Skip to main content

Advertisement

Log in

General mechanisms of drought response and their application in drought resistance improvement in plants

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4:17–22

    Google Scholar 

  2. Woodward A, Smith KR, Campbell-Lendrum D, Chadee DD, Honda Y, Liu Q, Olwoch J, Revich B, Sauerborn R, Chafe Z, Confalonieri U, Haines A (2014) Climate change and health: on the latest IPCC report. Lancet 383:1185–1189

    PubMed  Google Scholar 

  3. Hussain M, Mumtaz S (2014) Climate change and managing water crisis: Pakistan’s perspective. Rev Environ Health 29:71–77

    PubMed  Google Scholar 

  4. Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi:10.1029/2007WR006331

    Google Scholar 

  5. Wada Y, Van Beek L, Bierkens MF (2011) Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol Earth Syst Sci 15:3785–3808

    Google Scholar 

  6. Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. doi:10.1088/1748-9326/4/3/035006

    Google Scholar 

  7. Mann C (1997) Reseeding the green revolution. Science 277:1038–1043

    CAS  Google Scholar 

  8. Renkow M, Byerlee D (2010) The impacts of CGIAR research: a review of recent evidence. Food Pol 35:391–402

    Google Scholar 

  9. Byerlee D, Dubin HJ (2009) Crop improvement in the CGIAR as a global success story of open access and international collaboration. Int J Commons 4:452–480

    Google Scholar 

  10. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  11. Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    CAS  PubMed  Google Scholar 

  12. Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    CAS  PubMed  Google Scholar 

  13. Goswami A, Banerjee R, Raha S (2013) Drought resistance in rice seedlings conferred by seed priming: role of the anti-oxidant defense mechanisms. Protoplasma 250:1115–1129

    CAS  PubMed  Google Scholar 

  14. Warming E, Balfour IB, Groom P, Vahl M (1909) Oecology of plants. Oxford University Press, London

    Google Scholar 

  15. Kneebone W, Mancino C, Kopec D (1992) Water requirements and irrigation. Turfgrass. doi:10.2134/agronmonogr32.c12

    Google Scholar 

  16. Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci (Bangalore) 80:758–763

    CAS  Google Scholar 

  17. May L, Milthorpe F (1962) Drought resistance of crop plants. Proc Field Crop Abstr 15:171–179

    Google Scholar 

  18. Clarke JM, DePauw RM, Townley-Smith TF (1992) Evaluation of methods for quantification of drought tolerance in wheat. Crop Sci 32:723–728

    Google Scholar 

  19. Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Res 40:67–86

    Google Scholar 

  20. Blum A (2002) Drought stress and its impact. Available via DIALOG. http://www.plantstress.com/Articles/drought_i/drought_i.htm. Accessed 12 Oct 2014

  21. Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    CAS  PubMed  Google Scholar 

  22. Levitt J (1980) Responses of plants to environmental stresses, vol II. Water, radiation, salt, and other stresses. Academic Press, London

    Google Scholar 

  23. Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61:3509–3517

    CAS  PubMed  Google Scholar 

  24. Turner NC (1979) Drought resistance and adaptation to water deficits in crop plants. In: Mussel H, Staples RC (eds) Stress physiology in crop plants. Wiley, New York

    Google Scholar 

  25. Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    PubMed Central  PubMed  Google Scholar 

  26. Turner NC, Wright GC, Siddique K (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:194–233

    Google Scholar 

  27. Hall A, Schulze E (1980) Drought effects on transpiration and leaf water status of cowpea in controlled environments. Funct Plant Biol 7:141–147

    Google Scholar 

  28. Blum A (2005) Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Google Scholar 

  29. Tardieu F (2013) Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol 4:17

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    CAS  PubMed  Google Scholar 

  31. Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Islam MA, Du H, Ning J, Ye H, Xiong L (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456

    CAS  PubMed  Google Scholar 

  33. Sawidis T, Kalyva S, Delivopoulos S (2005) The root-tuber anatomy of Asphodelus aestivus. Flora Morphol Distrib Funct Ecol Plants 200:332–338

    Google Scholar 

  34. Ogburn R, Edwards EJ (2010) The ecological water-use strategies of succulent plants. Adv Bot Res 55:179–225

    Google Scholar 

  35. Passioura J (1997) Drought and drought tolerance. Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Springer, Netherlands

    Google Scholar 

  36. Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    CAS  PubMed  Google Scholar 

  37. Mohamed MF, Keutgen N, Tawfika AA, Noga G (2002) Dehydration-avoidance responses of tepary bean lines differing in drought resistance. J Plant Physiol 159:31–38

    CAS  Google Scholar 

  38. Price A, Steele K, Moore B, Jones R (2002) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: II. Mapping quantitative trait loci for root morphology and distribution. Field Crops Res 76:25–43

    Google Scholar 

  39. Johnson W, Jackson L, Ochoa O, Van Wijk R, Peleman J, Clair DS, Michelmore R (2000) Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073

    CAS  Google Scholar 

  40. Hammer GL, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49:299–312

    Google Scholar 

  41. Forster B, Thomas W, Chloupek O (2005) Genetic controls of barley root systems and their associations with plant performance. Aspects Appl Biol 73:199–204

    Google Scholar 

  42. Subashri M, Robin S, Vinod K, Rajeswari S, Mohanasundaram K, Raveendran T (2009) Trait identification and QTL validation for reproductive stage drought resistance in rice using selective genotyping of near flowering RILs. Euphytica 166:291–305

    Google Scholar 

  43. Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Netherlands

    Google Scholar 

  44. Dixon R, Wright G, Behrns G, Teskey R, Hinckley T (1980) Water deficits and root growth of ectomycorrhizal white oak seedlings. Can J For Res 10:545–548

    Google Scholar 

  45. Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Google Scholar 

  46. Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc Lond B Biol Sci 367:1441–1452

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Malamy J (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    CAS  PubMed  Google Scholar 

  48. Kramer PJ (1969) Plant and soil water relationships: a modern synthesis. Plant and soil water relationships: a modern synthesis. McGraw-Hill Book Company, New York

    Google Scholar 

  49. Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004

    CAS  PubMed  Google Scholar 

  50. Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553

    CAS  PubMed  Google Scholar 

  51. Fulda S, Mikkat S, Stegmann H, Horn R (2011) Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant Biol (Stuttg) 13:632–642

    CAS  Google Scholar 

  52. Pallardy SG (2010) Physiology of woody plants. Academic Press, London

    Google Scholar 

  53. Tavakol E, Pakniyat H (2007) Evaluation of some drought resistance criteria at seedling stage in wheat (Triticum aestivum L.) cultivars. Pak J Biol Sci 10:1113–1117

    CAS  PubMed  Google Scholar 

  54. Champoux MC, Wang G, Sarkarung S, Mackill DJ, O’Toole JC, Huang N, McCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    CAS  PubMed  Google Scholar 

  55. Ali MA, Abbas A, Niaz S, Zulkiffal M, Ali S (2009) Morpho-physiological criteria for drought tolerance in sorghum (Sorghum bicolor) at seedling and post-anthesis stages. Int J Agric Biol 11:674–680

    Google Scholar 

  56. Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331

    Google Scholar 

  57. Begg J, Turner N, Kramer P (1980) Morphological adaptations of leaves to water stress. Adaptation of plants to water and high temperature stress. Wiley, New York

    Google Scholar 

  58. Ludlow MM, Bjorkman O (1984) Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat. Planta 161:505–518

    CAS  PubMed  Google Scholar 

  59. Stevenson K, Shaw R (1971) Effects of leaf orientation on leaf resistance to water vapor diffusion in soybean (Glycine max L. Merr) leaves. Agron J 63:327–329

    Google Scholar 

  60. Meyer WS, Walker S (1981) Leaflet orientation in water-stressed soybeans. Agron J 73:1071–1074

    Google Scholar 

  61. Oosterhuis DM, Walker S, Eastham J (1985) Soybean leaflet movements as an indicator of crop water stress. Crop Sci 25:1101–1106

    Google Scholar 

  62. Hsiao TC, O’Toole JC, Yambao EB, Turner NC (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol 75:338–341

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Esau K (1960) Anatomy of seed plants. Soil Sci 90:149

    Google Scholar 

  64. Abclulrahaman A, Oladele E (2011) Response of trichomes to water stress in two species of Jatropha. Insight bot 1:15–21

    Google Scholar 

  65. Mohammadian MA, Watling JR, Hill RS (2007) The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecol 31:93–101

    Google Scholar 

  66. Terashima I (1992) Anatomy of non-uniform leaf photosynthesis. Photosyn Res 31:195–212

    CAS  PubMed  Google Scholar 

  67. Guha A, Sengupta D, Kumar Rasineni G, Ramachandra Reddy A (2010) An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora Morphol Distrib Funct Ecol Plants 205:144–151

    Google Scholar 

  68. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    CAS  PubMed  Google Scholar 

  69. Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Porée F, Boucherez J, Lebaudy A, Bouchez D, Véry A-A (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Li L, Kim B-G, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103:12625–12630

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Cousson A, Vavasseur A (1998) Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina communis L. Planta 206:308–314

    CAS  Google Scholar 

  72. Wang H, Wang X, Zhang S, Lou C (2000) Muscarinic acetylcholine receptor is involved in acetylcholine regulating stomatal movement. Chin Sci Bull 45:250–252

    CAS  Google Scholar 

  73. Shimazaki K-i, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    CAS  PubMed  Google Scholar 

  74. Yamazaki D, Yoshida S, Asami T, Kuchitsu K (2003) Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. Plant J 35:129–139

    CAS  PubMed  Google Scholar 

  75. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330

    CAS  PubMed  Google Scholar 

  76. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Google Scholar 

  77. Herppich WB, Peckmann K (2000) Influence of drought on mitochondrial activity, photosynthesis, nocturnal acid accumulation and water relations in the CAM plants Prenia sladeniana (ME-type) and Crassula lycopodioides (PEPCK-type). Ann Bot 86:611–620

    CAS  Google Scholar 

  78. Pagter M, Bragato C, Brix H (2005) Tolerance and physiological responses of Phragmites australis to water deficit. Aquat Bot 81:285–299

    Google Scholar 

  79. Basu P, Sharma A, Garg I, Sukumaran N (1999) Tuber sink modifies photosynthetic response in potato under water stress. Environ Exp Bot 42:25–39

    Google Scholar 

  80. Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    CAS  Google Scholar 

  81. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  82. Cushman JC (2001) Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Lin Z, Peng C, Lin G (2003) Photooxidation in leaves of facultative CAM plant Sedum spectabile at C3 and CAM mode. Acta Bot Sin 45:301–306

    CAS  Google Scholar 

  84. Kerbauy GB, Takahashi CA, Lopez AM, Matsumura AT, Hamachi L, Félix LM, Pereira PN, Freschi L, Mercier H (2012) Crassulacean acid metabolism in epiphytic orchids: current knowledge, future perspectives. Appl Photosyn, pp 81–104

  85. Sanchez R, Flores A, Cejudo FJ (2006) Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta 223:901–909

    CAS  PubMed  Google Scholar 

  86. Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319

    Google Scholar 

  87. Rhodes D, Samaras Y (1994) Genetic control of osmoregulation in plants. Cellular and Molecular Physiology of Cell Volume Regulation, pp 347–361

  88. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    CAS  PubMed  Google Scholar 

  89. Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plantarum 87:223–226

    CAS  Google Scholar 

  90. Ranieri A, Bernardi R, Lanese P, Soldatini GF (1989) Changes in free amino acid content and protein pattern of maize seedlings under water stress. Environ Exp Bot 29:351–357

    CAS  Google Scholar 

  91. Thomas H, James A (1993) Freezing tolerance and solute changes in contrasting genotypes of Lolium perenne L. acclimated to cold and drought. Ann Bot 72:249–254

    CAS  Google Scholar 

  92. Wang S, Wan C, Wang Y, Chen H, Zhou Z, Fu H, Sosebee RE (2004) The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. J Arid Environ 56:525–539

    Google Scholar 

  93. Schobert B, Tschesche H (1978) Unusual solution properties of proline and its interaction with proteins. Biochim Biophys Acta Gen Subj 541:270–277

    CAS  Google Scholar 

  94. Arakawa T, Timasheff S (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21:6536–6544

    CAS  PubMed  Google Scholar 

  96. Schobert B (1977) Is there an osmotic regulatory mechanism in algae and higher plants? J Theor Biol 68:17–26

    CAS  PubMed  Google Scholar 

  97. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    CAS  PubMed  Google Scholar 

  98. Solomon A, Beer S, Waisel Y, Jones G, Paleg L (1994) Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiol Plantarum 90:198–204

    CAS  Google Scholar 

  99. Venekamp J, Lampe J, Koot J (1989) Organic acids as sources for drought-induced proline synthesis in field bean plants, Vicia faba L. J Plant Physiol 133:654–659

    CAS  Google Scholar 

  100. Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    Google Scholar 

  101. McLean WF, Blunden G, Jewers K (1996) Quaternary ammonium compounds in the Capparaceae. Biochem Syst Ecol 24:427–434

    CAS  Google Scholar 

  102. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    CAS  PubMed  Google Scholar 

  103. Gorham J (1995) Betaines in higher plants-biosynthesis and role in stress metabolism. Seminar series. Cambridge University Press, Cambridge, Proc

    Google Scholar 

  104. Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  105. Shao HB, Liang ZS, Shao MA (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloid Surf B 45:131–135

    CAS  Google Scholar 

  106. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plantarum 97:795–803

    CAS  Google Scholar 

  107. Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429

    CAS  PubMed  Google Scholar 

  108. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    CAS  PubMed  Google Scholar 

  109. Santoni V, Gerbeau P, Javot H, Maurel C (2000) The high diversity of aquaporins reveals novel facets of plant membrane functions. Curr Opin Plant Biol 3:476–481

    CAS  PubMed  Google Scholar 

  110. Cruz dCM (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Google Scholar 

  111. Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    CAS  PubMed  Google Scholar 

  112. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  113. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  114. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  115. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  116. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    CAS  PubMed  Google Scholar 

  117. Miyake C (2010) Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963

    CAS  PubMed  Google Scholar 

  118. Dixon DP, Cummins L, Cole DJ, Edwards R (1998) Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1:258–266

    CAS  PubMed  Google Scholar 

  119. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta 1819:186–194

    CAS  PubMed  Google Scholar 

  121. Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci USA 106:6410–6415

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Bano A, Hansen H, Dörffling K, Hahn H (1994) Changes in the contents of free and conjugated abscisic acid, phaseic acid and cytokinins in xylem sap of drought stressed sunflower plants. Phytochemistry 37:345–347

    CAS  Google Scholar 

  123. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  PubMed  Google Scholar 

  124. Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    CAS  PubMed  Google Scholar 

  125. Campalans A, Messeguer R, Goday A, Pagès M (1999) Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiol Biochem 37:327–340

    CAS  Google Scholar 

  126. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant09 Cell Environ 25:195–210

    CAS  Google Scholar 

  127. Boursiac Y, Léran S, Corratgé-Faillie C, Gojon A, Krouk G, Lacombe B (2013) ABA transport and transporters. Trends Plant Sci 18:325–333

    CAS  PubMed  Google Scholar 

  128. Bacon MA, Wilkinson S, Davies WJ (1998) pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol 118:1507–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Cocucci M, Negrini N (1988) Changes in the levels of calmodulin and of a calmodulin inhibitor in the early phases of radish (Raphanus sativus L.) seed germination: effects of ABA and Fusicoccin. Plant Physiol 88:910–914

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biol. doi:10.1371/journal.pbio.0040327

    Google Scholar 

  132. Harris MJ, Outlaw WH (1991) Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status. Plant Physiol 95:171–173

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Tardieu F, Davies WJ (1992) Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol 98:540–545

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  135. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    CAS  PubMed  Google Scholar 

  136. Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    CAS  PubMed  Google Scholar 

  137. Strizhov N, Abraham E, Ökrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    CAS  PubMed  Google Scholar 

  138. Abrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    PubMed  Google Scholar 

  139. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  PubMed  Google Scholar 

  140. Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    CAS  PubMed  Google Scholar 

  141. Sayed O (2003) Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41:321–330

    CAS  Google Scholar 

  142. Li RH, Guo PG, Michael B, Stefania G, Salvatore C (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China 5:751–757

    CAS  Google Scholar 

  143. Kocheva K, Lambrev P, Georgiev G, Goltsev V, Karabaliev M (2004) Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63:121–124

    CAS  PubMed  Google Scholar 

  144. Guo P, Baum M, Varshney RK, Graner A, Grando S, Ceccarelli S (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163:203–214

    CAS  Google Scholar 

  145. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  146. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Google Scholar 

  148. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    CAS  PubMed  Google Scholar 

  149. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    CAS  PubMed  Google Scholar 

  150. Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genom 12:149

    Google Scholar 

  151. Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, Klein PE (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom 12:514

    CAS  Google Scholar 

  153. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    CAS  PubMed  Google Scholar 

  154. Zou J-J, Wei F-J, Wang C, Wu J-J, Ratnasekera D, Liu W-X, Wu W-H (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    CAS  PubMed  Google Scholar 

  156. Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35:S531–S532

    Google Scholar 

  157. Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:17306–17311

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    PubMed  Google Scholar 

  163. Zhao L, Hu Y, Chong K, Wang T (2010) ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot 105:401–409

    PubMed Central  PubMed  Google Scholar 

  164. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    CAS  PubMed  Google Scholar 

  165. Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    CAS  PubMed  Google Scholar 

  168. Yang A, Dai X, Zhang W-H (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Saad AS, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203–204:33–40

    PubMed  Google Scholar 

  171. Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 9:e86895. doi:10.1371/journal.pone.0086895

    PubMed Central  PubMed  Google Scholar 

  172. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H (2003) Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J 36:830–841

    CAS  PubMed  Google Scholar 

  174. Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    CAS  PubMed  Google Scholar 

  176. Oritani T, Kiyota H (2003) Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20:414–425

    CAS  PubMed  Google Scholar 

  177. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Park H-Y, Seok H-Y, Park B-K, Kim S-H, Goh C-H, B-h Lee, Lee C-H, Moon Y-H (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375:80–85

    CAS  PubMed  Google Scholar 

  179. Qin X, Zeevaart JA (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    CAS  PubMed  Google Scholar 

  181. Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Yue Y, Zhang M, Zhang J, Duan L, Li Z (2011) Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance. Plant Sci 181:405–411

    CAS  PubMed  Google Scholar 

  183. Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63:3741–3748

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Xiao B-Z, Chen X, Xiang C-B, Tang N, Zhang Q-F, Xiong L-Z (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Bowler C, Mv Montagu, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    CAS  Google Scholar 

  186. Wang F-Z, Wang Q-B, Kwon S-Y, Kwak S-S, Su W-A (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    CAS  PubMed  Google Scholar 

  187. Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    CAS  PubMed Central  PubMed  Google Scholar 

  189. You J, Zong W, Li X, Ning J, Hu H, Xiao J, Xiong L (2013) The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot 64:569–583

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    CAS  PubMed  Google Scholar 

  191. Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    CAS  PubMed  Google Scholar 

  192. Rai V, Tuteja N, Takabe T (2012) Improving crop resistance to abiotic stress. Wiley, New York

    Google Scholar 

  193. Wei A, He C, Li B, Li N, Zhang J (2011) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J 9:216–229

    CAS  PubMed  Google Scholar 

  194. Klein M, Geisler M, Suh SJ, Kolukisaoglu HÜ, Azevedo L, Plaza S, Curtis MD, Richter A, Weder B, Schulz B (2004) Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant J 39:219–236

    CAS  PubMed  Google Scholar 

  195. Lian H-L, Yu X, Ye Q, Ding X-S, Kitagawa Y, Kwak S-S, Su W-A, Tang Z-C (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    CAS  PubMed  Google Scholar 

  196. Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740

    CAS  PubMed  Google Scholar 

  197. Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    CAS  PubMed  Google Scholar 

  198. Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byu M (2000) Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells 10:263–268

    CAS  PubMed  Google Scholar 

  199. Zhang N, Si H-J, Wen G, Du HH, Liu BL, Wang D (2011) Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol Rep 5:71–77

    Google Scholar 

  200. Kishor PK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Zhu X, Xiong L (2013) Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc Natl Acad Sci USA 110:17790–17795

    CAS  PubMed Central  PubMed  Google Scholar 

  202. You J, Hu H, Xiong L (2012) An ornithine delta-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice. Plant Sci 197:59–69

    CAS  PubMed  Google Scholar 

  203. Bolanos J, Edmeades G (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res 48:65–80

    Google Scholar 

  204. Monneveux P, Ribaut JM (2006) Secondary traits for drought tolerance improvement in cereals. Drought adaptation in cereals, pp 97–143

  205. Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SV, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498

    CAS  PubMed  Google Scholar 

  206. Kato Y, Abe J, Kamoshita A, Yamagishi J (2006) Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287:117–129

    CAS  Google Scholar 

  207. Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    CAS  PubMed  Google Scholar 

  208. Cuellar-Ortiz SM, De La Paz Arrieta-Montiel M, Acosta-Gallegos J, Covarrubias AA (2008) Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ 31:1399–1409

    PubMed  Google Scholar 

  209. Hossain A, Sears R, Cox TS, Paulsen G (1990) Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Sci 30:622–627

    Google Scholar 

  210. Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Google Scholar 

  211. Van Herwaarden A, Richards R, Angus J (2003) Water-soluble carbohydrates and yield in wheat. In: Proceedings of the 11th Australian agronomy conference. The Australian Society of Agronomy, Geelong

  212. Rebetzke G, Van Herwaarden A, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell N, Richards R (2008) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Crop Pasture Sci 59:891–905

    CAS  Google Scholar 

  213. Richards R (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166

    CAS  Google Scholar 

  214. Zheng H, Wu A, Zheng C, Wang Y, Cai R, Shen X, Xu R, Liu P, Kong L, Dong S (2009) QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breeding 128:54–62

    CAS  Google Scholar 

  215. Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    CAS  PubMed  Google Scholar 

  216. King CA, Purcell LC (2001) Soybean nodule size and relationship to nitrogen fixation response to water deficit. Crop Sci 41:1099–1107

    Google Scholar 

  217. Sinclair TR, Purcell LC, King CA, Sneller CH, Chen P, Vadez V (2007) Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Res 101:68–71

    Google Scholar 

  218. Zhou Y (2013) Drought resistance of turf bermudagrasses (Cynodon spp.) collected from Australian biodiversity. The University of Queensland, Australia

    Google Scholar 

  219. Zhou Y, Lambrides CJ, Fukai S (2014) Drought resistance and soil water extraction of a perennial C4 grass: contributions of root and rhizome traits. Funct Plant Biol 41:505–519

    Google Scholar 

  220. van Ginkel M, Ogbonnaya F (2007) Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res 104:86–94

    Google Scholar 

  221. Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol 34:189–203

    Google Scholar 

  222. Flintham J, Börner A, Worland A, Gale M (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci 128:11–25

    Google Scholar 

  223. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  224. Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    CAS  PubMed  Google Scholar 

  225. Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    CAS  PubMed  Google Scholar 

  226. Yoon HK, Kim SG, Kim SY, Park CM (2008) Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells 25:438–445

    CAS  PubMed  Google Scholar 

  227. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research on drought resistance in the authors’ laboratory has been supported by grants from the National Program for Basic Research of China (2012CB114305), the National Program on High Technology Development (2012AA10A303), the National Natural Science Foundation (31271316), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 72, 673–689 (2015). https://doi.org/10.1007/s00018-014-1767-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1767-0

Keywords

Navigation