Skip to main content
Log in

Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate–cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141:1572–1585

  2. Livero F, Acco A (2016) Molecular basis of alcoholic fatty liver disease: from incidence to treatment. Hepatol Res 46:111–123

    Article  PubMed  CAS  Google Scholar 

  3. Sheron N (2016) Alcohol and liver disease in Europe-Simple measures have the potential to prevent tens of thousands of premature deaths. J Hepatol 64:957–967

    Article  PubMed  Google Scholar 

  4. Beier JI, Arteel GE, McClain CJ (2011) Advances in alcoholic liver disease. Curr Gastroenterol Rep 13:56–64

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang FS, Fan JG, Zhang Z et al (2014) The global burden of liver disease: the major impact of China. Hepatology 60:2099–2108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosato V, Abenavoli L, Federico A et al (2016) Pharmacotherapy of alcoholic liver disease in clinical practice. Int J Clin Pract 70:119–131

    Article  PubMed  CAS  Google Scholar 

  7. Kim MS, Ong M, Qu X (2016) Optimal management for alcoholic liver disease: conventional medications, natural therapy or combination? World J Gastroenterol 22:8–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Singal AK, Anand BS (2013) Recent trends in the epidemiology of alcoholic liver disease. Clin Liver Dis 2:53–56

  9. Loboda A, Damulewicz M, Pyza E et al (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73:3221–3247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  PubMed  CAS  Google Scholar 

  11. Blank V (2008) Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J Mol Biol 376:913–925

    Article  PubMed  CAS  Google Scholar 

  12. Ohtsuji M, Katsuoka F, Kobayashi A et al (2008) Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J Biol Chem 283:33554–33562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bataille AM, Manautou JE (2012) Nrf2: a potential target for new therapeutics in liver disease. Clin Pharmacol Ther 92:340–348

  14. Tang W, Jiang YF, Ponnusamy M et al (2014) Role of Nrf2 in chronic liver disease. World J Gastroenterol 20:13079–13087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Klaassen CD, Reisman SA (2010) Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicol Appl Pharmacol 244:57–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cederbaum AI, Lu YWuD (2009) Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83:519–548

    Article  PubMed  CAS  Google Scholar 

  17. Diluzio NR (1964) Prevention of the acute ethanol-induced fatty liver by the simultaneous administration of antioxidants. Life Sci 3:113–118

    Article  CAS  Google Scholar 

  18. Albano E, French SW, Ingelman-Sundberg M (1999) Hydroxyethyl radicals in ethanol hepatotoxicity. Front Biosci 4:D533–D540

  19. Rashba-Step J, Turro NJ, Cederbaum AI (1993) Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Arch Biochem Biophys 300:401–408

  20. Zhu H, Jia Z, Misra H et al (2012) Oxidative stress and redox signaling mechanisms of alcoholic liver disease: updated experimental and clinical evidence. J Dig Dis 13:133–142

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tang Y, Gao C, Xing M et al (2012) Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol 50:1194–1200

    Article  PubMed  CAS  Google Scholar 

  22. Song Z, Deaciuc I, Song M et al (2006) Silymarin protects against acute ethanol-induced hepatotoxicity in mice. Alcohol Clin Exp Res 30:407–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dou X, Li S, Wang Z et al (2012) Inhibition of NF-kappaB activation by 4-hydroxynonenal contributes to liver injury in a mouse model of alcoholic liver disease. Am J Pathol 181:1702–1710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Guan MJ, Zhao N, Xie KQ et al (2018) Hepatoprotective effects of garlic against ethanol-induced liver injury: a mini-review. Food Chem Toxicol 111:467–473

    Article  PubMed  CAS  Google Scholar 

  25. Zeng T, Zhang CL, Song FY et al (2013) The activation of HO-1/Nrf-2 contributes to the protective effects of diallyl disulfide (DADS) against ethanol-induced oxidative stress. Biochim Biophys Acta 1830:4848–4859

    Article  PubMed  CAS  Google Scholar 

  26. Ajmo JM, Liang X, Rogers CQ et al (2008) Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 295:G833–G842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wheeler MD, Kono H, Yin M et al (2001) Delivery of the Cu/Zn-superoxide dismutase gene with adenovirus reduces early alcohol-induced liver injury in rats. Gastroenterology 120:1241–1250

    Article  PubMed  CAS  Google Scholar 

  28. Wheeler MD, Nakagami M, Bradford BU et al (2001) Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat. J Biol Chem 276:36664–36672

    Article  PubMed  CAS  Google Scholar 

  29. Kessova IG, Ho YS, Thung S et al (2003) Alcohol-induced liver injury in mice lacking Cu, Zn-superoxide dismutase. Hepatology 38:1136–1145

    Article  PubMed  CAS  Google Scholar 

  30. Curry-McCoy TV, Osna NA, Nanji AA et al (2010) Chronic ethanol consumption results in atypical liver injury in copper/zinc superoxide dismutase deficient mice. Alcohol Clin Exp Res 34:251–261

    Article  PubMed  CAS  Google Scholar 

  31. Kim SJ, Lee JW, Jung YS et al (2009) Ethanol-induced liver injury and changes in sulfur amino acid metabolomics in glutathione peroxidase and catalase double knockout mice. J Hepatol 50:1184–1191

    Article  PubMed  CAS  Google Scholar 

  32. Lu Y, Zhuge J, Wang X et al (2008) Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47:1483–1494

    Article  PubMed  CAS  Google Scholar 

  33. Kono H, Rusyn I, Uesugi T et al (2001) Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat. Am J Physiol Gastrointest Liver Physiol 280:G1005–G1012

    Article  PubMed  CAS  Google Scholar 

  34. Ogura T, Tong KI, Mio K et al (2010) Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc Natl Acad Sci USA 107:2842–2847

    Article  PubMed  Google Scholar 

  35. Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151

  36. Kansanen E, Jyrkkanen HK, Levonen AL (2012) Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 52:973–982

  37. Tong KI, Katoh Y, Kusunoki H et al (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26:2887–2900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tao S, Liu P, Luo G et al (2017) p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3 E3 complex. Mol Cell Biol 37:e00660-16

    Article  PubMed  PubMed Central  Google Scholar 

  39. Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  PubMed  CAS  Google Scholar 

  40. Katsuoka F, Yamamoto M (2016) Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 586:197–205

  41. Long M, Li X, Li L et al (2017) Multifunctional p62 effects underlie diverse metabolic diseases. Trends Endocrinol Metab 28:818–830

    Article  PubMed  CAS  Google Scholar 

  42. Bjorkoy G, Lamark T, Pankiv S et al (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197

    Article  PubMed  CAS  Google Scholar 

  43. Lau A, Wang XJ, Zhao F et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30:3275–3285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    Article  PubMed  CAS  Google Scholar 

  45. de la Vega MR, Dodson M, Chapman E et al (2016) NRF2-targeted therapeutics: new targets and modes of NRF2 regulation. Curr Opin Toxicol 1:62–70

    Article  Google Scholar 

  46. Itoh K, Ye P, Matsumiya T et al (2015) Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr 56:91–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ichimura Y, Waguri S, Sou YS et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51:618–631

    Article  PubMed  CAS  Google Scholar 

  48. Christian F, Krause E, Houslay MD et al (2014) PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. Biochim Biophys Acta 1843:2765–2774

    Article  PubMed  CAS  Google Scholar 

  49. Ni HM, Woolbright BL, Williams J et al (2014) Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 61:617–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lau A, Whitman SA, Jaramillo MC et al (2013) Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway. J Biochem Mol Toxicol 27:99–105

    Article  PubMed  CAS  Google Scholar 

  51. Ge W, Zhao K, Wang X et al (2017) iASPP Is an antioxidative factor and drives cancer growth and drug resistance by competing with Nrf2 for Keap1 binding. Cancer Cell 32(561–573):e6

    Google Scholar 

  52. Keum YS (2011) Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications. Ann N Y Acad Sci 1229:184–189

    Article  PubMed  CAS  Google Scholar 

  53. Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277:42769–42774

  54. Numazawa S, Ishikawa M, Yoshida A et al (2003) Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am J Physiol Cell Physiol 285:C334–C342

    Article  PubMed  CAS  Google Scholar 

  55. Keum YS, Yu S, Chang PP et al (2006) Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res 66:8804–8813

    Article  PubMed  CAS  Google Scholar 

  56. Sun Z, Huang Z, Zhang DD (2009) Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4:e6588

  57. Jain AK, Jaiswal AK (2006) Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J Biol Chem 281:12132–12142

  58. Jain AK, Jaiswal AK (2007) GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 282:16502–16510

  59. Gong P, Cederbaum AI (2006) Nrf2 is increased by CYP2E1 in rodent liver and HepG2 cells and protects against oxidative stress caused by CYP2E1. Hepatology 43:144–153

  60. Bardag-Gorce F, Oliva J, Lin A et al (2011) Proteasome inhibitor up regulates liver antioxidative enzymes in rat model of alcoholic liver disease. Exp Mol Pathol 90:123–130

    Article  PubMed  CAS  Google Scholar 

  61. Yeligar SM, Machida K, Kalra VK (2010) Ethanol-induced HO-1 and NQO1 are differentially regulated by HIF-1alpha and Nrf2 to attenuate inflammatory cytokine expression. J Biol Chem 285:35359–35373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lamle J, Marhenke S, Borlak J et al (2008) Nuclear factor-eythroid 2-related factor 2 prevents alcohol-induced fulminant liver injury. Gastroenterology 134:1159–1168

    Article  PubMed  CAS  Google Scholar 

  63. Choi BK, Kim TW, Lee DR et al (2015) A polymethoxy flavonoids-rich Citrus aurantium extract ameliorates ethanol-induced liver injury through modulation of AMPK and Nrf2-related signals in a binge drinking mouse model. Phytother Res 29:1577–1584

    Article  PubMed  CAS  Google Scholar 

  64. Zhou R, Lin J, Wu D (2014) Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. Biochim Biophys Acta 1840:209–218

    Article  PubMed  CAS  Google Scholar 

  65. Huang QH, Xu LQ, Liu YH et al (2017) Polydatin Protects Rat Liver against Ethanol-Induced Injury: involvement of CYP2E1/ROS/Nrf2 and TLR4/NF-kappaB p65 Pathway. Evid Based Complement Alternat Med 2017:7953850

    PubMed  PubMed Central  Google Scholar 

  66. Lu C, Xu W, Zhang F et al (2016) Nrf2 knockdown disrupts the protective effect of curcumin on alcohol-induced hepatocyte necroptosis. Mol Pharm 13:4043–4053

    Article  PubMed  CAS  Google Scholar 

  67. Lu C, Zhang F, Xu W et al (2015) Curcumin attenuates ethanol-induced hepatic steatosis through modulating Nrf2/FXR signaling in hepatocytes. IUBMB Life 67:645–658

    Article  PubMed  CAS  Google Scholar 

  68. Lu C, Jiang Y, Zhang F et al (2015) Tetramethylpyrazine prevents ethanol-induced hepatocyte injury via activation of nuclear factor erythroid 2-related factor 2. Life Sci 141:119–127

    Article  PubMed  CAS  Google Scholar 

  69. Wu KC, Liu J, Klaassen CD (2012) Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol 262:321–329

    Article  PubMed  CAS  Google Scholar 

  70. Byun HG, Lee JK (2015) Chlorella ethanol extract induced phase II enzyme through NFE2L2 (nuclear factor [erythroid-derived] 2-like 2, NRF2) activation and protected ethanol-induced hepatoxicity. J Med Food 18:182–189

    Article  PubMed  Google Scholar 

  71. Liu S, Hou W, Yao P et al (2010) Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicol In Vitro 24:516–522

    Article  PubMed  CAS  Google Scholar 

  72. Liu CM, Zheng YL, Lu J et al (2010) Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environ Toxicol Pharmacol 29:158–166

    Article  PubMed  CAS  Google Scholar 

  73. Kahraman A, Çakar H, Köken T (2012) The protective effect of quercetin on long-term alcohol consumption-induced oxidative stress. Mol Biol Rep 39:2789–2794

    Article  PubMed  CAS  Google Scholar 

  74. Liu S, Hou W, Yao P et al (2010) Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicol In Vitro 24:516–522

    Article  PubMed  CAS  Google Scholar 

  75. Yao P, Nussler A, Liu L et al (2007) Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 47:253–261

    Article  PubMed  CAS  Google Scholar 

  76. Ji LL, Sheng YC, Zheng ZY et al (2015) The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity. Free Radic Biol Med 85:12–23

    Article  PubMed  CAS  Google Scholar 

  77. Bao W, Li K, Rong S et al (2010) Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase-1 induction. J Ethnopharmacol 128:549–553

    Article  PubMed  CAS  Google Scholar 

  78. Samuhasaneeto S, Thong-Ngam D, Kulaputana O et al (2009) Curcumin decreased oxidative stress, inhibited NF-kappaB activation, and improved liver pathology in ethanol-induced liver injury in rats. J Biomed Biotechnol 2009:981963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Nanji AA, Jokelainen K, Tipoe GL et al (2003) Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol Gastrointest Liver Physiol 284:G321–G327

    Article  PubMed  CAS  Google Scholar 

  80. Xiong ZE, Dong WG, Wang BY et al (2015) Curcumin attenuates chronic ethanol-induced liver injury by inhibition of oxidative stress via mitogen-activated protein kinase/nuclear factor E2-related factor 2 pathway in mice. Pharmacogn Mag 11:707–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Butt MS, Sultan MT, Iqbal J (2009) Garlic: nature’s protection against physiological threats. Crit Rev Food Sci Nutr 49:538–551

    Article  PubMed  CAS  Google Scholar 

  82. Zeng T, Zhang CL, Zhao XL et al (2013) The roles of garlic on the lipid parameters: a systematic review of the literature. Crit Rev Food Sci Nutr 53:215–230

    Article  PubMed  CAS  Google Scholar 

  83. Gong P, Hu B, Cederbaum AI (2004) Diallyl sulfide induces heme oxygenase-1 through MAPK pathway. Arch Biochem Biophys 432:252–260

    Article  PubMed  CAS  Google Scholar 

  84. Chen C, Pung D, Leong V et al (2004) Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radical Biol Med 37:1578–1590

    Article  CAS  Google Scholar 

  85. Zeng T, Zhang CL, Song FY et al (2012) Garlic oil alleviated ethanol-induced fat accumulation via modulation of SREBP-1, PPAR-alpha, and CYP2E1. Food Chem Toxicol 50:485–491

    Article  PubMed  CAS  Google Scholar 

  86. Zeng T, Zhang CL, Zhu ZP et al (2008) Diallyl trisulfide (DATS) effectively attenuated oxidative stress-mediated liver injury and hepatic mitochondrial dysfunction in acute ethanol-exposed mice. Toxicology 252:86–91

    Article  PubMed  CAS  Google Scholar 

  87. Zeng T, Zhang CL, Pan GB et al (2008) The protective effects of garlic oil on acute ethanol-induced oxidative stress in the liver of mice. J Sci Food Agric 88:2238–2243

    Article  CAS  Google Scholar 

  88. Zeng T, Guo FF, Zhang CL et al (2008) The anti-fatty liver effects of garlic oil on acute ethanol-exposed mice. Chem Biol Interact 176:234–242

    Article  PubMed  CAS  Google Scholar 

  89. Raghu R, Liu CT, Tsai MH et al (2012) Transcriptome analysis of garlic-induced hepatoprotection against alcoholic fatty liver. J Agric Food Chem 60:11104–11119

    Article  PubMed  CAS  Google Scholar 

  90. Kim MH, Kim MJ, Lee JH et al (2011) Hepatoprotective effect of aged black garlic on chronic alcohol-induced liver injury in rats. J Med Food 14:732–738

    Article  PubMed  CAS  Google Scholar 

  91. Lu C, Xu W, Shao J et al (2017) Nrf2 activation is required for ligustrazine to inhibit hepatic steatosis in alcohol-preferring mice and hepatocytes. Toxicol Sci 155:432–443

    Article  PubMed  CAS  Google Scholar 

  92. He P, Wu Y, Shun J et al (2017) Baicalin ameliorates liver injury induced by chronic plus binge ethanol feeding by modulating oxidative stress and inflammation via CYP2E1 and NRF2 in mice. Oxid Med Cell Longev 2017:4820414

    PubMed  PubMed Central  Google Scholar 

  93. Cho I, Kim J, Jung J et al (2016) Hepatoprotective effects of hoveniae semen cum fructus extracts in ethanol intoxicated mice. J Exerc Nutr Biochem 20:49–64

    Article  Google Scholar 

  94. Rejitha S, Prathibha P, Indira M (2015) Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism. Redox Rep 20:75–80

    Article  PubMed  CAS  Google Scholar 

  95. Liu J, Wang X, Liu R et al (2014) Oleanolic acid co-administration alleviates ethanol-induced hepatic injury via Nrf-2 and ethanol-metabolizing modulating in rats. Chem Biol Interact 221:88–98

    Article  PubMed  CAS  Google Scholar 

  96. Nepali S, Ki HH, Lee JH et al (2017) Triticum aestivum sprout-derived polysaccharide exerts hepatoprotective effects against ethanol-induced liver damage by enhancing the antioxidant system in mice. Int J Mol Med 40:1243–1252

    Article  PubMed  Google Scholar 

  97. Qiu P, Dong Y, Li B et al (2017) Dihydromyricetin modulates p62 and autophagy crosstalk with the Keap-1/Nrf2 pathway to alleviate ethanol-induced hepatic injury. Toxicol Lett 274:31–41

    Article  PubMed  CAS  Google Scholar 

  98. Rabelo ACS, de Padua Lucio K, Araujo CM et al (2017) Baccharis trimera protects against ethanol induced hepatotoxicity in vitro and in vivo. J Ethnopharmacol 215:1–13

    Article  PubMed  CAS  Google Scholar 

  99. Zeng X, Li X, Xu C et al (2017) Schisandra sphenanthera extract (Wuzhi Tablet) protects against chronic-binge and acute alcohol-induced liver injury by regulating the NRF2-ARE pathway in mice. Acta Pharm Sin B 7:583–592

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kumar KJ, Chu FH, Hsieh HW et al. (2011) Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation. J Ethnopharmacol 136:168–177

    Article  PubMed  CAS  Google Scholar 

  101. Senthil Kumar KJ, Liao JW, Xiao JH et al (2012) Hepatoprotective effect of lucidone against alcohol-induced oxidative stress in human hepatic HepG2 cells through the up-regulation of HO-1/Nrf-2 antioxidant genes. Toxicol In Vitro 26:700–708

    Article  PubMed  CAS  Google Scholar 

  102. Song X, Yin S, Huo Y et al (2015) Glycycoumarin ameliorates alcohol-induced hepatotoxicity via activation of Nrf2 and autophagy. Free Radic Biol Med 89:135–146

    Article  PubMed  CAS  Google Scholar 

  103. Zhong W, Zhao Y, Tang Y et al (2012) Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. Am J Pathol 180:998–1007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhao YY, Yang R, Xiao M et al (2017) Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues. Toxicology 390:53–60

    Article  PubMed  CAS  Google Scholar 

  105. Shen Z, Liang X, Rogers CQ et al (2010) Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 298:G364–374

    Article  PubMed  CAS  Google Scholar 

  106. You M, Liang X, Ajmo JM et al (2008) Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 294:G892–G898

    Article  PubMed  CAS  Google Scholar 

  107. Keshavarzian A, Farhadi A, Forsyth CB et al (2009) Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol 50:538–547

    Article  PubMed  CAS  Google Scholar 

  108. Mutlu E, Keshavarzian A, Engen P et al (2009) Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 33:1836–1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zeng T, Zhang C-L, Xiao M et al (2016) Critical roles of Kupffer cells in the pathogenesis of alcoholic liver disease: from basic science to clinical trials. Front Immunol 7:538

    PubMed  PubMed Central  Google Scholar 

  110. Zeng T, Zhao YY, Xie KQ (2016) Does intestinal microbiota protect mice against acute/binge drinking-induced liver injury? Alcohol Clin Exp Res 40:1788–1790

    Article  PubMed  Google Scholar 

  111. Adachi Y, Moore LE, Bradford BU et al (1995) Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108:218–224

    Article  PubMed  CAS  Google Scholar 

  112. Yin M, Bradford BU, Wheeler MD et al (2001) Reduced early alcohol-induced liver injury in CD14-deficient mice. J Immunol 166:4737–4742

    Article  PubMed  CAS  Google Scholar 

  113. Uesugi T, Froh M, Arteel GE et al (2001) Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 34:101–108

    Article  PubMed  CAS  Google Scholar 

  114. Han SH, Suk KT, Kim DJ et al (2015) Effects of probiotics (cultured Lactobacillus subtilis/Streptococcus faecium) in the treatment of alcoholic hepatitis: randomized-controlled multicenter study. Eur J Gastroenterol Hepatol 27:1300–1306

    Article  PubMed  Google Scholar 

  115. Wan J, Benkdane M, Teixeira-Clerc F et al (2014) M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59:130–142

    Article  PubMed  CAS  Google Scholar 

  116. Smith K (2013) Liver disease: kupffer cells regulate the progression of ALD and NAFLD. Nat Rev Gastroenterol Hepatol 10:503

    Article  PubMed  Google Scholar 

  117. Tang H, Sebastian BM, Axhemi A et al (2012) Ethanol-induced oxidative stress via the CYP2E1 pathway disrupts adiponectin secretion from adipocytes. Alcohol Clin Exp Res 36:214–222

    Article  PubMed  CAS  Google Scholar 

  118. Zhang X, Wang Z, Li J et al (2013) Increased 4-hydroxynonenal formation contributes to obesity-related lipolytic activation in adipocytes. PLoS ONE 8:e70663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Matsuzawa A, Saegusa K, Noguchi T et al (2005) ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6:587–592

    Article  PubMed  CAS  Google Scholar 

  120. Lu Y, Wah LM (2005) Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J Immunol 175:5423–5429

    Article  PubMed  CAS  Google Scholar 

  121. Dodson M, Redmann M, Rajasekaran NS et al (2015) KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem J 469:347–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Lemasters JJ (2014) Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol 2:749–754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Digaleh H, Kiaei M, Khodagholi F (2013) Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell Mol Life Sci 70:4681–4694

    Article  PubMed  CAS  Google Scholar 

  125. Jain A, Lamark T, Sjottem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Jo C, Gundemir S, Pritchard S et al (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Fan W, Tang Z, Chen D et al (2010) Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6:614–621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Chung SD, Lai TY, Chien CT et al (2012) Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney. PLoS One 7:e47299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Rao VA, Klein SR, Bonar SJ et al (2010) The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J Biol Chem 285:34447–34459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zhou Y, Wang HD, Zhu L et al (2013) Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line. Oncol Rep 29:394–400

    Article  PubMed  CAS  Google Scholar 

  131. Wang L, Khambu B, Zhang H et al (2015) Autophagy in alcoholic liver disease, self-eating triggered by drinking. Clin Res Hepatol Gastroenterol 39(Suppl 1):S2–S6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lin CW, Zhang H, Li M et al (2013) Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol 58:993–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Williams JA, Ding WX (2015) A mechanistic review of mitophagy and its role in protection against alcoholic liver disease. Biomolecules 5:2619–2642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ding WX, Li M, Yin XM (2011) Selective taste of ethanol-induced autophagy for mitochondria and lipid droplets. Autophagy 7:248–249

    Article  PubMed  PubMed Central  Google Scholar 

  135. Williams JA, Ni HM, Ding Y et al (2015) Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice. Am J Physiol Gastrointest Liver Physiol 309:G324–G340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ding WX, Li M, Chen X et al (2010) Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139:1740–1752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. D’Souza El-Guindy NB, Kovacs EJ, De Witte P et al (2010) Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model. Alcohol Clin Exp Res 34:1489–1511

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li HH, Tyburski JB, Wang YW et al (2014) Modulation of fatty acid and bile acid metabolism by peroxisome proliferator-activated receptor alpha protects against alcoholic liver disease. Alcohol Clin Exp Res 38:1520–1531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Bertola A, Mathews S, Ki SH et al (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 8:627–637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tsukamoto H, Mkrtchyan H, Dynnyk A (2008) Intragastric ethanol infusion model in rodents. Methods Mol Biol 447:33–48

    Article  PubMed  CAS  Google Scholar 

  141. Lieber CS, DeCarli LM, Sorrell MF (1989) Experimental methods of ethanol administration. Hepatology 10:501–510

    Article  PubMed  CAS  Google Scholar 

  142. Bataller R, Gao B (2015) Liver fibrosis in alcoholic liver disease. Semin Liver Dis 35:146–156

    Article  PubMed  CAS  Google Scholar 

  143. Aleynik SI, Leo MA, Aleynik MK et al (1998) Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clin Exp Res 22:192–196

    Article  PubMed  CAS  Google Scholar 

  144. Meagher EA, Barry OP, Burke A et al (1999) Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest 104:805–813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Clot P, Bellomo G, Tabone M et al (1995) Detection of antibodies against proteins modified by hydroxyethyl free radicals in patients with alcoholic cirrhosis. Gastroenterology 108:201–207

    Article  PubMed  CAS  Google Scholar 

  146. Medici V, Virata MC, Peerson JM et al (2011) S-adenosyl-l-methionine treatment for alcoholic liver disease: a double-blinded, randomized, placebo-controlled trial. Alcohol Clin Exp Res 35:1960–1965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Mato JM, Camara J, Fernandez de Paz J et al (1999) S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. J Hepatol 30:1081–1089

    Article  PubMed  CAS  Google Scholar 

  148. Moreno C, Langlet P, Hittelet A et al (2010) Enteral nutrition with or without N-acetylcysteine in the treatment of severe acute alcoholic hepatitis: a randomized multicenter controlled trial. J Hepatol 53:1117–1122

    Article  PubMed  CAS  Google Scholar 

  149. Mezey E, Potter JJ, Rennie-Tankersley L et al (2004) A randomized placebo controlled trial of vitamin E for alcoholic hepatitis. J Hepatol 40:40–46

    Article  PubMed  CAS  Google Scholar 

  150. Meagher EA, Barry OP, Lawson JA et al (2001) Effects of vitamin E on lipid peroxidation in healthy persons. JAMA 285:1178–1182

    Article  PubMed  CAS  Google Scholar 

  151. Jacob RA, Aiello GM, Stephensen CB et al (2003) Moderate antioxidant supplementation has no effect on biomarkers of oxidant damage in healthy men with low fruit and vegetable intakes. J Nutr 133:740–743

    Article  PubMed  CAS  Google Scholar 

  152. Ueberschlag SL, Seay JR, Roberts AH et al (2016) The effect of protandim(R) supplementation on athletic performance and oxidative blood markers in runners. PLoS One 11:e0160559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Nelson SK, Bose SK, Grunwald GK et al (2006) The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy. Free Radic Biol Med 40:341–347

    Article  PubMed  CAS  Google Scholar 

  154. Pergola PE, Raskin P, Toto RD et al (2011) Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 365:327–336

    Article  PubMed  CAS  Google Scholar 

  155. Chin MP, Wrolstad D, Bakris GL et al (2014) Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J Cardiac Fail 20:953–958

    Article  CAS  Google Scholar 

  156. Kappos L, Gold R, Miller DH et al (2009) Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. (vol 372, pg 1463, 2008). Lancet 373:1340

    Article  Google Scholar 

  157. Singh S, Murad MH, Chandar AK et al (2015) Comparative effectiveness of pharmacological Interventions for severe alcoholic hepatitis: a systematic review and network meta-analysis. Gastroenterology 149(958–70):e12

    Google Scholar 

  158. Naveau S, Chollet-Martin S, Dharancy S et al (2004) A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology 39:1390–1397

    Article  PubMed  CAS  Google Scholar 

  159. Boetticher NC, Peine CJ, Kwo P et al (2008) A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology 135:1953–1960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Borrelli A, Bonelli P, Tuccillo FM et al (2018) Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: current and innovative therapeutic approaches. Redox Biol 15:467–479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Sumida Y, Yoneda M (2018) Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol 53:362–376

  162. Chowdhry S, Nazmy MH, Meakin PJ et al (2010) Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radic Biol Med 48:357–371

    Article  PubMed  CAS  Google Scholar 

  163. Sugimoto H, Okada K, Shoda J et al (2010) Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol 298:G283–G294

    Article  PubMed  CAS  Google Scholar 

  164. Okada K, Warabi E, Sugimoto H et al (2013) Deletion of Nrf2 leads to rapid progression of steatohepatitis in mice fed atherogenic plus high-fat diet. J Gastroenterol 48:620–632

    Article  PubMed  CAS  Google Scholar 

  165. Zhang YK, Yeager RL, Tanaka Y et al (2010) Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet. Toxicol Appl Pharmacol 245:326–334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Okada K, Warabi E, Sugimoto H et al (2012) Nrf2 inhibits hepatic iron accumulation and counteracts oxidative stress-induced liver injury in nutritional steatohepatitis. J Gastroenterol 47:924–935

    Article  PubMed  Google Scholar 

  167. Sharma RS, Harrison DJ, Kisielewski D et al (2018) Experimental nonalcoholic steatohepatitis and liver fibrosis are ameliorated by pharmacologic activation of Nrf2 (NF-E2 p45-related factor 2). Cell Mol Gastroenterol Hepatol 5:367–398

    Article  PubMed  Google Scholar 

  168. Feng X, Yu W, Li X et al (2017) Apigenin, a modulator of PPARgamma, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol 136:136–149

    Article  PubMed  CAS  Google Scholar 

  169. More VR, Xu J, Shimpi PC et al (2013) Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding. Free Radic Biol Med 61:85–94

    Article  PubMed  CAS  Google Scholar 

  170. Zarei M, Barroso E, Palomer X et al (2018) Hepatic regulation of VLDL receptor by PPARbeta/delta and FGF21 modulates non-alcoholic fatty liver disease. Mol Metab 8:117–131

    Article  PubMed  CAS  Google Scholar 

  171. Liu J, Wu KC, Lu YF et al (2013) Nrf2 protection against liver injury produced by various hepatotoxicants. Oxid Med Cell Longev 2013:305861

    PubMed  PubMed Central  Google Scholar 

  172. Wu KC, Zhang Y, Klaassen CD (2012) Nrf2 protects against diquat-induced liver and lung injury. Free Radic Res 46:1220–1229

  173. Wu KC, Liu JJ, Klaassen CD (2012) Nrf2 activation prevents cadmium-induced acute liver injury. Toxicol Appl Pharmacol 263:14–20

  174. Reisman SA, Buckley DB, Tanaka Y et al (2009) CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes. Toxicol Appl Pharmacol 236:109–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Liu B, Fang M, He Z et al (2015) Hepatitis B virus stimulates G6PD expression through HBx-mediated Nrf2 activation. Cell Death Dis 6:e1980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Medvedev R, Ploen D, Spengler C et al (2017) HCV-induced oxidative stress by inhibition of Nrf2 triggers autophagy and favors release of viral particles. Free Radic Biol Med 110:300–315

    Article  PubMed  CAS  Google Scholar 

  177. Chiang DJ, Roychowdhury S, Bush K et al (2013) Adenosine 2A receptor antagonist prevented and reversed liver fibrosis in a mouse model of ethanol-exacerbated liver fibrosis. PLoS One 8:e69114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Jeong WI, Park O, Gao B (2008) Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 134:248–258

    Article  PubMed  CAS  Google Scholar 

  179. Lazaro R, Wu R, Lee S et al (2015) Osteopontin deficiency does not prevent but promotes alcoholic neutrophilic hepatitis in mice. Hepatology 61:129–140

    Article  PubMed  CAS  Google Scholar 

  180. Shimada M, Liu L, Nussler N et al (2006) Human hepatocytes are protected from ethanol-induced cytotoxicity by DADS via CYP2E1 inhibition. Toxicol Lett 163:242–249

    Article  PubMed  CAS  Google Scholar 

  181. Aqil F, Munagala R, Jeyabalan J et al (2013) Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 334:133–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Kumar V (2006) Potential medicinal plants for CNS disorders: an overview. Phytother Res 20:1023–1035

    Article  PubMed  CAS  Google Scholar 

  183. Dodson M, Zhang DD (2017) Non-canonical activation of NRF2: New insights and its relevance to disease. Curr Pathobiol Rep 5:171–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Lau A, Zheng Y, Tao S et al (2013) Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol 33:2436–2446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81473004 and 81102153), the key Research and Develop Project of Shandong Province (Grant No. 2017GSF18122), the Young Scholars Program of Shandong University (Grant No. 2015WLJH52), and the Project for the Traditional Chinese Medicine of Shandong Province (Grant No. 2013-167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Guo, FF., Xie, KQ. et al. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell. Mol. Life Sci. 75, 3143–3157 (2018). https://doi.org/10.1007/s00018-018-2852-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2852-6

Keywords

Navigation