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The Relation between KMS States
for Different Temperatures

Christian D. Jäkel∗

Abstract. Given a thermal field theory for some temperature β−1, we construct
the theory at an arbitrary temperature 1/β′. Our work is based on a construction
invented by Buchholz and Junglas, which we adapt to thermal field theories. In
a first step we construct states which closely resemble KMS states for the new
temperature in a local region O◦ ⊂ R4, but coincide with the given KMS state in
the space-like complement of a slightly larger region Ô. By a weak*-compactness
argument there always exists a convergent subnet of states as the size of O◦ and Ô
tends towards R4. Whether or not such a limit state is a global KMS state for the
new temperature, depends on the surface energy contained in the layer in between
the boundaries of O◦ and Ô. We show that this surface energy can be controlled
by a generalized cluster condition.

1 Introduction

A quantum field theory can be specified by a C∗-algebra A together with a net

O → A(O), O ⊂ R4,

of subalgebras associated with open, bounded space-time regions O in Minkowski
space (as described in the monograph by Haag [H]; see also [HK]). The Hermitian
elements of A(O) are interpreted as the observables which can be measured at
times and locations in O. Technically the algebra A(O) may be thought of as
being generated by bounded functions of the underlying smeared quantum fields
(see, e.g., [BoY]). For instance, if φ(x) is a hermitian quantum field and if f(x)
is a real test function with support in a bounded region O of space-time, then
the unitary operator a := exp

(
i
∫

dx f(x)φ(x)
)

is a typical element of A(O). In
this way the quantum fields provide a “coordinate system” for the algebra A.
However, as emphasized by Haag and Kastler, only the algebraic relations between
the elements of A are of physical significance.

If the time evolution is given by a strongly continuous one-parameter group
of automorphisms {τt}t∈R of A, then the pair (A, τ) forms a C∗-dynamical system.
Such a description of a QFT fits nicely into the structure of algebraic quantum
statistical mechanics (see, e.g., [BR], [E], [R], [Se], [Th]) and we can therefore rely
on this well-developed framework.

∗Partially supported by the IQN network of the DAAD and the IHP network HPRN-CT-
2002-00277 of the European Union.
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Up till now non-relativistic quantum field theories and spin systems were
favored in the framework of algebraic quantum statistical mechanics. In low di-
mensions the latter have been worked out in great detail (see, e.g., [BR]). Only
recently the benefits of formulating thermal field theory in the algebraic frame-
work were emphasized in a series of papers [BJu 86], [BJu 89], [BB 94], [N], [Jä 98],
[Jä 99], [Jä 04].

Equilibrium states can be characterized by first principles in the algebraic
framework: equilibrium states are invariant under the time-evolution and stable
against small dynamical (or adiabatic [NT]) perturbations of the time-evolution
[HKTP]. Adding a few technical assumptions such a heuristical characterization
of an equilibrium state leads to a sharp mathematical criterion [HHW], named for
Kubo [K], Martin and Schwinger [MS]:

Definition. A state ωβ over A is called a (τ, β)-KMS state for some β ∈ R∪{±∞}, if

ωβ

(
aτiβ(b)

)
= ωβ(ba) (1)

for all a, b in a norm dense, τ -invariant ∗-subalgebra of Aτ . Here Aτ ⊂ A denotes
the set of analytic elements for τ .

We note that there are C∗-dynamical systems (A, τ), for which a KMS state
exists at one and only one value β ∈ R (see [BR, 5.3.27]). But for a QFT one
can specify conditions on the phase-space properties in the vacuum representation,
such that KMS states exist for all temperatures β−1 > 0 [BJu 89]. These conditions
exclude (see [BJu 86]) the class of models with a countable number of free scalar
particles proposed by Hagedorn [Ha]. These models obey all the Wightman and
Haag-Kastler axioms but they do not allow equilibrium states above a certain
critical temperature.

For a generic model one expects that for high temperatures and low densities
the set of KMS states contains a unique element1, whereas at low temperature it
should contain many disjoint extremal KMS states and their convex combinations
corresponding to various thermodynamic phases and their possible mixtures. The
symmetry, or lack of symmetry of the extremal KMS states is automatically deter-
mined by this decomposition. Consequently, spontaneous symmetry breaking may
occur, when we change the temperature in the sequel.

Given a KMS state ωβ over A the GNS-representation (πβ ,Hβ ,Ωβ) provides
a net of von Neumann algebras:

O → Rβ(O) := πβ
(A(O)

)′′
, O ∈ R4.

Under fairly general circumstances KMS states for different values of the tempera-
ture β−1 lead to unitarily inequivalent GNS-representations (see [T], [BR, 5.3.35]).
Hence thermal field theories for different temperatures are frequently treated as
completely disjoint objects even if they refer to the same vacuum theory, i.e., even

1For non-relativistic fermions with pair-interaction see [Jä 95].
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if they show identical interactions on the microscopic level. To understand the re-
lations between these ‘disjoint thermal field theories’ seems to be highly desirable.

One simple case is well known ([Pe, 8.12.10]): Assume that the time-evolution
τ can be approximated by a net of inner automorphisms such that, for a ∈ A fixed,

lim
Λ→∞

‖τz(a) − eizhΛae−izhΛ‖ = 0, hΛ = h∗Λ ∈ A,

uniformly in z on compact subsets of C. If (A, τ) has a KMS state ωβ at some β �= 0,
then the net of states Λ 	→ ωΛ,

ωΛ(a) =
ωβ

(
e

1
2 (β−β′)hΛae

1
2 (β−β′)hΛ

)

ωβ

(
e(β−β′)hΛ

) , a ∈ A,

has convergent subnets and the limit points ωβ′ := limΛ ωΛ are (τ, β′)-KMS states
for the new temperature 1/β′ (0 < β′ <∞).

But in general, phase transitions may occur while we change the temperature.
Consequently “. . . there is no simple prescription for connecting the (τ, β)-KMS
states for different β’s” (c.f. [BR, p. 78]). Nevertheless, we will provide a pre-
scription which covers, as far as relativistic systems are concerned, the physically
relevant cases.

We start form a thermal field theory O → Rβ(O), whose number of local
degrees of freedom is restricted in a physically sensible manner. Using a method,
which is essentially due to Buchholz and Junglas [BJu 89], we construct a KMS
state ωβ′ and a thermal field theory

O → Rβ′(O), β′ ∈ R+,

for a new temperature 1/β′ > 0. Although we almost repeat their line of argu-
ments, there are some nontrivial deviations due to the mathematical structure we
encounter in thermal field theory.

In a first step we construct product states ωΛ, Λ = (O◦, Ô), which – up
to boundary effects – resemble KMS states for the new temperature 1/β′ in a
local region O◦ ⊂ R4, but coincide with the given KMS state ωβ in the space-like
complement of a slightly larger region Ô:

ωΛ(ab) = ωΛ(a) · ωβ(b) ∀a ∈ A(O◦), ∀b ∈ A(Ô′).

At this point our method is semi-constructive; the product states ωΛ is not uniquely
fixed. Intuitively the choice of a particular product state ωΛ corresponds to a choice
of the boundary conditions which decouple the local region O◦, where the state
already resembles an equilibrium state for the new temperature, from the space-
like complement of Ô. Different choices ωΛ, ωΛ

′ should manifest themselves in
different expectation values for observables localized in between the two regions
O◦ and Ô′. I.e., we expect

ωΛ �= ωΛ
′ ⇒ ∃a ∈ A(O′

◦ ∩ Ô) such that ωΛ(a) �= ωΛ
′(a).
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It follows from standard compactness arguments that the net of states Λ →
ωΛ has convergent subnets. Whether or not these subnets converge to a global
KMS states for the new temperature depends on the surface energy contained in
between the two regions O◦ and Ô′ as their size increases. Introducing an auxiliary
structure, which can be understood as a local purification, and assuming a cluster
condition, we will control these surface energies in all thermal theories which satisfy
a certain “nuclearity condition” (see, e.g., [BW], [BD’AL 90a], [BD’AL 90b], [BY]
for related work). Consequently, we can single out (generalized) sequences Λi =(O(i)

◦ , Ô(i)
)

such that the limit points2

ωβ′(a) := lim
i→∞

ωΛi(a), a ∈ A,

are KMS states for the new temperature 1/β′ (0 ≤ β′ ≤ ∞). We emphasize that
phase transitions are not excluded by our method: by choosing different “boundary
conditions” we may encounter disjoint KMS states for the new temperature in the
thermodynamic limit.

Loosely speaking, we provide a method to heat up or cool down a quantum
field theory.

2 Definitions and preliminary results

For the Lagrangian formulation of a thermal field theory we refer the reader to
the books by Kapusta [Ka], Le Bellac [L] and Umezawa [U], and the excellent
review article by Landsman and van Weert [LvW]. Recent work in the Wightman
framework can be found in [BB 92], [BB 95], [BB 96], [St]. In this section we will
outline the basic structure of a thermal field theory in the algebraic framework.

2.1 List of assumptions

Although it would be more natural – from the viewpoint of algebraic quantum
statistical mechanics – to start from a C∗-dynamical system (A, τ) and then char-
acterize equilibrium states ωβ and thermal representations πβ with respect to the
dynamics, we will assume here that we are given a thermal field theory O → Rβ(O)
acting on some Hilbert space Hβ . How we can reconstruct a C∗-dynamical system
(A, τ) from the W ∗-dynamical system (Rβ , τ̂ ) is well known and will be indicated
in the next subsection (τ̂ will be defined in (2.1)).

We now provide a list of assumptions:
i) (Thermal QFT). A thermal QFT is specified by a von Neumann algebra Rβ ,

acting on a separable Hilbert space Hβ , together with a net

(Net structure) O → Rβ(O), O ⊂ R4,

2We have simplified the notation here. In fact, we will have to adjust the relative sizes of a

triple Λi = (O(i)
◦ ,O(i), Ô(i)) of space-time regions.
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of subalgebras associated with open bounded space-time regions O in Min-
kowski space. The net O → Rβ(O) satisfies

(Isotony) Rβ(O1) ⊂ Rβ(O2) if O1 ⊂ O2

and

(Locality) Rβ(O1) ⊂ Rβ(O2)′ if O1 ⊂ O′
2.

As before, O′ denotes the space-like complement of O.
ii) (Dynamical law). The time-evolution τ̂ : t 	→ τ̂t,

τ̂t( . ) = eiHβt . e−iHβt,

is induced by a strongly continuous one-parameter group of unitaries{
eiHβt

}
t∈R. It acts geometrically, i.e., τ̂t

(Rβ(O)
) ⊂ Rβ(O+ te) for all t ∈ R.

Here e is the unit-vector in the time-direction in the Lorentz-frame distin-
guished by the KMS state.

iii) (Unique KMS vector). There exists a distinguished vector Ωβ, cyclic and
separating for Rβ , such that the associated vector state ωβ( . ) := (Ωβ , . Ωβ)
satisfies the KMS condition (1) w.r.t. the time-evolution τ . Restricting at-
tention to pure phases we assume that Ωβ is the unique – up to a phase –
normalized eigenvector with eigenvalue {0} of Hβ.

iv) (Reeh-Schlieder property). The KMS vector Ωβ is cyclic and separating for
the local algebra Rβ(O), if the space-like complement of O ⊂ R4 is not empty.

v) (Nuclearity condition). The thermal field theory O → Rβ(O) has the follow-
ing phase-space properties: for O bounded the maps Θα,O : Rβ(O) → Hβ

given by
Θα,O(A) = e−αβHβAΩβ , 0 ≤ α ≤ 1/2,

are nuclear for 0 < α < 1/2 and the nuclear norm (for α ↘ 0 or α ↗ 1/2
and large diameters r of O) satisfies

‖Θα,O‖ ≤ ecr
d
(
α−m+(1/2−α)−m

)
, (2)

where c,m, d are positive constants. (We expect that the constant d in this
bound can be put equal to the dimension of space in realistic theories, but
we do not make such an assumption here. The constant m > 0 may depend
on the interaction and the KMS state.)

vi) (Regularity from the outside). The net O → Rβ(O) is regular from the
outside, i.e., ⋂

Ô(i)⊃O
Rβ

(Ô(i)
)

= Rβ(O), Ô(i) ↘ O.

(This property can usually be achieved by defining the local algebras in an
appropriate way.)



584 C.D. Jäkel Ann. Henri Poincaré

vii) (Cluster assumption). Let O◦ and O be two space-time regions such that O◦+
te ⊂ O for |t| < δ◦. Let J denote the modular conjugation (see Subsection 2.3)
for the pair (Rβ ,Ωβ). Let Mj ∈ Rβ

(O◦
) ∨ JRβ

(O◦
)
J and Nj ∈ (Rβ

(O) ∨
JRβ

(O)
J
)′. Then, for δ◦ large compared to the thermal wave-length β,

∣
∣
∣
N∑

j=1

(Ωβ , MjΩβ)(Ωβ , NjΩβ) − (Ωβ , MjNjΩβ)
∣
∣
∣ ≤ c′ rd

′
◦ δ

−γ
◦ ·

∥
∥
∥

N∑

j=1

MjNj

∥
∥
∥,

(3)
where c′, d′ and γ are positive constants which do not depend on O◦ or O.
Here r◦ denotes the diameter of O◦.

Remarks

i) The Reeh-Schlieder property is a consequence [Jä 00] of additivity3 and the
relativistic KMS condition proposed by Bros and Buchholz [BB 94]. If the
KMS state is locally normal w.r.t. the vacuum representation, then the stan-
dard KMS condition (together with additivity of the net in the vacuum rep-
resentation) is sufficient to ensure the Reeh-Schlieder property of the KMS
vector Ωβ [J].

ii) If the KMS state is locally normal w.r.t. the vacuum representation, then it
is sufficient to assume that

⋂

Ô(i)⊃O
R(Ô(i)

)
= R(O), Ô(i) ↘ O,

holds true in the vacuum representation. For the free scalar field this property
was shown by Araki [A 64].

iii) One might try to establish the cluster condition starting from a sharper nucle-
arity condition. For instance, we might assume that the map Θ�

α,O : Rβ(O) →
Hβ given by

Θ�
α,O(A) = e−α|Hβ |(A− (Ωβ , AΩβ)

)
Ωβ , α > 0,

is nuclear too and satisfies (for αm large in comparison with rd) the following
bound on its nuclear norm

‖Θ�
α,O‖ ≤ c′ · rdα−m.

Formally the bound on the nuclear norm ‖Θ�
α,O‖ follows from taking the

limit αm large in comparison with rd in the expression exp(crdα−m) − 1,
where the one is due to the subtraction of the thermal expectation value.
(The expression exp(crdα−m) should provide an upper bound for the nuclear
norm of the map A 	→ exp(−α|Hβ |)AΩβ , where α > 0.)

3The net O → Rβ(O) is called additive if ∪iOi = O ⇒ ∨iRβ(Oi) = Rβ(O). Here ∨iRβ(Oi)
denotes the von Neumann algebra generated by the algebras Rβ(Oi).
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iv) The product state appearing in (3) is induced by a product vectors χi, which
satisfies

(χi , MN χi) = (Ωβ , MΩβ)(Ωβ , NΩβ)

for M ∈ Mβ

(O(i)
◦

)
and N ∈ Mβ

(O(i)
)′. The convergence of the product

vector χ→ Ωβ follows from
( ∪O Mβ(O)

)′= 1 (see [D’ADFL]).

2.2 The restricted C∗-dynamical system

If the weakly continuous one-parameter group τ̂ : t 	→ τ̂t fails to be strongly contin-
uous, then we can reconstruct the underlying C∗-dynamical system by a suitable
smoothening procedure (once again we refer to [S, 1.18]): given a thermal field
theory O → Rβ(O) there exists

(i) a C∗-algebra A and a representation πβ : A → B(Hβ) such that πβ(A) is a
σ-weakly dense C∗-subalgebra of Rβ ;

(ii) a net O → A(O) of C∗-subalgebras of A such that πβ
(A(O)

)
is a σ-weakly

dense C∗-subalgebra of Rβ(O) for all O ⊂ R4;
(iii) a strongly continuous automorphism group t 	→ τt of A such that πβ

(
τt(a)

)
=

τ̂t(πβ(a)
)

for all a ∈ A.

Moreover, the net O → A(O) satisfies isotony and locality and τ respects the local
structure of the net O → A(O), i.e., τt

(A(O)
)

= A(O + te) for t ∈ R.

We can now introduce subalgebras Ap of almost local elements in A which
are analytic with respect to time-translations [BJu 89]. For the existence of these
subalgebras it is crucial that the time-evolution t 	→ τt is strongly continuous, i.e.,
if we fix some a ∈ A, then limt→0 ‖τt(a) − a‖ = 0.

Lemma 2.1. (Buchholz and Junglas). Let p ∈ N be fixed and let Ap ⊂ A be the
∗-algebra generated by all finite sums and products of operators of the form

a(f) =
∫

dt f(t)τt(a),

where f is any one of the functions

f(t) = const. e−κ(t+w)2p

(with κ > 0, w ∈ C) and a ∈ ∪OA(O) is any strictly local operator. It follows that
(i) each b ∈ Ap is an analytic element with respect to τ , i.e., the operator-valued

function t 	→ τt(b) can be extended to a holomorphic function on C;
(ii) each b ∈ Ap is almost local in the sense that for any r(i) > 0 there is a local

operator b(i) ∈ A(O(i)) such that

‖b(i) − b‖ ≤ C e−κ(r(i)/2)2p , κ > 0,

where the constant C > 0 does not depend on r(i);
(iii) the algebra Ap is invariant under τz, z ∈ C, and norm dense in A.
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The new state ωβ′, which we will construct in the sequel, will be a (τ, β′)-
KMS state for the pair (A, τ). More precisely, it will satisfy the KMS condition
(1) for a, b ∈ Ap for some p (p will be specified in Subsection 4.3). As we have just
seen, Ap is a norm dense, τ -invariant subalgebra of Aτ .

Remark. If the new state ωβ′ is locally normal w.r.t. πβ , then one might expect
that the KMS condition extends to

F :=
⋃

O∈R4

Rβ(O)
C∗

.

However, the representations πβ′ and πβ of F will be inequivalent for β′ �= β, and
therefore the weak closures πβ′(F)′′ and πβ(F)′′ will in general be non-isomorphic.

2.3 The opposite net of local algebras

By assumption the KMS vector Ωβ is cyclic and separating for Rβ . Thus Tomita-
Takesaki theory applies: the polar decomposition S = J∆1/2 of the closeable
operator S◦ : AΩβ 	→ A∗Ωβ, A ∈ Rβ , provides a conjugate-linear isometric map-
ping J from Hβ onto Hβ and a positive self-adjoint (in general, unbounded, but
densely defined and invertible) operator ∆ acting on Hβ . The modular conjugation
J satisfies J2 = 1 and

J∆1/2AΩβ = A∗Ωβ ∀A ∈ Rβ .

∆ is called the modular operator. J induces a ∗-anti-isomorphism j : A 	→ JA∗J
between the algebra of quasi-local observables Rβ and its commutant (Tomita’s
theorem). The opposite net

O → j
(Rβ(O)

)
, O ⊂ R4,

provides a perfect mirror image of the net of local observables. The unitary oper-
ators ∆is, s ∈ R, induce a one-parameter group of ∗-automorphism σ : s 	→ σs of
Rβ ,

σs(A) = ∆isA∆−is, s ∈ R, A ∈ Rβ .

σ is called the modular automorphism. Takesaki has shown that ωβ is a (σ,−1)-
KMS state. Moreover, σ is uniquely determined by this condition and consequently
∆is = exp

(−isβHβ

)
.

We conclude that in a thermal field theory the modular automorphism σ
coincides – up to a scaling factor – with the time-evolution τ̂ . Consequently, the
modular automorphism respects the net structure too, i.e.,

σs
(Rβ(O)

)
= Rβ(O + sβ · e) ∀s ∈ R. (4)

The real parameter β ∈ R+ appearing (until now β was just a dummy index) in (4)
distinguishes a length scale, which is called the thermal wave-length. In fact, we
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can turn the argument up side down: given a thermal field theory O → Rβ(O), it is
not necessary to provide an explicit expression for the effective Hamiltonian Hβ . It
is already uniquely specified by the pair (Rβ ,Ωβ): by Stone’s theorem there exists
a unique self-adjoint generator Hβ such that ∆ = exp(−βHβ). Modular theory
implies that for 0 ≤ β <∞ the operator Hβ is not semi-bounded but its spectrum
is symmetric and consists typically of the whole real line [A 72], [tBW].

2.4 Doubling the degrees of freedom

We now present the first step of our construction, which can be understood as a
local purification. Consider some δ > 0 and two space-time regions O and Ô such
that O + te ⊂ Ô for |t| < δ. In a forthcoming paper [Jä 04] we will show that the
so-called split property for the net of von Neumann algebras O → Rβ(O) follows
from the nuclearity condition (2). It asserts that there exists a type I factor N
such that

Rβ(O) ⊂ N ⊂ Rβ(Ô). (5)

Remark. If the KMS state is locally normal w.r.t. the vacuum representation, then
the split property for the vacuum representation automatically implies the split
property for the thermal representation.

The following result is a consequence of the split inclusion (5).

Lemma 2.2. Let O be an open and bounded space-time region. Then the von Neu-
mann algebra

Mβ(O) := Rβ(O) ∨ j(Rβ(O)
)

is naturally isomorphic to the tensor product of Rβ(O) and j
(Rβ(O)

)
. I.e., there

exists a unitary operator V : Hβ → Hβ ⊗Hβ such that

VMβ(O)V ∗ = Rβ(O) ⊗ j
(Rβ(O)

)
. (6)

Proof. The split property (5) implies that there exists a product vector Ωp ∈ Hβ ,
cyclic and separating for Rβ(O) ∨Rβ(Ô)′, such that

(Ωp , ABΩp) = (Ωβ , AΩβ)(Ωβ , BΩβ)

for all A ∈ Rβ(O) and B ∈ Rβ(Ô)′ [Jä 04]. The product vector Ωp can be utilized
to define a linear operator V : Hβ → Hβ ⊗Hβ by linear extension of

V ABΩp = AΩβ ⊗BΩβ , (7)

where A ∈ Rβ(O) and B ∈ Rβ(Ô)′. The operator V is unitary. Inspecting (7) we
find

VRβ(O)V ∗ = Rβ(O) ⊗ 1 and VRβ(Ô)′V ∗ = 1⊗Rβ(Ô)′. (8)

The inclusion j
(Rβ(O)

) ⊂ Rβ(Ô)′ implies that the von Neumann algebra Mβ(O)
is naturally isomorphic to the tensor product of Rβ(O) and j

(Rβ(O)
)

and the
relation (6) is a consequence of (8). �
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Remark. The algebras Rβ(O) and j
(Rβ(O)

)
are weakly statistically independent,

i.e., 0 �= A ∈ Rβ(O) and 0 �= B ∈ j
(Rβ(O)

)
implies AB �= 0 (Schlieder property)

[Jä 04]. In this sense one can speak of a doubling of degrees of freedom.

The elements of Mβ(O) will in general not show analyticity properties with
respect to Ωβ . Thus it seems that the essence of a thermal field theory gets lost,
when we ‘double the degrees of freedom’ and consider the net O → Mβ(O) instead
of the net of observables O → Rβ(O). But, due to the natural tensor product
structure of Mβ(O), we can recover certain analyticity properties w.r.t. Ωp and a
new auxiliary one-parameter group of unitary operators:

Definition. A one-parameter group of unitary operators s 	→ ∆−is
p : Hβ → Hβ ,

s ∈ R, and an anti-unitary operator Jp : Hβ → Hβ are given by linear extension
of

∆−is
p ABΩp := V ∗(∆−isAΩβ ⊗ ∆isBΩβ

)
, s ∈ R, (9)

and, respectively,
JpABΩp := V ∗(JAΩβ ⊗ JBΩβ

)
,

where A ∈ Rβ(O) and B ∈ Rβ(Ô)′.

By Stone’s theorem there exists a unique self-adjoint operator Hp such that

∆p = e−βHp and HpΩp = 0.

The vector Ωp ∈ Hβ is cyclic and separating for Rβ(O) ∨Rβ(Ô)′. It follows from
the definition (7) of V and the Reeh-Schlieder property of Ωβ that the product
vector Ωp is cyclic (and of course separating) for Mβ(O) too.

Theorem 2.3. Let O◦ and O be two space-time regions such that O◦ + te ⊂ O
for |t| < δ◦. Then

(i) ∆−is
p respects the local structure of Mβ(O) for |s| sufficiently small, i.e.,

∆−is
p Mβ(O◦)∆is

p ⊂ Mβ(O◦ + sβ · e) ∀|sβ| < δ◦. (10)

(ii) the group of unitaries s 	→ ∆−is
p coincides for a ∈ A(O◦) and |sβ| < δ◦ – up

to rescaling – with the time-evolution, i.e.,

∆−is
p πβ(a)∆is

p = πβ
(
τsβ(a)

)

for |sβ| < δ◦.

Proof. The inclusion (10) follows from the definition (9) of ∆p and the inclusions

τ̂t
(Rβ(O◦)

) ⊂ Rβ(O◦ + te) and τ̂t
(
j(Rβ(O◦))

) ⊂ j
(Rβ(O◦ + te)

)
,

which hold for |t| < δ◦. �
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Lemma 2.4. Consider some δ > 0 and two space-time regions O and Ô such that
O + te ⊂ Ô for |t| < δ. Let Ωp and ∆p be the product vector specified in (7)
and the operator defined in (9). Then Mβ(O)Ωp is in the domain D(

∆α
p

)
of ∆α

p

for 0 ≤ α ≤ 1/2. Moreover, the identity Jp∆
1/2
p MΩp = M∗Ωp holds true for all

M ∈ Mβ(O).

Proof. By definition, J2
p = 1, JpΩp = Ωp and

Jp∆1/2
p ABΩp = V ∗(A∗Ωβ ⊗B∗Ωβ

)
= A∗B∗Ωp = (AB)∗Ωp

for all A ∈ Rβ(O) and B ∈ j
(Rβ(O)

)
. Since pα ≤ max(1, p) < 1+p for 0 ≤ α ≤ 1

and p > 0, the spectral resolution of the positive operator ∆1/2
p implies that

Mβ(O)Ωp ⊂ D(
∆α

p

)
for 0 ≤ α ≤ 1/2 . �

Nevertheless, Jp and ∆p are not the modular objects associated to
(Mβ(O),Ωp

)
.

Theorem 2.5. Let O◦ and O be two space-time regions such that O◦ + te ⊂ O
for |t| < δ◦. Then the inclusion of von Neumann algebras Mβ(O◦) ⊂ Mβ(O) is
a standard split inclusion and there exists a unitary operator W : Hβ → Hβ ⊗Hβ

such that

WMβ(O◦)W ∗ = Mβ(O◦) ⊗ 1 and WMβ(O)′W ∗ = 1⊗Mβ(O)′.

(A split inclusion A ⊂ B is called standard (see [DL]), if there exists a vector Ω
which is cyclic for A′ ∧ B as well as for A and B.)

Proof. From the split inclusions

Rβ(O◦) ⊂ N◦ ⊂ Rβ(O) and j
(Rβ(O◦)

) ⊂ j
(N◦

) ⊂ j
(Rβ(O)

)

we infer that there exists a type I factor, namely N◦ ∨ j
(N◦

)
, such that

Mβ(O◦) ⊂ N◦ ∨ j
(N◦

) ⊂ Mβ(O).

All infinite type I factors with infinite commutant on the separable Hilbert space
Hβ are unitarily equivalent to B(Hβ)⊗1 ([KR], Chapter 9.3). Thus there exists a
unitary operator W : Hβ → Hβ ⊗Hβ such that N◦ ∨ j

(N◦
)

= W ∗(B(Hβ)⊗1
)
W .

Now consider ωβ( . ) := (Ωβ , .Ωβ) and ωp( . ) := (Ωp , .Ωp) as two normal states
over Mβ(O◦) and Mβ(O)′, respectively. Set

φp(C) := (ωβ ⊗ ωp)(WCW ∗) ∀C ∈ Mβ(O◦) ∨Mβ(O)′.

Then φp is a normal state over Mβ(O◦) ∨ Mβ(O)′, which satisfies φp(MN) =
ωβ(M) · ωp(N) for all M ∈ Mβ(O◦) and N ∈ Mβ(O)′. In the presence of a
separating vector each normal state is a vector state ([KR, 7.2.3]). In fact, there
exists a unique vector η in the natural positive cone P�

(Mβ(O◦) ∨Mβ(O)′,Ωβ

)

such that
(η , MNη) = φp(MN) = (Ωβ , MΩβ)(Ωp , NΩp)
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for allM ∈ Mβ(O◦) andN ∈ Mβ(O)′ ([BR, 2.5.31]). Thus the operatorW : Hβ →
Hβ ⊗Hβ can now be specified by linear extension of

WMNη = MΩβ ⊗NΩp, (11)

where M ∈ Mβ(O◦) and N ∈ Mβ(O)′. Consequently,

WMβ(O◦)W ∗ = Mβ(O◦) ⊗ 1 and WMβ(O)′W ∗ = 1⊗Mβ(O)′.

The vector Ωβ is cyclic and separating for Mβ(O◦) and the vector Ωp is cyclic
and separating for Mβ(O)′. Thus the vector Ωβ ⊗ Ωp is cyclic and separating for
Mβ(O◦) ⊗Mβ(O)′ and the split inclusion Mβ(O◦) ⊂ Mβ(O) is standard. �

3 Localized excitations of a KMS state

Taking the auxiliary structure developed in the previous section into account, we
can now adapt the method of Buchholz and Junglas to thermal representations.

3.1 Consequences of the nuclearity condition

Imposing strict localization on an excitation (see Proposition 3.3 (iii) below) does
not lead to a convenient notion. The split property provides the key to a more
convenient definition of a localized excitation. However, it leaves a lot of freedom,
for instance one could request additional properties for some subregion in O◦ ∩Ô.
In this sense the following definition only provides one possible choice, fixed by
choosing a specific product vector η.

Definition. Let O◦,O and Ô denote three space-time regions such that for some
δ◦, δ > 0

O◦ + te ⊂ O ∀|t| < δ◦ and O + te ⊂ Ô ∀|t| < δ. (12)

The Hilbert space HΛ ⊂ Hβ , Λ := (O◦,O, Ô), of localized excitations of the KMS
state ωβ is given by

HΛ := Mβ(O◦)η. (13)

The projection onto HΛ is denoted by EΛ.

Notation. Here Mβ(O◦) denotes the von Neumann algebra generated by Rβ(O◦)
and j

(Rβ(O◦)
)

and η ∈ Hβ denotes the unique4 product vector in the natural
positive cone P�

(Mβ(O◦) ∨Mβ(O)′,Ωβ

)
satisfying

(η , MNη) = (Ωβ , MΩβ)(Ωp , NΩp) (14)

4Fixing the product vector with respect to some natural positive cone is mathematically
convenient, but not necessary. In fact, we expect that different ‘boundary conditions’ are realized
by different choices of η. In the thermodynamic limit different choices of the boundary conditions
might lead to different phases.
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for all M ∈ Mβ(O◦) and N ∈ Mβ(O)′. As before, Ωp denotes the unique product
vector in the natural positive cone P�

(Rβ(O) ∨Rβ(Ô)′,Ωβ

)
satisfying

(Ωp , ABΩp) = (Ωβ , AΩβ)(Ωβ , BΩβ) (15)

for all A ∈ Rβ(O) and B ∈ Rβ(Ô)′.

Note that W – as specified in (11) – is unitary and WMNW ∗ = M ⊗N for
M ∈ Mβ(O◦) and N ∈ Mβ(O)′. Using the isometry W we can write

HΛ = W ∗Mβ(O◦)Ωβ ⊗ Ωp = W ∗(Hβ ⊗ Ωp)

and EΛ = W ∗(1⊗PΩp)W . Here PΩp ∈ B(Hβ) denotes the projection onto C ·Ωp.

The following proposition summarizes the properties of the Hilbert space HΛ.
It justifies the claim stated at the beginning of this subsection.

Proposition 3.1. Given a triple Λ := (O◦,O, Ô) of space-time regions as specified
in (12) we find:

(i) The Hilbert space HΛ is invariant under the action of elements of Mβ(O◦),
i.e., Mβ(O◦)HΛ = HΛ.

(ii) Vectors in HΛ induce product states for the pair
(Mβ(O◦),Mβ(O)′

)
: if Ψ ∈

HΛ, then
(Ψ , MNΨ) = (Ψ , MΨ)(Ωp , NΩp)

for all M ∈ Mβ(O◦) and N ∈ Mβ(O)′.
(iii) The vector states associated with HΛ represent strictly localized excitations

of the KMS state, i.e., they coincide with the original KMS state ωβ in the
space-like complement of Ô: if Ψ ∈ HΛ, then

(Ψ , πβ(a)Ψ) = ωβ(a) ∀a ∈ Ac(Ô).

Here Ac(Ô) denotes the C∗-algebra generated by {a ∈ A : [a, b] = 0 ∀b ∈
A(Ô)} and not the commutant of πβ

(A(Ô)
)

in B(Hβ).
(iv) HΛ is complete in the following sense: to every normal state φ on Mβ(O◦)

there exists a Φ ∈ HΛ such that (Φ , MΦ) = φ(M) for all M ∈ Mβ(O◦).

Proof. We simply adapt the proof of the corresponding result by Buchholz and
Junglas to our situation:

(i) follows from the definition;
(ii) follows from (13) and (14);
(iii) follows from (13), (14) and (15).
(iv) Since Mβ(O◦) has a cyclic and separating vector, there exists a vector Φ̃ ∈

Hβ which induces the given normal state φ on Mβ(O◦). It follows that the
vector Φ := W ∗(Φ̃ ⊗ Ωp) ∈ HΛ satisfies (iv). �
We need one more lemma, in order to show that the restriction of the operator

∆α
p to the subspace HΛ is trace class for 0 < α < 1/2.
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Lemma 3.2. Assume that the nuclearity condition (2) holds true. It follows that
(i) the maps ϑα,O : Mβ(O) → Hβ,

M 	→ ∆α
pMΩp, 0 ≤ α ≤ 1/2,

are nuclear for 0 < α < 1/2;
(ii) the nuclear norm of ϑα,O is bounded by

‖ϑα,O‖ ≤ e2crd
(
α−m+(1/2−α)−m

)
, c,m, d > 0,

where r denotes the diameter of O and c,m, d are the constants appearing in
the bound (2) on the nuclear norm of the map Θα,O.

Proof. Let A ∈ Rβ(O) and B ∈ j
(Rβ(O)

)
. By definition,

ϑα,O(AB) = V ∗(∆αAΩβ ⊗ ∆−αBΩβ

)
.

The maps A 	→ ∆αAΩβ and B 	→ ∆−αBΩβ are nuclear for 0 < α < 1/2. The
tensor product of two nuclear maps itself is a nuclear map and the norm is bounded
by the product of the nuclear norms [P].

Proposition 3.3. Let Λ(O◦,O, Ô) be a triple of space-time regions as specified in
(12). Assume the nuclearity condition (2) holds true. It follows that the operator
∆α

pEΛ, acting on the Hilbert space Hβ, is of trace-class for 0 < α < 1/2, and

Tr |∆α
pEΛ| ≤ e2crd

(
α−m+(1/2−α)−m

)
, c,m, d > 0,

where r denotes the diameter of O and c,m, d are the constants appearing in the
bound (2) on the nuclear norm of the map Θα,O.

Proof. The proof of this proposition is more or less identical to the one given by
Buchholz and Junglas [BJu 89] for the vacuum case. We present it for completeness
only.
i) The first step is to construct a convenient orthonormal basis of HΛ. Let {Ψi}i∈N
be an orthonormal basis of Hβ with Ψ1 = Ωβ . Set

Ui,j := W ∗(Mi,j ⊗ 1)W, (16)

where Mi,j ∈ B(Hβ) are matrix units given by

Mi,jΨ := (Ψj ,Ψ)Ψi ∀Ψ ∈ Hβ .

Since W ∗(B(Hβ)⊗1
)
W = N◦∨ j

(N◦
)
, we infer from (16) that Ui,j ∈ N◦∨ j

(N◦
)
.

Furthermore,

U∗
i,j = Uj,i, Ui,jUk,l = δj,kUi,l, and s − limN→∞

N∑

i=1

Ui,i = 1 .
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Combining (11) and (16) we find Ui,1η = W ∗(Ψi ⊗ Ωp). Thus {Ui,1η}i∈N is the
desired orthonormal basis of HΛ. Note that (11) holds true for all N ∈ (N◦ ∨
j(N◦)

)′. Therefore ‖Nη‖ = ‖NΩp‖. Consequently, we can introduce an isometry
I ∈ N◦ ∨ j

(N◦
)

by setting

Nη = INΩp ∀N ∈ (N◦ ∨ j(N◦)
)′
.

We can now represent the orthonormal basis {Ui,1η}i∈N by vectors Γi := Ui,1η =
Ui,1IΩp, where Ui,1I ∈ N◦ ∨ j

(N◦
) ⊂ Mβ(O). It follows that Γi ∈ D(

∆α
p

)
for

0 < α < 1/2 and i ∈ N. Especially, η =: Γ1 ∈ D(
∆α

p

)
for 0 < α < 1/2.

ii) Polar decomposition of the closeable operator ∆α
pEΛ yields ∆α

pEΛ = F ·|∆α
pEΛ|,

where F is a partial isometry with range in HΛ. Introducing a set of linear func-
tionals φi (which can be chosen to be continuous with respect to the ultra-weakly
topology induced by Mβ(O) [BD’AL 90b]) and vectors Φi ∈ Hβ corresponding to
the nuclear map ϑα,O we obtain

Tr |∆α
pEΛ| =

∑

i

(Ui,1IΩp , F
∗∆α

pUi,1IΩp)

=
∑

i

(
Ui,1IΩp , F

∗ϑα,O(Ui,1I)
)

=
∑

i

∑

n

φn(Ui,1I) · (Ui,1IΩp , F
∗Φn)

≤
∑

i

∑

n

|φn(Ui,1I)| · ‖U1,iF
∗Φn‖.

Buchholz and Junglas have shown the following inequality [BJu 89]:

∑

i

|ψ(Ui,1)| · ‖U1,iΨ‖ ≤ ‖ψ‖ ‖Ψ‖,

for Ψ ∈ Hβ and ψ an ultra-weakly continuous linear functional on Mβ(O). Con-
sequently, Tr |∆α

pEΛ| ≤
∑

n ‖φn‖ ‖Φn‖. Taking the infimum with respect to all
decompositions of the respective nuclear maps we find Tr |∆α

pEΛ| ≤ ‖ϑα,O‖. �

3.2 Local KMS states for a new temperature

Proposition 3.3 allow us to define “local quasi-Gibbs” states, which are local (τ, β′)-
KMS states for the new temperature 1/β′ in the interior of O◦ and (τ, β)-KMS
states for the original temperature 1/β outside of Ô. Before we do so, we give
a precise meaning to the statement that a local excitation ωΛ of a KMS state
ωβ satisfies a local KMS condition for the new temperature 1/β′ in a bounded
region O◦. Note that any β′ (0 < β′ < ∞) can be decomposed into some α
(0 < α < 1/2) and some (minimal) n ∈ N such that β′ = αnβ.
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Definition. Let β′ > 0 and let n ∈ N be the smallest natural number such that
nαβ = β′ for some α (0 ≤ α ≤ 1/2). A state ωΛ satisfies the local KMS condition at
temperature 1/β′ in some bounded space-time region O◦ ⊂ R4 if for any subregion
O◦◦ ⊂ O◦ whose closure is contained in the interior of O◦ there exists some δ◦◦ > 0
and a function Fa,b for every pair of operators a, b ∈ A(O◦◦) such that

(i) Fa,b is defined on

Gn,α := {z ∈ C | 0 < �z < nαβ} \ {z ∈ C | |�z| ≥ δ◦◦,
�z = kαβ, k = 1, . . . , n− 1};

(ii) Fa,b is bounded and analytic in its domain of definition;
(iii) Fa,b is continuous for �z ↘ kαβ and �z ↗ kαβ, k = 1, . . . , n− 1;
(iv) Fa,b is continuous at the boundary for �z ↘ 0 and �z ↗ nαβ;
(v) The respective boundary values are

Fa,b(t) = ωΛ

(
aτt(b)

)
and Fa,b(t+ inαβ) = ωΛ

(
τt(b)a

)
for |t| < δ◦◦. (17)

Remark. To heat up the system locally is quite simple: For β′ < β/2 we find n = 1,
i.e., no cuts appear in G1,α = {z ∈ C | 0 < �z < αβ}. To cool down the system
locally is more delicate. One needs at least n cuts, where n is the minimal natural
number such that β′ = nαβ (0 < α < 1/2). Whether or not it is useful to operate
with more cuts then necessary is unknown to us.

Proposition 3.4. Let Λ := (O◦,O, Ô) be a triple of space-time regions, as specified
in (12). Let n ∈ N be the minimal natural number such that β′ = nαβ, 0 < α <
1/2. Set, for n and α fixed,

ρΛ :=

(
EΛ∆α

pEΛ

)n

Tr
(
∆α

pEΛ

)n and ωΛ(a) := Tr ρΛπβ(a) ∀a ∈ A. (18)

Then ρΛ is a density matrix, i.e., ρΛ > 0 and Tr ρΛ = 1, and the following
statements hold true:

(i) The states ωΛ are product states, which coincide with the given KMS state
ωβ in the space-like complement of Ô; i.e.,

ωΛ(ab′) = ωΛ(a)ωβ(b′)

for all a ∈ A(O◦) and b′ ∈ Ac(Ô). As before, Ac(Ô) denotes the C∗-algebra
generated by {a ∈ A | [a, b] = 0 ∀b ∈ A(Ô)}.

(ii) The states ωΛ are local (τ, nαβ)-KMS states for the space-time region O◦.

Remark. For O◦,O, Ô → R4 the denominator in (18) might go to ∞ or 0. In any
case we will leave the representation: we will have no operator convergence, neither
in the weak nor in the strong sense and therefore we can only rely on expectation
values. After performing the thermodynamic limit, we will use these expectation
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values to construct a new representation and check whether the new state satisfies
the KMS condition [Na]. We will see that it will do so, under the assumptions we
have imposed on the phase-space properties of our thermal field theory.

Proof. (i) Let a ∈ A(O◦) and b′ ∈ Ac(Ô) and let PΩp denote the projection
onto C · Ωp. Since EΛ ∈ Mβ(O◦)′ ⊂ πβ

(A(O◦)
)′

, it follows that [EΛ, πβ(a)] = 0.
Moreover, EΛ = W ∗(1⊗ PΩp)W implies

EΛπβ(b′)EΛ = ωβ(b′)EΛ ∀b′ ∈ Ac(Ô).

Using the cyclicity of the trace we find

ωΛ(ab′) =
Tr

(
EΛ∆α

pEΛ

)n
πβ(a)EΛπβ(b′)EΛ

Tr
(
∆α

pEΛ

)n

= ωΛ(a)ωβ(b′).

(ii) Consider the case n = 2. Let δ◦◦ > 0 and O◦◦ be an open space-time region such
that O◦◦+te ⊂ O◦ for |t| < δ◦◦. Let a, b ∈ A(O◦◦). By assumption, aτt(b) ∈ A(O◦)
for |t| < δ◦◦. Set

F
(1)
a,b (z) :=

Tr πβ(a)EΛ∆−iz/β
p πβ(b)∆α+iz/β

p EΛ∆α
pEΛ

Tr
(
∆α

pEΛ

)2

for 0 < �z < αβ. The function F
(1)
a,b (z) is analytic in its domain and continuous

at the boundary. We recall that ∆−it/β
p πβ(b)∆it/β

p = πβ
(
τt(b)

) ∈ πβ
(A(O◦)

)
for

|t| < δ◦◦. Using once again the cyclicity of the trace and EΛ ∈ πβ
(A(O◦)

)′
, we

conclude that

lim
�z↘0

F
(1)
a,b (z) =

Tr πβ(a)EΛπβ
(
τ
z(b)

)
∆α

pEΛ∆α
pEΛ

Tr
(
∆α

pEΛ

)2

=
Tr πβ

(
aτ
z(b)

)(
EΛ∆α

pEΛ

)2

Tr
(
∆α

pEΛ

)2 ∀|�z| < δ◦◦.

Thus
lim

�z↘0
F

(1)
a,b (z) = ωΛ

(
aτ
z(b)

) ∀|�z| < δ◦◦. (19)

On the other hand, for |�z| < δ◦◦,

lim
�z↗αβ

F
(1)
a,b (z) =

Tr πβ(a)EΛ∆α
pπβ

(
τ
z(b)

)
EΛ∆α

pEΛ

Tr
(
∆α

pEΛ

)2

=
Tr πβ(a)EΛ∆α

pEΛπβ
(
τ
z(b)

)
∆α

pEΛ

Tr
(
∆α

pEΛ

)2 .
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For αβ < �z < 2αβ we set

F
(2)
a,b (z) :=

Tr πβ(a)EΛ∆α
pEΛ∆−α−iz/β

p πβ(b)∆2α+iz/β
p EΛ

Tr
(
∆α

pEΛ

)2 .

The function F (2)
a,b (z) is analytic in its domain and continuous at the boundary. By

definition,

lim
�z↘αβ

F
(2)
a,b (z) =

Tr πβ(a)EΛ∆α
pEΛπβ

(
τ
z(b)

)
∆α

pEΛ

Tr
(
∆α

pEΛ

)2

= lim
�z↗αβ

F
(1)
a,b (z) ∀|�z| < δ◦◦.

Furthermore, F (2)
a,b satisfies

lim
�z↗2αβ

F
(2)
a,b (z) =

Tr πβ(a)EΛ∆α
pEΛ∆α

pπβ
(
τ
z(b)

)
EΛ

Tr
(
∆α

pEΛ

)2

=
Tr πβ(a)

(
EΛ∆α

pEΛ

)2
πβ

(
τ
z(b)

)

Tr
(
∆α

pEΛ

)2 ∀|�z| < δ◦◦.

Thus
lim

�z↗2αβ
F

(2)
a,b (z) = ωΛ

(
τ
z(b)a

) ∀|�z| < δ◦◦. (20)

Using the Edge-of-the-Wedge theorem [SW] we conclude that F (1)
a,b and F

(2)
a,b are

the restrictions to the upper (resp. lower) half of the double cut strip

G2,α = {z ∈ C | 0 < �z < 2αβ} \ {z ∈ C | |�z| ≥ δ◦◦,�z = αβ}
of a function

Fa,b(z) :=






F
(2)
a,b (z)

F
(1)
a,b (z)





for

{
αβ < �z < 2αβ,
0 < �z < αβ,

}

defined and continuous on the closure of G2,α and analytic for z ∈ G2,α. From
(19) and (20) we infer Fa,b(t) = ωΛ

(
aτt(b)

)
and Fa,b(t + i2αβ) = ωΛ

(
τt(b)a

)
for

|t| < δ◦◦. Analogous results for arbitrary n ∈ N can be established by the same
line of arguments but with considerable more effort. �

4 The thermodynamic limit

We will now control the surface energies in the limit O◦,O, Ô → R4. Since we
do not have explicit expressions for the surface energies, our approach is quite
involved. The first step is to control the convergence of product vectors.
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4.1 Consequences of the cluster condition

Let us introduce some notation: Let Λi =
(O(i)

◦ ,O(i), Ô(i)
)

be a sequence of triples
of double cones with diameters

(
r
(i)
◦ , r(i), r̂(i)

)
. We consider the product vectors Ω(i)

p

and ηi, χi ∈ P�
(Mβ(O(i)

◦ ) ∨Mβ(O(i))′,Ωβ

)
, which satisfy

(
Ω(i)

p , AB Ω(i)
p

)
= (Ωβ , AΩβ)(Ωβ , BΩβ)

for A ∈ Rβ

(O(i)
)

and B ∈ Rβ

(Ô(i)
)′, and

(ηi , MN ηi) =
(
Ωβ , MΩβ

)(
Ω(i)

p , NΩ(i)
p

)

(χi , MN χi) = (Ωβ , MΩβ)(Ωβ , NΩβ)

for M ∈ Mβ

(O(i)
◦

)
and N ∈ Mβ

(O(i)
)′.

So far there was no restriction on the relative size of the regions O(i) and
Ô(i). We will now exploit this freedom: If the net of local observables O → Rβ(O)
is regular from the outside, then Mβ(O)′ ∩Mβ(Ô) → C · 1 as Ô ↘ O. Our aim
is to control ‖ηi − Ωβ‖. The following lemma shows that in order to do so it is
sufficient to control ‖χi − Ωβ‖.
Lemma 4.1. Let

{
(O(i)

◦ ,O(i))
}
i∈N be a sequence of pairs of double cones. Then

one can find a sequence of double cones {Ô(i)}i∈N such that (12) holds true and
limi→∞ ‖χi − ηi‖ = 0.

Proof. Consider a sequences of pairs of double cones
{(O(i)

◦ ,O(i)
)}

i∈N eventually
exhausting all of R4. For each i ∈ N fixed we consider a sequence of double cones{Ô(i,k)

}
k∈N such that Ô(i,k) ↘ O(i) for k → ∞. In order to ease the notation we

set
Ai := Mβ

(O(i)
◦

)
, Bi := Mβ

(O(i)
)
, Ci,k := Mβ

(Ô(i,k)
)
,

Di := Ai ∨ B′
i, and Ei,k := Ai ∨ C′

i,k. For each i ∈ N fixed, the sequence {Ei,k}k∈N
of algebras satisfies Ei,k+1 ⊂ Ei,k (this follows from Ci,k+1 ⊂ Ci,k) and ∩kEi,k =
Di. Now let Ω(i,k)

p denote the unique product vector in the natural positive cone
P�

(Rβ(O(i)) ∨Rβ(Ô(i,k))′,Ωβ

)
satisfying

(
Ω(i,k)

p , ABΩ(i,k)
p

)
= (Ωβ , AΩβ)(Ωβ , BΩβ)

for all A ∈ Rβ

(O(i)
)

and B ∈ Rβ

(Ô(i,k)
)′. Note that for Ci,k ∈ C′

i,k

(
Ω(i,k)

p , Ci,kΩ(i,k)
p

)
= (Ωβ , Ci,kΩβ).

If we choose product vectors ηi,k and χi in the natural cone P�(Di,Ωβ) such that

(ηi,k , MNηi,k) =
(
Ωβ , MΩβ

)(
Ω(i,k)

p , NΩ(i,k)
p

)
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and (χi , MNχi) = (Ωβ , MΩβ)(Ωβ , NΩβ) for all M ∈ Ai and N ∈ B′
i, then by a

result of Araki [A 74]

‖ηi,k − χi‖2 ≤ sup
Di∈Di,‖Di‖=1

∣
∣(ηi,k, Diηi,k) − (χi, Diχi)

∣
∣.

Now assume that for each i ∈ N fixed there exist a sequence {Ei,k ∈ Ei,k | ‖Ei,k‖ =
1}k∈N such that

lim
k→∞

∣
∣(ηi,k , Ei,kηi,k) − (χi , Ei,kχi)

∣
∣ ≥ εi. (21)

We demonstrate that this leads to a contradiction. The linear functional
(ηi,k , . ηi,k) − (χi , . χi) is ultra-weakly continuous on the von Neumann alge-
bra Di. Therefore the sequence {Ei,k ∈ Ei,k | ‖Ei,k‖ = 1}k∈N has a weak limit
point w − limk→∞ Ei,k =: Di ∈ Di = ∩kEi,k such that

∣
∣(ηi,k, Diηi,k) − (χi, Diχi)

∣
∣ >

1
2
εi ∀k > ki

and some ki ∈ N, in contradiction to
∣
∣(ηi,k, Ei,kηi,k) − (χi, Ei,kχi)

∣
∣ = 0 ∀Ei,k ∈ Ei,k, ∀k ∈ N.

Therefore, the assumption (21) can not hold true. It follows that there exists some
ki ∈ N such that

sup
D∈Di,‖D‖=1

∣
∣(ηi,k , Dηi,k) − (χi , Dχi)

∣
∣ < εi ∀k ≥ ki.

If we set Ô(i) := Ô(i,ki), then we can choose εi such that limi→∞ ‖χi−ηi‖ = 0. �
We will now show that the product vector χ converges to Ωβ if O◦ and O

tend to R4 and the relative size of O◦ and O obeys the restrictions imposed by
the cluster condition.

Lemma 4.2. Let
{(O(i)

◦ ,O(i)
)}

i∈N denote a sequence of pairs of double cones with

diameters
(
r
(i)
◦ , r(i)

)
, i ∈ N. Assume that limi→∞

(
r
(i)
◦

)d′(
δ
(i)
◦

)−γ = 0. It follows
that ‖χi − Ωβ‖ → 0 as i→ ∞.

Proof. Since χi ∈ P�
(Mβ(O(i)

◦ ) ∨Mβ(O(i))′,Ωβ

)
, we can again rely on the result

of Araki [A 74] concerning the distance of two vectors which belong to the natural
positive cone P�

(Mβ(O(i)
◦ ) ∨Mβ(O(i))′,Ωβ

)
:

‖χi − Ωβ‖2 ≤ sup
‖Di‖=1

∣
∣(χi, Diχi) − (Ωβ , DiΩβ)

∣
∣;

where the supremum has to be evaluated over all elements Di ∈ Mβ

(O(i)
◦

) ∨
Mβ

(O(i)
)′. Thus limi→∞ ‖χi−Ωβ‖ = 0 follows from the cluster condition (3) and

the assumptions concerning the relative size of O◦ and O stated in the lemma. �
Combining Lemma 4.1 and Lemma 4.2 we conclude that limi→∞ ‖ηi−Ωβ‖ =

0 for an appropriate choice of the relative size of O(i)
◦ , O(i) and Ô(i).
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4.2 Bounds on the quasi-partition function

Let us consider a sequence {Λi} =
{(O(i)

◦ ,O(i), Ô(i)
)}

of triples of double cones
with diameters (r(i)◦ , r(i), r̂(i)). In order to ensure that (for 0 < α < 1/2 and n ∈ N
fixed) the ‘quasi-partition function’

ZΛi(α, n) := Tr
(
EΛi∆

α
p,iEΛi

)n
, Λi =

(O(i)
◦ ,O(i), Ô(i)

)
,

is bounded from below as i→ ∞, it is necessary that O(i) grows rapidely with O(i)
◦ .

Otherwise the energy contained in the boundary, which is necessary to decouple the
local region from the outside, lessens the eigenvalues of EΛi∆α

p,iEΛi so drastically
that it outruns the increase in the number of states contributing to the trace by
enlarging O(i)

◦ . Following once again [BJu 89] we will now demonstrate that the
condition on the relative size of r(i)◦ and r(i) which we imposed in order to show
that χi converges to Ωβ is already sufficient to exclude this possibility.

Lemma 4.3. (Buchholz and Junglas). Let {Λi}i∈N be a sequence of triples of in-
creasing space-time regions such that ‖ηi − Ωβ‖ → 0 for i → ∞. It follows that
HΛi tends to the whole Hilbert space Hβ, i.e., s− limi→∞ EΛi = 1.

Proof. By assumption ηi = W ∗
i

(
Ωβ ⊗Ω(i)

p

)
converges to Ωβ . Therefore the unitary

operators Wi specified in (11) fulfill W ∗
i

(
Φ ⊗ Ω(i)

p

) → Φ for Φ ∈ Hβ as i → ∞.
Recall that EΛi = W ∗

i

(
1 ⊗ P

Ω
(i)
p

)
Wi, where P

Ω
(i)
p

denotes the projection onto

C · Ω(i)
p . Hence

EΛiΦ = W ∗
i

(
1⊗ P

Ω
(i)
p

)
Wi

(
Φ −W ∗

i (Φ ⊗ Ω(i)
p )

)
+W ∗

i

(
Φ ⊗ Ω(i)

p

) → Φ ∀Φ ∈ Hβ ,

as i→ ∞. I.e., s− limi→∞ EΛi = 1. �

Lemma 4.4. Let
{(O(i)

◦ ,O(i)
)}

i∈N denote a sequence of pairs of double cones with

diameters (r(i)◦ , r(i)), i ∈ N. Assume that limi→∞
(
r
(i)
◦

)d′(
δ
(i)
◦

)−γ = 0. It follows
that

lim inf
i

Tr
(
EΛi∆

α
p,iEΛi

)n
> 0 ∀n ∈ N.

Proof. By definition, ∆1/2
p,i is a positive operator. The vector Ω(i)

p is the unique
eigenvector of Hp for the simple eigenvalue {0}. Let {Ωβ,Ψ1,Ψ2, . . .} be an or-
thonormal basis in Hβ and set Γ(i)

j = W ∗
i

(
Ψ(i)

j ⊗ Ωp

) ∈ Hβ . For 0 < α < 1/2

and j ∈ N this implies that
(
Γ(i)
j , ∆2α

p,iΓ
(i)
j

)
=

(
Ψj , ∆2αΨj

)
(Ωp , Ωp) > 0. Since

s− limi→∞ EΛi = 1, it follows that

lim inf
i

Tr
(
EΛi∆

α
p,iEΛi

)2 ≥ lim inf
i

∞∑

j=1

(
EΛiΓ

(i)
j , ∆α

p,iEΛi∆
α
p,iEΛiΓ

(i)
j

)

= lim inf
i

∞∑

j=1

(
∆α

p,iΓ
(i)
j , EΛi∆

α
p,iΓ

(i)
j

)
= lim inf

i

∞∑

j=1

(Ψj , ∆2αΨj) > 0. �
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4.3 Commutator estimates

The unit ball in A∗ is weak∗-compact. Thus for every net of states Λ(O◦,O, Ô) →
ωΛ there exists a subnet of {ωΛi}i∈I converging to some state ω. Whether or
not this state is a (τ, nαβ)-KMS state depends on the energy contained in the
boundary, i.e., the choice of the relative size of O(i)

◦ , O(i) and Ô(i). We show that
the necessary quantitative information restricting the surface energy can be drawn
from the bounds on the nuclear norm of the map Θα,O introduced in (2) and the
cluster condition (3).

Let
{
Λi =

(O(i)
◦ ,O(i), Ô(i)

)}
i∈N be a sequence5 of triples of double cones with

diameters
(
r
(i)
◦ , r(i), r̂(i)

)
, i ∈ N. We will now exploit the fact that the elements

of Ap, p ∈ N, introduced at the end of Subsection 2.2, have good localization
properties in space-time: we will show that there exists some p ∈ N such that

∣
∣ωΛi

(
aτinαβ(b)

) − ωΛi(ba)
∣
∣ < εi ∀a, b ∈ Ap, (22)

where εi ↘ 0 as i → ∞. Thus the surface energy can be controlled by adjusting
the relative size of r(i)◦ , r(i) and r̂(i).

Inspecting the definition (18) of ωΛi we recognize that in order to prove (22)
it is sufficient to control

Tr ρΛi πβ(a)
[
πβ

(
τikαβ(b)

)
, EΛi

]
, k = 1, . . . , n.

Let us consider the case n = 2. Let a, b ∈ Ap, p ∈ N fixed. It follows that τikαβ(b) ∈
Ap for k = 1, 2. Since a and b as well as c := τiαβ(b) and d := τ2iαβ(b) are
almost localized in O(i)

◦ for i sufficiently large, they almost commute with EΛi .
For example,

∣
∣
∣Tr ρΛi πβ(a)

[
πβ

(
τi2αβ(b)

)
, EΛi

]∣∣
∣

=

∣
∣
∣Tr [πβ

(
τi2αβ(b)

)
, EΛi ] ·

(
∆α

p,iEΛi

)2
πβ(a)

∣
∣
∣

Tr
(
∆α

p,iEΛi

)2

≤ ‖ [πβ
(
τi2αβ(b) − di

)
, EΛi ] ‖ · Tr |(∆α

p,iEΛi

)2| · ‖a‖
Tr

(
∆α

p,iEΛi

)2

≤ 2‖a‖
Tr

(
∆α

p,iEΛi

)2 ‖τi2αβ(b) − di‖ ·
(
Tr |∆α

p,iEΛi |
)2
.

Here di ∈ A(O(i)
◦

)
denotes a local approximation of d := τi2αβ(b) ∈ Ap which

satisfies [EΛi , di] = 0. Thus
∣
∣
∣Tr ρΛi πβ(a)

[
πβ

(
τi2αβ(b)

)
, EΛi

]∣∣
∣ ≤ c1

Tr
(
∆α

p,iEΛi

)2 · e−c2(r
(i)
◦ )2p · ec3(r(i))d (23)

5Note that it is sufficient to work with sequences if the operators a and b appearing in (22)
are fixed.
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for certain positive constants c1 = 2C ‖a‖, c2 = κ/(22p) and c3 = 2c
(
α−m+(1/2−

α)−m
)
, where m > 0. In the last inequality we made use of Proposition 3.3 and

the second part of Lemma 2.1. Inspecting the r.h.s. of (23) closely, we find that
the numerator vanishes in the limit i→ ∞, if exp

(−c2(r(i)◦ )2p
) ·exp

(
c3(r(i))d

)
goes

to zero as i → ∞. As has been shown in the previous section, the denominator
does not vanish as i→ ∞, but is bounded from below by some positive constant,
if limi→∞(r(i)◦ )d

′
(δ(i)◦ )−γ = 0.

In other words, the distance δ(i)◦ has to grow sufficiently fast such that ηi →
Ωβ , and p has to be chosen sufficiently large such that the elements in Ap are
sufficiently well localized to fulfill the boundary condition (17) up to some small
error term.

We will now establish the KMS property for all weak limit points of {ωΛ},
provided the regions Λi =

(O(i)
◦ ,O(i), Ô(i)

)
tend to the whole space-time in agree-

ment with the restrictions imposed on the relative size of r(i)◦ , r(i) and r̂(i).

Theorem 4.5. Assume that both the nuclearity condition (2) and the cluster con-
dition (3) hold. Then there exists a choice of triples of space-time regions Λi such
that every weak limit point of the (generalized) sequence {ωΛi}i∈I is a τ-KMS state
at temperature 1/β′ > 0.

Proof. Let n ∈ N and 0 < α < 1/2 be fixed such that β′ = nαβ. Moreover, let
Λi =

(O(i)
◦ ,O(i), Ô(i)

)
be a sequence of triples of double cones with diameters r(i)◦ ,

r(i) and r̂(i) such that limi→∞
(
r
(i)
◦

)d′(
δ
(i)
◦

)−γ = 0 and Ô(i) ↘ O(i) sufficiently fast
as i→ ∞ such that limi→∞ ‖ηi − Ωβ‖ = 0.

Let us recall: the nuclearity condition fixes the constants d and m and the
cluster condition fixes the constants d′ and γ. We will now fix p ∈ N. Taking into
account the restrictions on the relative size of r(i)◦ and r(i) = r

(i)
◦ + 2δ(i)◦ imposed

by the cluster condition (3) – it is sufficient that
(
r
(i)
◦

)d′(
δ
(i)
◦

)−γ goes to zero as
i goes to infinity – we can now chose p such that exp

(−c2(r(i)◦ )2p
) · exp

(
c3(r(i))d

)

goes to zero as i→ ∞.

Let a, b ∈ Ap and consider the case n = 2.

i) Let ω2αβ denote the limit state of a convergent subnet {ωΛi}i∈I . For every ε > 0
we can find an index i ∈ I such that

∣∣ω2αβ

(
aτi2αβ(b) − ba

)∣∣ ≤ ∣∣ωΛi

(
aτi2αβ(b) − ba

)∣∣ + ε.

ii) We now approximate τi2αβ(b), τiαβ(b) and b by local elements in A(O(i)
◦

)
and

apply the commutator estimate (23) several times: for suitable (large) i ∈ N
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we find
∣∣ω2αβ

(
aτi2αβ(b) − ba

)∣∣

≤
∣∣
∣
Tr πβ

(
aτi2αβ(b)

)(
EΛi∆α

p,iEΛi

)2

Tr
(
∆α

p,iEΛi

)2 − ωΛi(ba)
∣∣
∣ + ε

≤
∣
∣
∣
Tr πβ(a)EΛiπβ

(
τi2αβ(b)

)(
∆α

p,iEΛi

)2

Tr
(
∆α

p,iEΛi

)2 − ωΛi(ba)
∣
∣
∣ + 2ε

=
∣
∣
∣
Tr πβ(a)EΛi∆α

p,iπβ
(
τiαβ(b)

)
EΛi∆α

p,iEΛi

Tr
(
∆α

p,iEΛi

)2 − ωΛi(ba)
∣
∣
∣ + 2ε

≤
∣
∣
∣
Tr πβ(a)

(
EΛi∆α

p,i

)2
πβ(b)EΛi

Tr
(
∆α

p,iEΛi

)2 − ωΛi(ba)
∣
∣
∣ + 3ε

≤
∣
∣∣
Tr πβ(a)

(
EΛi∆α

p,iEΛi

)2
πβ(b)

Tr
(
∆α

p,iEΛi

)2 − ωΛi(ba)
∣
∣∣ + 4ε

= 4ε.

Thus ω2αβ

(
aτ2iαβ(b)

)
= ω2αβ(ba) for all a, b ∈ Ap. Now recall that Ap (for each

p ∈ N) is a τ -invariant ∗-subalgebra of the set Aτ of analytic elements of A with
respect to τ . Consequently, ω2αβ is a (τ, 2αβ)-KMS state.

Similar results for arbitrary n ∈ N can be established by the same line of
arguments but with considerable more effort. �

Once we have constructed a (τ, β′)-KMS state ωβ′ , the GNS-representation
πβ′ leads to a new thermal field theory

O → Rβ′(O) := πβ′
(A(O)

)′′
, O ∈ R4,

acting on a new Hilbert space Hβ′ with GNS-vector Ωβ′ . If β �= β′, then the new
thermal field theory will not be unitarily equivalent to the old one [T]. In fact,
there might even be several extremal (τ, nαβ)-KMS states, which induce unitarily
inequivalent representations, i.e., “disjoint thermal field theories”, at the same
temperature 1/β′ = (nαβ)−1.
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