞ this gives the value of Tφ(a)(k), which is the absolutely convergent
integral

−2(2π)−2

∫ ∞

0

dl
l2

ωl(k2 − 4ω2
l )

sin(l
√

−(kσ)2)
l
√

−(kσ)2
,

which is the same result as (21).
We emphasize again that in order to calculate the dispersion relation at the

one-loop level, it is sufficient to know

Σnp(k) =
∫

d4l Δ̂+(l)eikσl
(

Δ̂R(k − l) + Δ̂R(k + l)
)

, (copy of 20)
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for k in the vicinity of the mass shell. However, when it comes to treat higher orders,
the fish-graphs, which give the contributions (20), may appear as subgraphs and
have to be integrated over arbitrary k. Then the problem appears that Δ̂R(k± l+)
can become singular, so that (20) is no oscillatory integral in the standard sense.
Let us examine this more closely: For k2 > 4m2, the singular support of l →
Δ̂R(k ± l+) is compact and does not contain the origin. We may then proceed as
indicated in Remark 5.4. Let k0 > 0. Then only Δ̂R(k − l+) can become singular
and at the singularity we have k0 − ωl > 0. Thus, we may simply add ±iε to
the denominator of the first fraction in (32). Of course one then has to assume
that f has compact support in {k ∈ R

4|k2 > 4m2, k0 > 0}. One can then proceed
as above and obtains (21), but with (k2 − 4ω2

l ± iε) in the denominator. Using
1

x±iε = P 1
x − iπδ(x), this can be split into real and imaginary part. The imaginary

part resembles the usual imaginary parts for forward/backward scattering.
For spacelike k, the singular support of l → Δ̂R(k ± l+) is not compact.

Consider, e.g., k = (0, 0, 0, kz). Then Δ̂R(k − l+) is singular on the hyperplane
l3 = 2kz. Thus, it is not possible to use the framework indicated in Remark 5.4.
One has to extend the framework further in order to accommodate for symbols
whose singularities are not compactly supported. There are two natural Ansätze
for such an extension:

1. The distributions a could be approximated by a sequence of symbols (an)n∈N.
For each an the oscillatory integral is well defined. The oscillatory integral for
a can then be achieved if one calculates the limit n → ∞ after integrating,
if this is well defined and to a large extent independent of the choice of the
sequence.

2. One could see the relation
∫

dskdtl f(k)a(k, l)eiφ(k,l) = lim
n→∞

∫

dskdtl f(k)gn(l)a(k, l)eiφ(k,l) (34)

for a sequence gn of symbols with compact support and approaching 1, as
a definition. The right hand side of (34), with finite n, is even defined for a
being some distribution. If the limit exists and is independent of the choice
of the sequence gn out of some large class of sequences, this would be a
reasonable extension.
We would also like to mention the approach followed in [40]: There, the

nonplanar loop integral is interpreted as a function F (k, y) of two independent
variables k and y, where the twisting factor is written as e−iyl+ . One can show
that the integral is a well-defined tempered distribution in R

8. The question is
then if it is possible to restrict y to kσ. Whether the loop integral is well-defined is
then a question that can be answered by computing F (k, y). The problem is that
it is rather difficult to perform such a calculation analytically.

Remark 5.6. The nonplanar loop integrals that appear in the setting of the mod-
ified Feynman rules can also be treated rigorously in the sense of oscillatory in-
tegrals. Since one is working in the Euclidean metric there, the symbols can not
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become singular, so that there are no problems for spacelike external momenta.
However, as already mentioned in the introduction, it is not clear whether there
is any relation between the results for Euclidean and Minkowski metric.

6. Summary and Outlook

We discussed dispersion relations in the Yang–Feldman formalism at the one-loop
level and computed them in the noncommutative φ3 and Wess–Zumino model.
It turned out that the distortions of the dispersion relation were moderate for
parameters typically expected for the Higgs field. We also showed that the local
SUSY current is not conserved in the noncommutative Wess–Zumino model.

A shortcoming of the present work is of course the lack of a systematic treat-
ment of renormalizability. In the case of the noncommutative Euclidean space, it is
usually argued that the IR-divergence induced by the UV-IR mixing can at most
be of the same degree as the underlying UV-divergence, i.e., logarithmic in the
two cases studied here. Then the integration over a non-planar subgraph poses
no problem. However, in the present situation of the noncommutative Minkowski
space we have the difficulties mentioned at the end of Section 5. To solve these,
an extension of the mathematical framework of oscillatory integrals is needed.
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