Skip to main content

Advertisement

Log in

An interplay of structure and intrinsic disorder in the functionality of peptidylarginine deiminases, a family of key autoimmunity-related enzymes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Citrullination is a post-translation modification of proteins, where the proteinaceous arginine residues are converted to non-coded citrulline residues. The immune tolerance to such citrullinated protein can be lost, leading to inflammatory and autoimmune diseases. Citrullination is a chemical reaction mediated by peptidylarginine deiminase enzymes (PADs), which are a family of calcium-dependent cysteine hydrolase enzymes that includes five isotypes: PAD1, PAD2, PAD3, PAD4, and PAD6. Each PAD has specific substrates and tissue distribution, where it modifies the arginine to produce a citrullinated protein with altered structure and function. All mammalian PADs have a sequence similarity of about 70–95%, whereas in humans, they are 50–55% homologous in their structure and amino acid sequences. Being calcium-dependent hydrolases, PADs are inactive under the physiological level of calcium, but could be activated due to distortions in calcium homeostasis, or when the cellular calcium levels are increased. In this article, we analyze some of the currently available data on the structural properties of human PADs, the mechanisms of their calcium-induced activation, and show that these proteins contain functionally important regions of intrinsic disorder. Citrullination represents an important trigger of multiple physiological and pathological processes, and as a result, PADs are recognized to play a number of important roles in autoimmune diseases, cancer, and neurodegeneration. Therefore, we also review the current state of the art in the development of PAD inhibitors with good potency and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Alignment was conducted by the MultiProt algorithm (http://www.bioinfo3d.cs.tau.ac.il/MultiProt/) [138]. Structural representation was developed using the VMD platform [184]

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rogers GE, Harding HW, Llewellyn-Smith IJ (1977) The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim Biophys Acta 495(1):159–175

    CAS  PubMed  Google Scholar 

  2. Witalison EE, Thompson PR, Hofseth LJ (2015) Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr Drug Targets 16(7):700–710

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, Thompson PR (2009) Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 12(5):616–627

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M (2004) Structural basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol 11(8):777–783

    CAS  PubMed  Google Scholar 

  5. Hensen SM, Pruijn GJ (2014) Methods for the detection of peptidylarginine deiminase (PAD) activity and protein citrullination. Mol Cell Proteomics 13(2):388–396

    CAS  PubMed  Google Scholar 

  6. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25(11):1106–1118

    CAS  PubMed  Google Scholar 

  7. Jang B, Shin HY, Choi JK, du Nguyen PT, Jeong BH, Ishigami A, Maruyama N, Carp RI, Kim YS, Choi EK (2011) Subcellular localization of peptidylarginine deiminase 2 and citrullinated proteins in brains of scrapie-infected mice: nuclear localization of PAD2 and membrane fraction-enriched citrullinated proteins. J Neuropathol Exp Neurol 70(2):116–124

    CAS  PubMed  Google Scholar 

  8. Cherrington BD, Morency E, Struble AM, Coonrod SA, Wakshlag JJ (2010) Potential role for peptidylarginine deiminase 2 (PAD2) in citrullination of canine mammary epithelial cell histones. PLoS One 5(7):e11768

    PubMed  PubMed Central  Google Scholar 

  9. Asaga H, Nakashima K, Senshu T, Ishigami A, Yamada M (2001) Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 70(1):46–51

    CAS  PubMed  Google Scholar 

  10. Slade DJ, Subramanian V, Fuhrmann J, Thompson PR (2014) Chemical and biological methods to detect post-translational modifications of arginine. Biopolymers 101(2):133–143

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Knuckley B, Causey CP, Jones JE, Bhatia M, Dreyton CJ, Osborne TC, Takahara H, Thompson PR (2010) Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 49(23):4852–4863

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM (1996) Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 271(48):30709–30716

    CAS  PubMed  Google Scholar 

  13. Tsuji Y, Akiyama M, Arita K, Senshu T, Shimizu H (2003) Changing pattern of deiminated proteins in developing human epidermis. J Invest Dermatol 120(5):817–822

    CAS  PubMed  Google Scholar 

  14. Tarcsa E, Marekov LN, Andreoli J, Idler WW, Candi E, Chung SI, Steinert PM (1997) The fate of trichohyalin. Sequential post-translational modifications by peptidy l-arginine deiminase and transglutaminases. J Biol Chem 272(44):27893–27901

    CAS  PubMed  Google Scholar 

  15. Moscarello MA, Wood DD, Ackerley C, Boulias C (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Invest 94(1):146–154

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Horibata S, Coonrod SA, Cherrington BD (2012) Role for peptidylarginine deiminase enzymes in disease and female reproduction. J Reprod Dev 58(3):274–282

    CAS  PubMed  Google Scholar 

  17. Baeten D, Peene I, Union A, Meheus L, Sebbag M, Serre G, Veys EM, De Keyser F (2001) Specific presence of intracellular citrullinated proteins in rheumatoid arthritis synovium: relevance to antifilaggrin autoantibodies. Arthritis Rheum 44(10):2255–2262

    CAS  PubMed  Google Scholar 

  18. Chapuy-Regaud S, Sebbag M, Baeten D, Clavel C, Foulquier C, De Keyser F, Serre G (2005) Fibrin deimination in synovial tissue is not specific for rheumatoid arthritis but commonly occurs during synovitides. J Immunol 174(8):5057–5064

    CAS  PubMed  Google Scholar 

  19. Vossenaar ER, Smeets TJ, Kraan MC, Raats JM, van Venrooij WJ, Tak PP (2004) The presence of citrullinated proteins is not specific for rheumatoid synovial tissue. Arthritis Rheum 50(11):3485–3494

    CAS  PubMed  Google Scholar 

  20. Ying S, Simon M, Serre G, Takahara H (2012) Peptidylarginine deiminases and protein deimination in skin physiopathology, Psoriasis - a systemic disease, Jose O'Daly, IntechOpen. https://doi.org/10.5772/26113. https://www.intechopen.com/books/psoriasis-a-systemic-disease/peptidylarginine-deiminases-and-protein-deimination-in-skin-physiopathology

    Google Scholar 

  21. Tilvawala R, Thompson PR (2019) Peptidyl arginine deiminases: detection and functional analysis of protein citrullination. Curr Opin Struct Biol. https://doi.org/10.1016/j.sbi.2019.01.024

    Article  PubMed  Google Scholar 

  22. Amin B, Voelter W (2017) Human deiminases: isoforms, substrate specificities, kinetics, and detection. Prog Chem Org Nat Prod 106:203–240

    CAS  PubMed  Google Scholar 

  23. Lange S, Gallagher M, Kholia S, Kosgodage US, Hristova M, Hardy J, Inal JM (2017) Peptidylarginine deiminases-roles in cancer and neurodegeneration and possible avenues for therapeutic intervention via modulation of exosome and microvesicle (EMV) release? Int J Mol Sci 18(6):E1196

    PubMed  Google Scholar 

  24. Yang L, Tan D, Piao H (2016) Myelin basic protein citrullination in multiple sclerosis: a potential therapeutic target for the pathology. Neurochem Res 41(8):1845–1856

    CAS  PubMed  Google Scholar 

  25. Wang S (1829) Wang Y (2013) Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta 10:1126–1135

    Google Scholar 

  26. Bicker KL, Thompson PR (2013) The protein arginine deiminases: structure, function, inhibition, and disease. Biopolymers 99(2):155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jang B, Ishigami A, Maruyama N, Carp RI, Kim YS, Choi EK (2013) Peptidylarginine deiminase and protein citrullination in prion diseases: strong evidence of neurodegeneration. Prion 7(1):42–46

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharya SK (2009) Retinal deimination in aging and disease. IUBMB Life 61(5):504–509

    CAS  PubMed  Google Scholar 

  29. Gyorgy B, Toth E, Tarcsa E, Falus A, Buzas EI (2006) Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol 38(10):1662–1677

    PubMed  Google Scholar 

  30. Yamada R, Suzuki A, Chang X, Yamamoto K (2005) Citrullinated proteins in rheumatoid arthritis. Front Biosci 10:54–64

    CAS  PubMed  Google Scholar 

  31. Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148(5):1063–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Robertson WG, Marshall RW (1981) Ionized calcium in body fluids. Crit Rev Clin Lab Sci 15(2):85–125

    CAS  PubMed  Google Scholar 

  33. Takahara H, Okamoto H, Sugawara K (1986) Calcium-dependent properties of peptidylarginine deiminase from rabbit skeletal muscle. Agric Biol Chem 50(11):2899–2904

    CAS  Google Scholar 

  34. Vossenaar ER, Radstake TR, van der Heijden A, van Mansum MA, Dieteren C, de Rooij DJ, Barrera P, Zendman AJ, van Venrooij WJ (2004) Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 63(4):373–381

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Senshu T, Kan S, Ogawa H, Manabe M, Asaga H (1996) Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem Biophys Res Commun 225(3):712–719

    CAS  PubMed  Google Scholar 

  36. Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, Tam J, Xu D, Xanthoudakis S, Nicholson DW, Carafoli E, Nicotera P (2002) Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9(8):818–831

    CAS  PubMed  Google Scholar 

  37. Ostwald TJ, MacLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249(3):974–979

    CAS  PubMed  Google Scholar 

  38. Leberer E, Timms BG, Campbell KP, MacLennan DH (1990) Purification, calcium binding properties, and ultrastructural localization of the 53,000- and 160,000 (sarcalumenin)-dalton glycoproteins of the sarcoplasmic reticulum. J Biol Chem 265(17):10118–10124

    CAS  PubMed  Google Scholar 

  39. Hofmann SL, Goldstein JL, Orth K, Moomaw CR, Slaughter CA, Brown MS (1989) Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. J Biol Chem 264(30):18083–18090

    CAS  PubMed  Google Scholar 

  40. Hofmann SL, Brown MS, Lee E, Pathak RK, Anderson RG, Goldstein JL (1989) Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins. J Biol Chem 264(14):8260–8270

    CAS  PubMed  Google Scholar 

  41. Hofmann SL, Topham M, Hsieh CL, Francke U (1991) cDNA and genomic cloning of HRC, a human sarcoplasmic reticulum protein, and localization of the gene to human chromosome 19 and mouse chromosome 7. Genomics 9(4):656–669

    CAS  PubMed  Google Scholar 

  42. Fliegel L, Newton E, Burns K, Michalak M (1990) Molecular cloning of cDNA encoding a 55-kDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265(26):15496–15502

    CAS  PubMed  Google Scholar 

  43. Milner RE, Famulski KS, Michalak M (1992) Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells. Mol Cell Biochem 112(1):1–13

    CAS  PubMed  Google Scholar 

  44. Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M (1989) Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264(36):21522–21528

    CAS  PubMed  Google Scholar 

  45. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3(10):944–950

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3(1):35–60

    CAS  PubMed  Google Scholar 

  47. Barone V, Del Re V, Gamberucci A, Polverino V, Galli L, Rossi D, Costanzi E, Toniolo L, Berti G, Malandrini A, Ricci G, Siciliano G, Vattemi G, Tomelleri G, Pierantozzi E, Spinozzi S, Volpi N, Fulceri R, Battistutta R, Reggiani C, Sorrentino V (2017) Identification and characterization of three novel mutations in the CASQ1 gene in four patients with tubular aggregate myopathy. Hum Mutat 38(12):1761–1773

    CAS  PubMed  Google Scholar 

  48. Wyllie AH (1987) Cell death. In: Bourne GH (ed) Cytology and cell physiology. International review of cytology. Supplement 17, 4th edn. Elsevier, St. Louis, pp 755–785

    Google Scholar 

  49. Nikoletopoulou V, Markaki M, Palikaras K (1833) Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 12:3448–3459

    Google Scholar 

  50. Bellingan GJ, Laurent GJ (2008) Fate of macrophages once having ingested apoptotic cells: lymphatic clearance or in situ apoptosis? In: Rossi AG, Sawatzky DA (eds) The resolution of inflammation. Progress in inflammation research, Birkhäuser, Basel, pp 75–91

    Google Scholar 

  51. Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283(1):1–16

    CAS  PubMed  Google Scholar 

  52. Penniston JT, Padanyi R, Paszty K, Varga K, Hegedus L, Enyedi A (2014) Apart from its known function, the plasma membrane Ca(2)(+)ATPase can regulate Ca(2)(+) signaling by controlling phosphatidylinositol 4,5-bisphosphate levels. J Cell Sci 127(Pt 1):72–84

    CAS  PubMed  Google Scholar 

  53. Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71(1):129–153

    CAS  PubMed  Google Scholar 

  54. Nachat R, Mechin MC, Takahara H, Chavanas S, Charveron M, Serre G, Simon M (2005) Peptidylarginine deiminase isoforms 1–3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol 124(2):384–393

    CAS  PubMed  Google Scholar 

  55. Raj D, Brash DE, Grossman D (2006) Keratinocyte apoptosis in epidermal development and disease. J Invest Dermatol 126(2):243–257

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim SE, Park JW, Kim MJ, Jang B, Jeon YC, Kim HJ, Ishigami A, Kim HS, Suk KT, Kim DJ, Park CK, Choi EK, Jang MK (2018) Accumulation of citrullinated glial fibrillary acidic protein in a mouse model of bile duct ligation-induced hepatic fibrosis. PLoS ONE 13(8):e0201744

    PubMed  PubMed Central  Google Scholar 

  57. Asaga H, Yamada M, Senshu T (1998) Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem Biophys Res Commun 243(3):641–646

    CAS  PubMed  Google Scholar 

  58. Masson-Bessiere C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, Senshu T, Serre G (2001) The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 166(6):4177–4184

    CAS  PubMed  Google Scholar 

  59. Vossenaar ER, Nijenhuis S, Helsen MM, van der Heijden A, Senshu T, van den Berg WB, van Venrooij WJ, Joosten LA (2003) Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis Rheum 48(9):2489–2500

    CAS  PubMed  Google Scholar 

  60. Chang X, Yamada R, Sawada T, Suzuki A, Kochi Y, Yamamoto K (2005) The inhibition of antithrombin by peptidylarginine deiminase 4 may contribute to pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 44(3):293–298

    CAS  Google Scholar 

  61. Sipila KH, Ranga V, Rappu P, Mali M, Pirila L, Heino I, Jokinen J, Kapyla J, Johnson MS, Heino J (2017) Joint inflammation related citrullination of functional arginines in extracellular proteins. Sci Rep 7(1):8246

    PubMed  PubMed Central  Google Scholar 

  62. Desai J, Mulay SR, Nakazawa D, Anders HJ (2016) Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol Life Sci 73(11–12):2211–2219

    CAS  PubMed  Google Scholar 

  63. Spengler J, Scheel-Toellner D (2014) Neutrophils and their contribution to autoimmunity in rheumatoid arthritis. In: Nicholas AP, Bhattacharya SK (eds) Protein deimination in human health and disease. Springer, New York, pp 97–111

    Google Scholar 

  64. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    CAS  PubMed  Google Scholar 

  65. Mesa MA, Vasquez G (2013) NETosis. Autoimmune Dis 2013:651497

    PubMed  Google Scholar 

  66. Abi Abdallah DS, Denkers EY (2012) Neutrophils cast extracellular traps in response to protozoan parasites. Front Immunol 3:382

    PubMed  Google Scholar 

  67. Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN (2012) More than just tails: intrinsic disorder in histone proteins. Mol BioSyst 8(7):1886–1901

    CAS  PubMed  Google Scholar 

  68. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207(9):1853–1862

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277(51):49562–49568

    CAS  PubMed  Google Scholar 

  70. Gazitt T, Lood C, Elkon KB (2016) Citrullination in rheumatoid arthritis—a process promoted by neutrophil lysis? Rambam Maimonides Med J 7(4):e0027

    PubMed Central  Google Scholar 

  71. Popova C, Dosseva-Panova V, Panov V (2013) Microbiology of periodontal diseases. A review. Biotechnol Biotechnol Equip 27(3):3754–3759

    Google Scholar 

  72. Armitage GC (1999) Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4(1):1–6

    CAS  PubMed  Google Scholar 

  73. van Winkelhoff AJ, Loos BG, van der Reijden WA, van der Velden U (2002) Porphyromonas gingivalis, Bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction. J Clin Periodontol 29(11):1023–1028

    PubMed  Google Scholar 

  74. Farquharson D, Butcher JP, Culshaw S (2012) Periodontitis, porphyromonas, and the pathogenesis of rheumatoid arthritis. Mucosal Immunol 5(2):112–120

    CAS  PubMed  Google Scholar 

  75. Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, Kinloch A, Culshaw S, Potempa J, Venables PJ (2010) Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum 62(9):2662–2672

    CAS  PubMed  PubMed Central  Google Scholar 

  76. McGraw WT, Potempa J, Farley D, Travis J (1999) Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun 67(7):3248–3256

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Konig MF, Abusleme L, Reinholdt J, Palmer RJ, Teles RP, Sampson K, Rosen A, Nigrovic PA, Sokolove J, Giles JT, Moutsopoulos NM, Andrade F (2016) Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med 8(369):369ra176

    PubMed  PubMed Central  Google Scholar 

  78. Romero V, Fert-Bober J, Nigrovic PA, Darrah E, Haque UJ, Lee DM, van Eyk J, Rosen A, Andrade F (2013) Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci Transl Med 5(209):209ra150

    PubMed  PubMed Central  Google Scholar 

  79. Delima AJ, Van Dyke TE (2003) Origin and function of the cellular components in gingival crevice fluid. Periodontol 2000(31):55–76

    Google Scholar 

  80. Brusca SB, Abramson SB, Scher JU (2014) Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr Opin Rheumatol 26(1):101–107

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Johansson A (2011) Aggregatibacter actinomycetemcomitans leukotoxin: a powerful tool with capacity to cause imbalance in the host inflammatory response. Toxins (Basel) 3(3):242–259

    CAS  Google Scholar 

  82. Taichman NS, Iwase M, Lally ET, Shattil SJ, Cunningham ME, Korchak HM (1991) Early changes in cytosolic calcium and membrane potential induced by Actinobacillus actinomycetemcomitans leukotoxin in susceptible and resistant target cells. J Immunol 147(10):3587–3594

    CAS  PubMed  Google Scholar 

  83. McHugh J (2017) Rheumatoid arthritis: new model linking periodontitis and RA. Nat Rev Rheumatol 13(2):66

    PubMed  Google Scholar 

  84. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Haustein CH (2014) Oxidation-reduction reaction. In: Lerner KL, Lerner BW (eds) The Gale Encyclopedia of Science, 5th edn. Gale, Farmington Hills

    Google Scholar 

  86. Rohrbach AS, Slade DJ, Thompson PR, Mowen KA (2012) Activation of PAD4 in NET formation. Front Immunol 3:360

    PubMed  PubMed Central  Google Scholar 

  87. Ottaviano FG, Handy DE, Loscalzo J (2008) Redox regulation in the extracellular environment. Circ J 72(1):1–16

    CAS  PubMed  Google Scholar 

  88. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    CAS  PubMed  Google Scholar 

  89. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rossi F, Zatti M (1964) Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 20(1):21–23

    CAS  PubMed  Google Scholar 

  91. Wolin MS, Ahmad M, Gupte SA (2005) Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 289(2):L159–L173

    CAS  PubMed  Google Scholar 

  92. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    CAS  PubMed  Google Scholar 

  93. Fujii J, Ikeda Y (2002) Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep 7(3):123–130

    CAS  PubMed  Google Scholar 

  94. Stoiber W, Obermayer A, Steinbacher P, Krautgartner WD (2015) The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules 5(2):702–723

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Neeli I, Khan SN, Radic M (2008) Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 180(3):1895–1902

    CAS  PubMed  Google Scholar 

  96. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282(2):1183–1192

    CAS  PubMed  Google Scholar 

  98. Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84(4):1381–1478

    CAS  PubMed  Google Scholar 

  99. Giles NM, Giles GI, Jacob C (2003) Multiple roles of cysteine in biocatalysis. Biochem Biophys Res Commun 300(1):1–4

    CAS  PubMed  Google Scholar 

  100. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P (2011) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 21(2):290–304

    CAS  PubMed  Google Scholar 

  101. Neeli I, Dwivedi N, Khan S, Radic M (2009) Regulation of extracellular chromatin release from neutrophils. J Innate Immun 1(3):194–201

    CAS  PubMed  Google Scholar 

  102. Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI (2007) The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113(4–5):234–258

    CAS  PubMed  Google Scholar 

  103. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153

    CAS  PubMed  Google Scholar 

  104. Pastore A, Piemonte F, Locatelli M, Lo Russo A, Gaeta LM, Tozzi G, Federici G (2001) Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem 47(8):1467–1469

    CAS  PubMed  Google Scholar 

  105. Gilbert HF (1997) Protein disulfide isomerase and assisted protein folding. J Biol Chem 272(47):29399–29402

    CAS  PubMed  Google Scholar 

  106. Jefferies H, Coster J, Khalil A, Bot J, McCauley RD, Hall JC (2003) Glutathione. ANZ J Surg 73(7):517–522

    PubMed  Google Scholar 

  107. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    CAS  PubMed  Google Scholar 

  108. Valencia E, Marin A, Hardy G (2001) Glutathione–nutritional and pharmacological viewpoints: part II. Nutrition 17(6):485–486

    CAS  PubMed  Google Scholar 

  109. Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28(4):625–635

    CAS  PubMed  Google Scholar 

  110. Damgaard D, Bjorn ME, Steffensen MA, Pruijn GJ, Nielsen CH (2016) Reduced glutathione as a physiological co-activator in the activation of peptidylarginine deiminase. Arthritis Res Ther 18(1):102

    PubMed  PubMed Central  Google Scholar 

  111. Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153(1–3):83–104

    CAS  Google Scholar 

  112. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    CAS  PubMed  Google Scholar 

  113. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    CAS  PubMed  Google Scholar 

  114. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264(24):13963–13966

    CAS  PubMed  Google Scholar 

  115. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    CAS  PubMed  Google Scholar 

  116. Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93(6):259–266

    CAS  PubMed  Google Scholar 

  117. Weichsel A, Gasdaska JR, Powis G, Montfort WR (1996) Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure 4(6):735–751

    CAS  PubMed  Google Scholar 

  118. Palde PB, Carroll KS (2015) A universal entropy-driven mechanism for thioredoxin-target recognition. Proc Natl Acad Sci U S A 112(26):7960–7965

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hall G, Emsley J (2010) Structure of human thioredoxin exhibits a large conformational change. Protein Sci 19(9):1807–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hirota K, Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, Yodoi J (2000) Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem Biophys Res Commun 274(1):177–182

    CAS  PubMed  Google Scholar 

  121. Powis G, Briehl M, Oblong J (1995) Redox signalling and the control of cell growth and death. Pharmacol Ther 68(1):149–173

    CAS  PubMed  Google Scholar 

  122. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Padovani D, Mulliez E, Fontecave M (2001) Activation of class III ribonucleotide reductase by thioredoxin. J Biol Chem 276(13):9587–9589

    CAS  PubMed  Google Scholar 

  124. Arner ES, Holmgren A (2006) The thioredoxin system in cancer. Semin Cancer Biol 16(6):420–426

    CAS  PubMed  Google Scholar 

  125. Lu T, Zong M, Fan S, Lu Y, Yu S, Fan L (2018) Thioredoxin 1 is associated with the proliferation and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes. Clin Rheumatol 37(1):117–125

    PubMed  Google Scholar 

  126. Maurice MM, Nakamura H, van der Voort EA, van Vliet AI, Staal FJ, Tak PP, Breedveld FC, Verweij CL (1997) Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J Immunol 158(3):1458–1465

    CAS  PubMed  Google Scholar 

  127. Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M (2013) The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 19(11):1266–1303

    CAS  PubMed  Google Scholar 

  128. Nagar M, Tilvawala R, Thompson PR (2019) Thioredoxin modulates protein arginine deiminase 4 (PAD4)-catalyzed citrullination. Front Immunol 10:244

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Burtis CA, Ashwood ER, DE Bruns (2012) Tietz textbook of clinical chemistry and molecular diagnostics-e-book, 5th edn. Elsevier Health Sciences, Elsevier, St. Louis

    Google Scholar 

  130. Buck J, Levin LR (2011) Physiological sensing of carbon dioxide/bicarbonate/pH via cyclic nucleotide signaling. Sensors (Basel) 11(2):2112–2128

    CAS  Google Scholar 

  131. Sabatini S, Kurtzman NA (2009) Bicarbonate therapy in severe metabolic acidosis. J Am Soc Nephrol 20(4):692–695

    CAS  PubMed  Google Scholar 

  132. Zhou Y, Mittereder N, Sims GP (2018) Perspective on protein arginine deiminase activity-bicarbonate is a pH-independent regulator of citrullination. Front Immunol 9:34

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Unno M, Kizawa K, Takahara H (2017) Structures and functions of peptidylarginine deiminases. In: Protein deimination in human health and disease. Springer, pp 33–46

  134. Saijo S, Nagai A, Kinjo S, Mashimo R, Akimoto M, Kizawa K, Yabe-Wada T, Shimizu N, Takahara H, Unno M (2016) Monomeric form of peptidylarginine deiminase Type I revealed by X-ray crystallography and small-angle X-ray scattering. J Mol Biol 428(15):3058–3073

    CAS  PubMed  Google Scholar 

  135. Slade DJ, Fang P, Dreyton CJ, Zhang Y, Fuhrmann J, Rempel D, Bax BD, Coonrod SA, Lewis HD, Guo M, Gross ML, Thompson PR (2015) Protein arginine deiminase 2 binds calcium in an ordered fashion: implications for inhibitor design. ACS Chem Biol 10(4):1043–1053

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu YL, Chiang YH, Liu GY, Hung HC (2011) Functional role of dimerization of human peptidylarginine deiminase 4 (PAD4). PLoS One 6(6):e21314

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Humm A, Fritsche E, Steinbacher S, Huber R (1997) Crystal structure and mechanism of human l-arginine:glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis. EMBO J 16(12):3373–3385

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Shatsky M, Nussinov R, Wolfson HJ (2004) A method for simultaneous alignment of multiple protein structures. Proteins 56(1):143–156

    CAS  PubMed  Google Scholar 

  139. Liu YL, Lee CY, Huang YN, Chen HY, Liu GY, Hung HC (2017) Probing the roles of calcium-binding sites during the folding of human peptidylarginine deiminase 4. Sci Rep 7(1):2429

    PubMed  PubMed Central  Google Scholar 

  140. Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    CAS  PubMed  Google Scholar 

  141. Taki H, Gomi T, Knuckley B, Thompson RP, Vugrek O, Hirata K, Miyahara T, Shinoda K, Hounoki H, Sugiyama E (2011) Purification of enzymatically inactive peptidylarginine deiminase type 6 from mouse ovary that reveals hexameric structure different from other dimeric isoforms. Adv Biosci Biotechnol 2:304

    CAS  Google Scholar 

  142. Kearney PL, Bhatia M, Jones NG, Yuan L, Glascock MC, Catchings KL, Yamada M, Thompson PR (2005) Kinetic characterization of protein arginine deiminase 4: a transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. Biochemistry 44(31):10570–10582

    CAS  PubMed  Google Scholar 

  143. Knuckley B, Bhatia M, Thompson PR (2007) Protein arginine deiminase 4: evidence for a reverse protonation mechanism. Biochemistry 46(22):6578–6587

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Subramanian V, Slade DJ, Thompson PR (2014) Picking the PAD lock: chemical and biological approaches to identify PAD substrates and inhibitors. In: Protein deimination in human health and disease. Springer, pp 377–427

  145. Rajagopalan K, Mooney SM, Parekh N, Getzenberg RH, Kulkarni P (2011) A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 112(11):3256–3267

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41(Database issue):D508–D516

    CAS  PubMed  Google Scholar 

  147. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376

    PubMed  PubMed Central  Google Scholar 

  148. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    CAS  PubMed  Google Scholar 

  150. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839

    CAS  PubMed  Google Scholar 

  151. Gouw M, Michael S, Samano-Sanchez H, Kumar M, Zeke A, Lang B, Bely B, Chemes LB, Davey NE, Deng Z, Diella F, Gurth CM, Huber AK, Kleinsorg S, Schlegel LS, Palopoli N, Roey KV, Altenberg B, Remenyi A, Dinkel H, Gibson TJ (2018) The eukaryotic linear motif resource—2018 update. Nucleic Acids Res 46(D1):D428–D434

    CAS  PubMed  Google Scholar 

  152. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P (2014) The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 23(8):1077–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Darling AL, Uversky VN (2018) Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front Genet 9:158

    PubMed  PubMed Central  Google Scholar 

  155. Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579(15):3346–3354

    CAS  PubMed  Google Scholar 

  156. Snow AJ, Puri P, Acker-Palmer A, Bouwmeester T, Vijayaraghavan S, Kline D (2008) Phosphorylation-dependent interaction of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHA) with PADI6 following oocyte maturation in mice. Biol Reprod 79(2):337–347

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu X, Morency E, Li T, Qin H, Zhang X, Zhang X, Coonrod S (2017) Role for PADI6 in securing the mRNA-MSY2 complex to the oocyte cytoplasmic lattices. Cell Cycle 16(4):360–366

    PubMed  Google Scholar 

  158. Esposito G, Vitale AM, Leijten FP, Strik AM, Koonen-Reemst AM, Yurttas P, Robben TJ, Coonrod S, Gossen JA (2007) Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 273(1–2):25–31

    CAS  PubMed  Google Scholar 

  159. Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, Hao Z, Jayes FC, Bush LA, Shetty J, Shore AN, Reddi PP, Tung KS, Samy E, Allietta MM, Sherman NE, Herr JC, Coonrod SA (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256(1):73–88

    CAS  PubMed  Google Scholar 

  160. Rose R, Rose M, Ottmann C (2012) Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI. J Struct Biol 180(1):65–72

    CAS  PubMed  Google Scholar 

  161. Bustos DM, Iglesias AA (2006) Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Proteins 63(1):35–42

    CAS  PubMed  Google Scholar 

  162. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC genomics 9(Suppl 1):S1

    PubMed  PubMed Central  Google Scholar 

  163. Moelants EA, Mortier A, Van Damme J, Proost P, Loos T (2012) Peptidylarginine deiminases: physiological function, interaction with chemokines and role in pathology. Drug Discovery Today: Technologies 9(4):e261–e280

    CAS  Google Scholar 

  164. Muth A, Thompson PR (2017) Development of the protein arginine deiminase (PAD) inhibitors. In: Protein deimination in human health and disease. Springer, pp 445–466

  165. Jones JE, Slack JL, Fang P, Zhang X, Subramanian V, Causey CP, Coonrod SA, Guo M, Thompson PR (2012) Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. ACS Chem Biol 7(1):160–165

    CAS  PubMed  Google Scholar 

  166. Brahn E, Tang C, Banquerigo ML (1994) Regression of collagen-induced arthritis with taxol, a microtubule stabilizer. Arthritis Rheum 37(6):839–845

    CAS  PubMed  Google Scholar 

  167. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277(5698):665–667

    CAS  PubMed  Google Scholar 

  168. Pritzker LB, Moscarello MA (1998) A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim Biophys Acta 1388(1):154–160

    CAS  PubMed  Google Scholar 

  169. Hidaka Y, Hagiwara T, Yamada M (2005) Methylation of the guanidino group of arginine residues prevents citrullination by peptidylarginine deiminase IV. FEBS Lett 579(19):4088–4092

    CAS  PubMed  Google Scholar 

  170. Luo Y, Knuckley B, Lee YH, Stallcup MR, Thompson PR (2006) A fluoroacetamidine-based inactivator of protein arginine deiminase 4: design, synthesis, and in vitro and in vivo evaluation. J Am Chem Soc 128(4):1092–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Luo Y, Arita K, Bhatia M, Knuckley B, Lee YH, Stallcup MR, Sato M, Thompson PR (2006) Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. Biochemistry 45(39):11727–11736

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Knuckley B, Causey CP, Pellechia PJ, Cook PF, Thompson PR (2010) Haloacetamidine-based inactivators of protein arginine deiminase 4 (PAD4): evidence that general acid catalysis promotes efficient inactivation. ChemBioChem 11(2):161–165

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Dreyton CJ, Knuckley B, Jones JE, Lewallen DM, Thompson PR (2014) Mechanistic studies of protein arginine deiminase 2: evidence for a substrate-assisted mechanism. Biochemistry 53(27):4426–4433

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Armstrong CT, Mason PE, Anderson JL, Dempsey CE (2016) Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Sci Rep 6:21759

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115(11):5413–5461

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Causey CP, Jones JE, Slack JL, Kamei D, Jones LE, Subramanian V, Knuckley B, Ebrahimi P, Chumanevich AA, Luo Y, Hashimoto H, Sato M, Hofseth LJ, Thompson PR (2011) The development of N-alpha-(2-carboxyl)benzoyl-N(5)-(2-fluoro-1-iminoethyl)-l-ornithine amide (o-F-amidine) and N-alpha-(2-carboxyl)benzoyl-N(5)-(2-chloro-1-iminoethyl)-l-ornithine amide (o-Cl-amidine) as second generation protein arginine deiminase (PAD) inhibitors. J Med Chem 54(19):6919–6935

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Willis VC, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN, Luo Y, Levitt B, Glogowska M, Chandra P, Kulik L, Robinson WH, Arend WP, Thompson PR, Holers VM (2011) N-alpha-benzoyl-N5-(2-chloro-1-iminoethyl)-l-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol 186(7):4396–4404

    CAS  PubMed  PubMed Central  Google Scholar 

  178. McElwee JL, Mohanan S, Griffith OL, Breuer HC, Anguish LJ, Cherrington BD, Palmer AM, Howe LR, Subramanian V, Causey CP, Thompson PR, Gray JW, Coonrod SA (2012) Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer 12:500

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Chang X, Fang K (2010) PADI4 and tumourigenesis. Cancer Cell Int 10:7

    PubMed  PubMed Central  Google Scholar 

  180. Lewis HD, Liddle J, Coote JE, Atkinson SJ, Barker MD, Bax BD, Bicker KL, Bingham RP, Campbell M, Chen YH, Chung CW, Craggs PD, Davis RP, Eberhard D, Joberty G, Lind KE, Locke K, Maller C, Martinod K, Patten C, Polyakova O, Rise CE, Rudiger M, Sheppard RJ, Slade DJ, Thomas P, Thorpe J, Yao G, Drewes G, Wagner DD, Thompson PR, Prinjha RK, Wilson DM (2015) Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 11(3):189–191

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Clark MA, Acharya RA, Arico-Muendel CC, Belyanskaya SL, Benjamin DR, Carlson NR, Centrella PA, Chiu CH, Creaser SP, Cuozzo JW, Davie CP, Ding Y, Franklin GJ, Franzen KD, Gefter ML, Hale SP, Hansen NJ, Israel DI, Jiang J, Kavarana MJ, Kelley MS, Kollmann CS, Li F, Lind K, Mataruse S, Medeiros PF, Messer JA, Myers P, O’Keefe H, Oliff MC, Rise CE, Satz AL, Skinner SR, Svendsen JL, Tang L, van Vloten K, Wagner RW, Yao G, Zhao B, Morgan BA (2009) Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat Chem Biol 5(9):647–654

    CAS  PubMed  Google Scholar 

  182. Lewallen DM, Bicker KL, Madoux F, Chase P, Anguish L, Coonrod S, Hodder P, Thompson PR (2014) A FluoPol-ABPP PAD2 high-throughput screen identifies the first calcium site inhibitor targeting the PADs. ACS Chem Biol 9(4):913–921

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Knuckley B, Jones JE, Bachovchin DA, Slack J, Causey CP, Brown SJ, Rosen H, Cravatt BF, Thompson PR (2010) A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem Commun (Camb) 46(38):7175–7177

    CAS  Google Scholar 

  184. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38 (27–38)

    CAS  PubMed  Google Scholar 

  185. Piovesan D, Tabaro F, Micetic I, Necci M, Quaglia F, Oldfield CJ, Aspromonte MC, Davey NE, Davidovic R, Dosztanyi Z, Elofsson A, Gasparini A, Hatos A, Kajava AV, Kalmar L, Leonardi E, Lazar T, Macedo-Ribeiro S, Macossay-Castillo M, Meszaros A, Minervini G, Murvai N, Pujols J, Roche DB, Salladini E, Schad E, Schramm A, Szabo B, Tantos A, Tonello F, Tsirigos KD, Veljkovic N, Ventura S, Vranken W, Warholm P, Uversky VN, Dunker AK, Longhi S, Tompa P, Tosatto SC (2017) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res 45(D1):D219–D227

    CAS  PubMed  Google Scholar 

  186. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue):D786–D793

    CAS  PubMed  Google Scholar 

  187. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32(Database issue):D138–D141

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34(Database issue):D247–D251

    CAS  PubMed  Google Scholar 

  189. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36(Database issue):D281–D288

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Alexey V. Uversky for careful reading and editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir N. Uversky or Elrashdy M. Redwan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, M., Al Ghamdi, K.A., Khan, R.H. et al. An interplay of structure and intrinsic disorder in the functionality of peptidylarginine deiminases, a family of key autoimmunity-related enzymes. Cell. Mol. Life Sci. 76, 4635–4662 (2019). https://doi.org/10.1007/s00018-019-03237-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03237-8

Keywords

Navigation