Skip to main content
Log in

PTEN proteoforms in biology and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein–protein interactions, and protein–ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform–proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN proteoforms with unique properties and functionalities offer potential novel therapeutic opportunities in the treatment of various cancers and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PTEN:

Phosphatase and tension homolog deleted on chromosome 10

MMAC:

Mutated in multiple advanced cancers

PTP:

Protein tyrosine phosphatases

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-Kinase

AKT:

V-Akt murine thymoma viral oncogene

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PIP2:

Phosphatidylinositol 4,5-bisphosphate

FAK:

Focal adhesion kinase

CREB:

cAMP responsive element-binding protein

RAB7:

Ras-associated protein RAB7

IRS1:

Insulin receptor substrate 1

PHTS:

PTEN hamartoma tumor syndrome

ASD:

Autism spectrum disorder

SNP:

Single nucleotide polymorphisms

PPI:

Protein–protein interactions

C-tail:

Carboxy terminal tail

PBM:

PIP2-Binding module

C2D:

C2 domain

PDZ:

Post-synaptic density protein (PSD95), Drosophila disc-large tumor suppressor (Dlg1), and Zonula occludens-1 protein (ZO-1)

MoRF:

Molecular recognition features

MAST2:

Microtubule-associated serine/threonine kinase 2

PAR3:

Partitioning defective 3

PTM:

Post-translational modification

NFκB:

Nuclear factor kappa B

DSF:

Differential scanning fluorimetry

CD:

Circular dichroism

FTIR:

Fourier transform infrared spectroscopy

MBH:

Membrane-binding helix

HDX-MS:

Hydrogen/deuterium exchange mass spectrometry

COX:

Cytochrome oxidase c

HDAC:

Histone deacetylase

BCR–ABL:

Breakpoint cluster region–abelson fusion protein

CK2:

Casein Kinase II

CML:

Chronic myelogenous leukemia

TDP:

Top-down proteomics

CRISPR:

Clustered regularly interspaced short palindromic repeats

References

  1. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947. doi:10.1126/science.275.5308.1943

    Article  CAS  PubMed  Google Scholar 

  2. Steck PA, Pershouse MA, Jasser SA, Yung WKA, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DHF, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356–362. doi:10.1038/Ng0497-356

    Article  CAS  PubMed  Google Scholar 

  3. Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR (1999) Regulation of G(1) progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 96(5):2110–2115. doi:10.1073/pnas.96.5.2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang XC, Piccini A, Myers MP, Van Aelst L, Tonks NK (2012) Functional analysis of the protein phosphatase activity of PTEN. Biochem J 444:457–464. doi:10.1042/Bj20120098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. You DW, Xin JP, Volk A, Wei W, Schmidt R, Scurti G, Nand S, Breuer EK, Kuo PC, Breslin P, Kini AR, Nishimura MI, Zeleznik-Le NJ, Zhang JW (2015) FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-Null T-ALL cells. Cell Rep 10(12):2055–2068. doi:10.1016/j.celrep.2015.02.056

    Article  CAS  PubMed  Google Scholar 

  6. Tamura M, Gu JG, Danen EHJ, Takino T, Miyamoto S, Yamada KM (1999) PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 274(29):20693–20703. doi:10.1074/jbc.274.29.20693

    Article  CAS  PubMed  Google Scholar 

  7. Gu TT, Zhang Z, Wang JL, Guo JY, Shen WH, Yin YX (2011) CREB Is a novel nuclear target of PTEN phosphatase. Cancer Res 71(8):2821–2825. doi:10.1158/0008-5472.CAN-10-3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shinde SR, Maddika S (2016) PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7. Nat Commun. doi:10.1038/Ncomms10689

    Google Scholar 

  9. Shi YJ, Wang JR, Chandarlapaty S, Cross J, Thompson C, Rosen N, Jiang XJ (2014) PTEN is a protein tyrosine phosphatase for IRS1. Nat Struct Mol Biol 21(6):522–527. doi:10.1038/nsmb.2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13(5):283–296. doi:10.1038/nrm3330

    CAS  PubMed  Google Scholar 

  11. McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, Herman GE (2010) Confirmation Study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res 3(3):137–141. doi:10.1002/aur.132

    Article  PubMed  Google Scholar 

  12. Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C (2012) Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18(2):400–407. doi:10.1158/1078-0432.CCR-11-2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Worby CA, Dixon JE (2014) PTEN. Annu Rev Biochem 83:641–669. doi:10.1146/annurev-biochem-082411-113907

    Article  CAS  PubMed  Google Scholar 

  14. Carracedo A, Alimonti A, Pandolfi PP (2011) PTEN level in tumor suppression: how much is too little? Cancer Res 71(3):629–633. doi:10.1158/0008-5472.CAN-10-2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berger AH, Knudson AG, Pandolfi PP (2011) A continuum model for tumour suppression. Nature 476(7359):163–169. doi:10.1038/nature10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith LM, Kelleher NL, Proteomics CTD (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187. doi:10.1038/nmeth.2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uversky VN (2016) p53 proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int J Mol Sci. doi:10.3390/ijms17111874

    Google Scholar 

  18. Burgess AW, Cho H-S, Eigenbrot C, Ferguson KM, Garrett TPJ, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S (2003) An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12 (3):541–552. doi:10.1016/S1097-2765(03)00350-2

    Article  CAS  PubMed  Google Scholar 

  19. Malaney P, Pathak RR, Xue B, Uversky VN, Dave V (2013) Intrinsic disorder in PTEN and its interactome confers structural plasticity and functional versatility. Sci Rep 3:2035. doi:10.1038/srep02035

    Article  PubMed  PubMed Central  Google Scholar 

  20. Odriozola L, Singh G, Hoang T, Chan AM (2007) Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J Biol Chem 282(32):23306–23315. doi:10.1074/jbc.M611240200

    Article  CAS  PubMed  Google Scholar 

  21. Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN (2009) A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci USA 106(2):480–485. doi:10.1073/pnas.0811212106

    Article  CAS  PubMed  Google Scholar 

  22. Terrien E, Chaffotte A, Lafage M, Khan Z, Prehaud C, Cordier F, Simenel C, Delepierre M, Buc H, Lafon M, Wolff N (2012) Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN. Sci Signal 5(237):ra58. doi:10.1126/scisignal.2002941

    Article  PubMed  Google Scholar 

  23. Malaney P (2016) Significance of PTEN phosphorylation and its nuclear function in lung cancer. University of South Florida, Tampa

    Google Scholar 

  24. Tsai C-J, Ma B, Nussinov R (2009) Protein–protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 34(12):594–600. doi:10.1016/j.tibs.2009.07.007

    Article  CAS  PubMed  Google Scholar 

  25. Papa A, Wan L, Bonora M, Salmena L, Song MS, Hobbs RM, Lunardi A, Webster K, Ng C, Newton RH, Knoblauch N, Guarnerio J, Ito K, Turka LA, Beck AH, Pinton P, Bronson RT, Wei W, Pandolfi PP (2014) Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell 157(3):595–610. doi:10.1016/j.cell.2014.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pandolfi PP (2016) Tumor suppressor phosphatases in tumorigenesis. Paper presented at the The PI3K-mTOR-PTEN network in health and disease. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  27. Sharrard RM, Maitland NJ (2000) Alternative splicing of the human PTEN/MMAC1/TEP1 gene. Biochim Biophys Acta 1494(3):282–285

    Article  CAS  PubMed  Google Scholar 

  28. Agrawal S, Eng C (2006) Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum Mol Genet 15(5):777–787. doi:10.1093/hmg/ddi492

    Article  CAS  PubMed  Google Scholar 

  29. Singh G, Chan AM (2011) Post-translational modifications of PTEN and their potential therapeutic implications. Curr Cancer Drug Targets 11 (5):536–547

    Article  CAS  PubMed  Google Scholar 

  30. Uversky VN, Dave V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC (2014) Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 114(13):6844–6879. doi:10.1021/cr400713r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakakido M, Deng ZZ, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R (2015) Dysregulation of AKT pathway by SMYD2-mediated lysine methylation on PTEN. Neoplasia 17(4):367–373. doi:10.1016/j.neo.2015.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20(14):5010–5018. doi:10.1128/Mcb.20.14.5010-5018.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marsh DJ, Coulon V, Lunetta KL, Rocca-Serra P, Dahia PLM, Zheng ZM, Liaw D, Caron S, Duboue B, Lin AY, Richardson AL, Bonnetblanc JM, Bressieux JM, Cabarrot-Moreau A, Chompret A, Demange L, Eeles RA, Yahanda AM, Fearon ER, Fricker JP, Gorlin RJ, Hodgson SV, Huson S, Lacombe D, LePrat F, Odent S, Toulouse C, Olopade OI, Sobol H, Tishler S, Woods CG, Robinson BG, Weber HC, Parsons R, Peacocke M, Longy M, Eng C (1998) Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 7(3):507–515. doi:10.1093/Hmg/7.3.507

    Article  CAS  PubMed  Google Scholar 

  34. Costa HA, Leitner MG, Sos ML, Mavrantoni A, Rychkova A, Johnson JR, Newton BW, Yee MC, De La Vega FM, Ford JM, Krogan NJ, Shokat KM, Oliver D, Halaszovich CR, Bustamante CD (2015) Discovery and functional characterization of a neomorphic PTEN mutation. Proc Natl Acad Sci USA 112(45):13976–13981. doi:10.1073/pnas.1422504112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernandez S, Genis L, Torres-Aleman I (2014) A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop. Oncogene 33(32):4114–4122. doi:10.1038/onc.2013.376

    Article  CAS  PubMed  Google Scholar 

  36. Sun Z, Huang CX, He JX, Lamb KL, Kang X, Gu TT, Shen WH, Yin YX (2014) PTEN C-terminal deletion causes genomic instability and tumor development. Cell Rep 6 (5):844–854. doi:10.1016/j.celrep.2014.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnston SB, Raines RT (2015) Conformational stability and catalytic activity of PTEN variants linked to cancers and autism spectrum disorders. BioChemistry 54(7):1576–1582. doi:10.1021/acs.biochem.5b00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, Proctor MR, Lane DP, Fersht AR (1997) Thermodynamic stability of wild-type and mutant p53 core domain. Proc Natl Acad Sci USA 94(26):14338–14342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582. doi:10.1146/annurev.biochem.77.060806.091238

    Article  CAS  PubMed  Google Scholar 

  40. Liang H, He SM, Yang JY, Jia XY, Wang P, Chen X, Zhang Z, Zou XJ, McNutt MA, Shen WH, Yin YX (2014) PTEN alpha, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. Cell Metab 19(5):836–848. doi:10.1016/j.cmet.2014.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tzani I, Ivanov IP, Andreev DE, Dmitriev RI, Dean KA, Baranov PV, Atkins JF, Loughran G (2016) Systematic analysis of the PTEN 5′ leader identifies a major AUU initiated proteoform. Open Biol. doi:10.1098/rsob.150203

    PubMed  PubMed Central  Google Scholar 

  42. Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z, Shaw J, Pappas K, Yu JS, Hodakoski C, Mense S, Klein J, Pegno S, Sulis ML, Goldsteini H, Amendolara B, Lei L, Maurer M, Bruce J, Canoll P, Hibshoosh H, Parsons R (2013) A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science 341(6144):399–402. doi:10.1126/science.1234907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pulido R, Baker SJ, Barata JT, Carracedo A, Cid VJ, Chin-Sang ID, Dave V, den Hertog J, Devreotes P, Eickholt BJ, Eng C, Furnari FB, Georgescu MM, Gericke A, Hopkins B, Jiang X, Lee SR, Losche M, Malaney P, Matias-Guiu X, Molina M, Pandolfi PP, Parsons R, Pinton P, Rivas C, Rocha RM, Rodriguez MS, Ross AH, Serrano M, Stambolic V, Stiles B, Suzuki A, Tan SS, Tonks NK, Trotman LC, Wolff N, Woscholski R, Wu H, Leslie NR (2014) A unified nomenclature and amino acid numbering for human PTEN. Sci Signal 7(332):e15. doi:10.1126/scisignal.2005560

    Article  Google Scholar 

  44. Masson GR, Perisic O, Burke JE, Williams RL (2016) The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity. Biochem J 473:135–144. doi:10.1042/Bj20150931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Malaney P, Uversky VN, Dave V (2013) The PTEN long N-tail is intrinsically disordered: increased viability for PTEN therapy. Mol Biosyst 9(11):2877–2888. doi:10.1039/c3mb70267g

    Article  CAS  PubMed  Google Scholar 

  46. Bryant AM Structure and lipid binding preferences of the alternatively translated region of PTEN-long. Biophys J 110(3):420a. doi:10.1016/j.bpj.2015.11.2272

  47. Johnston SB, Raines RT (2015) Catalysis by the tumor-suppressor enzymes PTEN and PTEN-L. PLoS ONE. doi:10.1371/journal.pone.0116898

    Google Scholar 

  48. Campbell RB, Liu FH, Ross AH (2003) Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 278(36):33617–33620. doi:10.1074/jbc.C300296200

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen Ba AN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinform 10:202. doi:10.1186/1471-2105-10-202

    Article  Google Scholar 

  50. Brameier M, Krings A, MacCallum RM (2007) NucPred-predicting nuclear localization of proteins. Bioinformatics 23(9):1159–1160. doi:10.1093/bioinformatics/btm066

    Article  CAS  PubMed  Google Scholar 

  51. Scott MS, Troshin PV, Barton GJ (2011) NoD: a Nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinform 12:317. doi:10.1186/1471-2105-12-317

    Article  CAS  Google Scholar 

  52. Scott MS, Boisvert FM, McDowall MD, Lamond AI, Barton GJ (2010) Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res 38(21):7388–7399. doi:10.1093/nar/gkq653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li P, Wang D, Li H, Yu Z, Chen X, Fang J (2014) Identification of nucleolus-localized PTEN and its function in regulating ribosome biogenesis. Mol Biol Rep 41(10):6383–6390. doi:10.1007/s11033-014-3518-6

    Article  CAS  PubMed  Google Scholar 

  54. Wang H, Zhang P, Lin C, Yu Q, Wu J, Wang L, Cui Y, Wang K, Gao Z, Li H (2015) Relevance and therapeutic possibility of PTEN-long in renal cell carcinoma. PLoS ONE 10(2):e114250. doi:10.1371/journal.pone.0114250

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hopkins BD (2013) PTEN-LONG, a translational variant of the canonical tumor suppressor PTEN. Columbia University, New York

    Google Scholar 

  56. Fenton TR, Nathanson D, de Albuquerque CP, Kuga D, Iwanami A, Dang J, Yang HJ, Tanaka K, Oba-Shinjo SM, Uno M, Inda MD, Wykosky J, Bachoo RM, James CD, DePinho RA, Vandenberg SR, Zhou HL, Marie SKN, Mischel PS, Cavenee WK, Furnari FB (2012) Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240. Proc Natl Acad Sci USA 109(35):14164–14169. doi:10.1073/pnas.1211962109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meng Z, Jia LF, Gan YH (2016) PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumour inhibition. Oncogene 35(18):2333–2344. doi:10.1038/onc.2015.293

    Article  CAS  PubMed  Google Scholar 

  58. Kechagioglou P, Papi RM, Provatopoulou X, Kalogera E, Papadimitriou E, Grigoropoulos P, Nonni A, Zografos G, Kyriakidis DA, Gounaris A (2014) Tumor suppressor PTEN in breast cancer: heterozygosity, mutations and protein expression. Anticancer Res 34(3):1387–1400

    CAS  PubMed  Google Scholar 

  59. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, Manachai N, Yamakawa N, Hamasaki M, Kitabayashi I, Arai Y, Kanai Y, Taki T, Abe T, Kiyonari H, Shimoda K, Ohshima K, Horii A, Shima H, Taniwaki M, Yamaguchi R, Morishita K (2014) Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun 5:3393. doi:10.1038/ncomms4393

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang Z, Yuan XG, Chen J, Luo SW, Luo ZJ, Lu NH (2013) Reduced expression of PTEN and increased PTEN phosphorylation at residue Ser380 in gastric cancer tissues: a novel mechanism of PTEN inactivation. Clin Res Hepatol Gastroentrol 37(1):72–79. doi:10.1016/j.clinre.2012.03.002

    Article  CAS  Google Scholar 

  61. Roy D, Dittmer DP (2011) Phosphatase and tensin homolog on chromosome 10 Is phosphorylated in primary effusion Lymphoma and Kaposi’s Sarcoma. Am J Pathol 179(4):2108–2119. doi:10.1016/j.ajpath.2011.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee EJ, Kim N, Kang KH, Kim JW (2011) Phosphorylation/inactivation of PTEN by Akt-independent PI3K signaling in retinal pigment epithelium. Biochem Biophys Res Commun 414(2):384–389. doi:10.1016/j.bbrc.2011.09.083

    Article  CAS  PubMed  Google Scholar 

  63. Hua F, Ha TZ, Ma J, Li Y, Kelley J, Gao X, Browder IW, Kao RL, Williams DL, Li CF (2007) Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J Immunol 178(11):7317–7324

    Article  CAS  PubMed  Google Scholar 

  64. Horita H, Furgeson SB, Ostriker A, Olszewski KA, Sullivan T, Villegas LR, Levine M, Parr JE, Cool CD, Nemenoff RA, Weiser-Evans MCM (2013) Selective inactivation of PTEN in smooth muscle cells synergizes with hypoxia to induce severe pulmonary hypertension. J Am Heart Assoc. doi:10.1161/JAHA.113.000188

    PubMed  PubMed Central  Google Scholar 

  65. Morotti A, Panuzzo C, Crivellaro S, Carrà G, Fava C, Guerrasio A, Pandolfi PP, Saglio G (2015) BCR-ABL inactivates cytosolic PTEN through casein kinase II mediated tail phosphorylation. Cell Cycle 14(7):973–979. doi:10.1080/15384101.2015.1006970

    Article  PubMed  PubMed Central  Google Scholar 

  66. Toby TK, Fornelli L, Kelleher NL (2016) Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem 9:499–519. doi:10.1146/annurev-anchem-071015-041550

    Article  CAS  Google Scholar 

  67. Michel AM, Ahern AM, Donohue CA, Baranov PV (2015) GWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms. Proteomics 15(14):2410–2416. doi:10.1002/pmic.201400603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vrushank Davé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaney, P., Uversky, V.N. & Davé, V. PTEN proteoforms in biology and disease. Cell. Mol. Life Sci. 74, 2783–2794 (2017). https://doi.org/10.1007/s00018-017-2500-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2500-6

Keywords

Navigation