Skip to main content

Advertisement

Log in

Interplay between genetic and epigenetic factors governs common fragile site instability in cancer

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Common fragile sites (CFSs) are regions within the normal chromosomal structure that were characterized as hotspots for genomic instability in cancer almost 30 years ago. In recent years, many efforts have been made to understand the basis of CFS fragility and their involvement in the genomic signature of instability found in malignant tumors. CFSs are among the first regions to undergo genomic instability during cancer development because of their intrinsic sensitivity to replication stress conditions, which result from oncogene expression. The preferred sensitivity of CFSs to replication stress stems from various mechanisms including: replication fork arrest at AT-rich repeats, origin paucity along large genomic regions, failure in activation of dormant origins, late replication timing, collision between replication and transcription along large genes, all leading to incomplete replication of the CFS region and resulting in chromosomal instability. Here we review shared and unique characteristics of CFSs, their underlying causes and implications, particularly for the development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Glover TW, Berger C, Coyle J, Echo B (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142

    CAS  PubMed  Google Scholar 

  2. Glover TW, Hoge AW, Miller DE et al (1998) The murine Fhit gene is highly similar to its human orthologue and maps to a common fragile site region. Cancer Res 58:3409–3414

    CAS  PubMed  Google Scholar 

  3. Shiraishi T, Druck T, Mimori K et al (2001) Sequence conservation at human and mouse orthologous common fragile regions, FRA3B/FHIT and Fra14A2/Fhit. Proc Natl Acad Sci USA 98:5722–5727. doi:10.1073/pnas.091095898

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Krummel KA, Denison SR, Calhoun E et al (2002) The common fragile site FRA16D and its associated gene WWOX are highly conserved in the mouse at Fra8E1. Genes Chromosomes Cancer 34:154–167

    CAS  PubMed  Google Scholar 

  5. Rozier L, El-Achkar E, Apiou F, Debatisse M (2004) Characterization of a conserved aphidicolin-sensitive common fragile site at human 4q22 and mouse 6C1: possible association with an inherited disease and cancer. Oncogene 23:6872–6880. doi:10.1038/sj.onc.1207809

    CAS  PubMed  Google Scholar 

  6. Ruiz-Herrera A, Garcia F, Fronicke L et al (2004) Conservation of aphidicolin-induced fragile sites in Papionini (Primates) species and humans. Chromosome Res 12:683–690

    CAS  PubMed  Google Scholar 

  7. Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606

    CAS  PubMed  Google Scholar 

  8. Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD (2005) Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120:587–598

    CAS  PubMed  Google Scholar 

  9. Admire A, Shanks L, Danzl N et al (2006) Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 20:159–173. doi:10.1101/gad.1392506

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Mrasek K, Schoder C, Teichmann A et al (2010) Global screening and extended nomenclature for 230 aphidicolin-inducible fragile sites, including 61 yet unreported ones. Int J Oncol 36:929–940. doi:10.3892/ijo

    PubMed  Google Scholar 

  11. Le Tallec B, Dutrillaux B, Lachages A-M et al (2011) Molecular profiling of common fragile sites in human fibroblasts. Nat Struct Mol Biol 18:1421–1423. doi:10.1038/nsmb.2155

    PubMed  Google Scholar 

  12. Le Tallec B, Millot GA, Blin ME et al (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4:420–428. doi:10.1016/j.celrep.2013.07.003

    PubMed  Google Scholar 

  13. Cheng CH, Kuchta RD (1993) DNA polymerase epsilon: aphidicolin inhibition and the relationship between polymerase and exonuclease activity. Biochemistry 32:8568–8574

    CAS  PubMed  Google Scholar 

  14. Ikegami S, Taguchi T, Ohashi M et al (1978) Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. Nature 275:458–460

    CAS  PubMed  Google Scholar 

  15. Arlt MF, Durkin SG, Ragland RL, Glover TW (2006) Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 5:1126–1135. doi:10.1016/j.dnarep.2006.05.010

    CAS  Google Scholar 

  16. Schwartz M, Zlotorynski E, Goldberg M et al (2005) Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev 19:2715–2726. doi:10.1101/gad.340905

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bignell GR, Greenman CD, Davies H et al (2010) Signatures of mutation and selection in the cancer genome. Nature 463:893–898. doi:10.1038/nature08768

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hecht F, Hecht BK (1984) Fragile sites and chromosome breakpoints in constitutional rearrangements I. Amniocentesis. Clin Genet 26:169–173

    CAS  PubMed  Google Scholar 

  19. Yunis JJ (1984) Fragile sites and predisposition to leukemia and lymphoma. Cancer Genet Cytogenet 12:85–88

    CAS  PubMed  Google Scholar 

  20. Gardenswartz A, Aqeilan RI (2014) WW domain-containing oxidoreductase’s role in myriad cancers: clinical significance and future implications. Exp Biol Med (Maywood) 239:253–263. doi:10.1177/1535370213519213

    Google Scholar 

  21. Pichiorri F, Ishii H, Okumura H et al (2008) Molecular parameters of genome instability: roles of fragile genes at common fragile sites. J Cell Biochem 104:1525–1533. doi:10.1002/jcb.21560

    CAS  PubMed  Google Scholar 

  22. Hellman A, Zlotorynski E, Scherer SW et al (2002) A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1:89–97

    CAS  PubMed  Google Scholar 

  23. Kotzot D, Martinez MJ, Bagci G et al (2000) Parental origin and mechanisms of formation of cytogenetically recognisable de novo direct and inverted duplications. J Med Genet 37:281–286

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Miller CT, Lin L, Casper AM et al (2006) Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene 25:409–418

    CAS  PubMed  Google Scholar 

  25. Thorland EC, Myers SL, Gostout BS, Smith DI (2003) Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene 22:1225–1237

    CAS  PubMed  Google Scholar 

  26. Thorland EC, Myers SL, Persing DH et al (2000) Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res 60:5916–5921

    CAS  PubMed  Google Scholar 

  27. Yu T, Ferber MJ, Cheung TH et al (2005) The role of viral integration in the development of cervical cancer. Cancer Genet Cytogenet 158:27–34. doi:10.1016/j.cancergencyto.2004.08.021

    CAS  PubMed  Google Scholar 

  28. Matovina M, Sabol I, Grubisić G et al (2009) Identification of human papillomavirus type 16 integration sites in high-grade precancerous cervical lesions. Gynecol Oncol 113:120–127. doi:10.1016/j.ygyno.2008.12.004

    CAS  PubMed  Google Scholar 

  29. Bester AC, Roniger M, Oren YS et al (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446. doi:10.1016/j.cell.2011.03.044

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642. doi:10.1038/nature05327

    PubMed  Google Scholar 

  31. Bartkova J, Horejsi Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    CAS  PubMed  Google Scholar 

  32. Gorgoulis VG, Vassiliou L-VF, Karakaidos P et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913. doi:10.1038/nature03485

    CAS  PubMed  Google Scholar 

  33. Le Beau MM, Rassool FV, Neilly ME et al (1998) Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum Mol Genet 7:755–761

    PubMed  Google Scholar 

  34. Denison SR, Callahan G, Becker NA et al (2003) Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer. Genes Chromosomes Cancer 38:40–52. doi:10.1002/gcc.10236

    CAS  PubMed  Google Scholar 

  35. Sozzi G, Veronese ML, Negrini M et al (1996) The FHIT gene 3p14.2 is abnormal in lung cancer. Cell 85:17–26

    CAS  PubMed  Google Scholar 

  36. Ohta M, Inoue H, Cotticelli MG et al (1996) The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84:587–597. doi:10.1016/S0092-8674(00)81034-X

    CAS  PubMed  Google Scholar 

  37. Ried K, Finnis M, Hobson L et al (2000) Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet 9:1651–1663

    CAS  PubMed  Google Scholar 

  38. Mishmar D, Rahat A, Scherer SW et al (1998) Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci USA 95:8141–8146

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Zlotorynski E, Rahat A, Skaug J et al (2003) Molecular basis for expression of common and rare fragile sites. Mol Cell Biol 23:7143–7151

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Lukusa T, Fryns JP (2008) Human chromosome fragility. Biochim Biophys Acta 1779:3–16. doi:10.1016/j.bbagrm.2007.10.005

    CAS  PubMed  Google Scholar 

  41. Inagaki H, Ohye T, Kogo H et al (2009) Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res 19:191–198. doi:10.1101/gr.079244.108

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Pichierri P, Ammazzalorso F, Bignami M, Franchitto A (2011) The Werner syndrome protein: linking the replication checkpoint response to genome stability. Aging (Albany NY) 3:311–318

    CAS  Google Scholar 

  43. Pirzio LM, Pichierri P, Bignami M, Franchitto A (2008) Werner syndrome helicase activity is essential in maintaining fragile site stability. J Cell Biol 180:305–314

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Fundia A, Gorla N, Larripa I (1995) Non-random distribution of spontaneous chromosome aberrations in two Bloom Syndrome patients. Hereditas 122:239–243

    CAS  PubMed  Google Scholar 

  45. Arlt MF, Glover TW (2010) Inhibition of topoisomerase I prevents chromosome breakage at common fragile sites. DNA Repair (Amst) 9:678–689. doi:10.1016/j.dnarep.2010.03.005

    CAS  Google Scholar 

  46. Tuduri S, Crabbe L, Conti C et al (2009) Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11:1315–1324

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Focarelli ML, Soza S, Mannini L et al (2009) Claspin inhibition leads to fragile site expression. Genes Chromosomes Cancer 48:1083–1090. doi:10.1002/gcc.20710

    CAS  PubMed  Google Scholar 

  48. Katou Y, Kanoh Y, Bando M et al (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–1083. doi:10.1038/nature01900

    CAS  PubMed  Google Scholar 

  49. Freudenreich CH, Lahiri M (2004) Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3:1370–1374

    CAS  PubMed  Google Scholar 

  50. Shah SN, Opresko PL, Meng X et al (2010) DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D. Nucleic Acids Res 38:1149–1162. doi:10.1093/nar/gkp1131

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhang H, Freudenreich CH (2007) An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27:367–379

    PubMed Central  PubMed  Google Scholar 

  52. Mitsui J, Takahashi Y, Goto J et al (2010) Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. Am J Hum Genet 87:75–89. doi:10.1016/j.ajhg.2010.06.006

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Debacker K, Winnepenninckx B, Ben-Porat N et al (2007) FRA18C: a new aphidicolin-inducible fragile site on chromosome 18q22, possibly associated with in vivo chromosome breakage. J Med Genet 44:347–352

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Ozeri-Galai E, Lebofsky R, Rahat A et al (2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43:122–131. doi:10.1016/j.molcel.2011.05.019

    CAS  PubMed  Google Scholar 

  55. Yu S, Mangelsdorf M, Hewett D et al (1997) Human chromosomal fragile site FRA16B is an amplified AT-rich minisatellite repeat. Cell 88:367–374

    CAS  PubMed  Google Scholar 

  56. Letessier A, Millot GA, Koundrioukoff S et al (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470:120–123. doi:10.1038/nature09745

    CAS  PubMed  Google Scholar 

  57. Palakodeti A, Lucas I, Jiang Y et al (2010) Impaired replication dynamics at the FRA3B common fragile site. Hum Mol Genet 19:99–110

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Hansen RS, Thomas S, Sandstrom R et al (2010) Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci USA 107:139–144. doi:10.1073/pnas.0912402107

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Wang L, Darling J, Zhang JS et al (1999) Allele-specific late replication and fragility of the most active common fragile site, FRA3B. Hum Mol Genet 8:431–437

    CAS  PubMed  Google Scholar 

  60. Palakodeti A, Han Y, Jiang Y, Le Beau MM (2004) The role of late/slow replication of the FRA16D in common fragile site induction. Genes Chromosome Cancer 39:71–76

    CAS  Google Scholar 

  61. Wang L, Darling J, Zhang JS et al (1998) Frequent homozygous deletions in the FRA3B region in tumor cell lines still leave the FHIT exons intact. Oncogene 16:635–642

    CAS  PubMed  Google Scholar 

  62. Hellman A, Rahat A, Scherer SW et al (2000) Replication delay along FRA7H, a common fragile site on human chromosome 7, leads to chromosomal instability. Mol Cell Biol 20:4420–4427

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Pelliccia F, Bosco N, Curatolo A, Rocchi A (2008) Replication timing of two human common fragile sites: FRA1H and FRA2G. Cytogenet Genome Res 121:196–200. doi:10.1159/000138885

    CAS  PubMed  Google Scholar 

  64. Widrow RJ, Hansen RS, Kawame H et al (1998) Very late DNA replication in the human cell cycle. Proc Natl Acad Sci USA 95:11246–11250

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Barlow JH, Faryabi RB, Callén E et al (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152:620–632. doi:10.1016/j.cell.2013.01.006

    CAS  PubMed Central  PubMed  Google Scholar 

  66. McAvoy S, Ganapathiraju SC, Ducharme-Smith AL et al (2007) Non-random inactivation of large common fragile site genes in different cancers. Cytogenet Genome Res 118:260–269. doi:10.1159/000108309

    CAS  PubMed  Google Scholar 

  67. Smith DI, McAvoy S, Zhu Y, Perez DS (2007) Large common fragile site genes and cancer. Semin Cancer Biol 17:31–41. doi:10.1016/j.semcancer.2006.10.003

    CAS  PubMed  Google Scholar 

  68. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192. doi:10.1146/annurev.genet.41.042007.165900

    CAS  PubMed  Google Scholar 

  69. Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977. doi:10.1016/j.molcel.2011.10.013

    CAS  PubMed  Google Scholar 

  70. Debatisse M, Le Tallec B, Letessier A et al (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28:22–32. doi:10.1016/j.tig.2011.10.003

    CAS  PubMed  Google Scholar 

  71. Wang Y-H (2006) Chromatin structure of human chromosomal fragile sites. Cancer Lett 232:70–78. doi:10.1016/j.canlet.2005.07.040

    CAS  PubMed  Google Scholar 

  72. Mulvihill DJ, Wang Y-H (2004) Two breakpoint clusters at fragile site FRA3B form phased nucleosomes. Genome Res 14:1350–1357. doi:10.1101/gr.2304404

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Jiang Y, Lucas I, Young DJ et al (2009) Common fragile sites are characterized by histone hypoacetylation. Hum Mol Genet 18:4501–4512. doi:10.1093/hmg/ddp410

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Iizuka M, Matsui T, Takisawa H, Smith MM (2006) Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26:1098–1108. doi:10.1128/MCB.26.3.1098-1108.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Cann KL, Dellaire G (2011) Heterochromatin and the DNA damage response: the need to relax. Biochem Cell Biol 89:45–60. doi:10.1139/O10-113

    CAS  PubMed  Google Scholar 

  76. Palumbo E, Matricardi L, Tosoni E et al (2010) Replication dynamics at common fragile site FRA6E. Chromosoma 119:575–587

    CAS  PubMed  Google Scholar 

  77. Zimonjic DBB, Druck T, Ohta M et al (1997) Positions of chromosome 3p14.2 fragile sites (FRA3B) within the FHIT gene. Cancer Res 57:1166–1170

    CAS  PubMed  Google Scholar 

  78. Wilke CM, Hall BK, Hoge A et al (1996) FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 5:187–195

    CAS  PubMed  Google Scholar 

  79. Bednarek AK, Keck-Waggoner CL, Daniel RL et al (2001) WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61:8068–8073

    CAS  PubMed  Google Scholar 

  80. O’Keefe LV, Richards RI (2006) Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett 232:37–47. doi:10.1016/j.canlet.2005.07.041

    PubMed  Google Scholar 

  81. Callahan G, Denison SR, Phillips LA et al (2003) Characterization of the common fragile site FRA9E and its potential role in ovarian cancer. Oncogene 22:590–601. doi:10.1038/sj.onc.1206171

    CAS  PubMed  Google Scholar 

  82. Lai LA, Kostadinov R, Barrett MT et al (2010) Deletion at fragile sites is a common and early event in Barrett’s esophagus. Mol Cancer Res 8:1084–1094. doi:10.1158/1541-7786.MCR-09-0529

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Albertson DG (2006) Gene amplification in cancer. Trends Genet 22:447–455. doi:10.1016/j.tig.2006.06.007

    CAS  PubMed  Google Scholar 

  84. Reshmi SC, Huang X, Schoppy DW et al (2007) Relationship between FRA11F and 11q13 gene amplification in oral cancer. Genes Chromosome Cancer 46:143–154

    CAS  Google Scholar 

  85. Pelliccia F, Bosco N, Rocchi A (2010) Breakages at common fragile sites set boundaries of amplified regions in two leukemia cell lines K562—molecular characterization of FRA2H and localization of a new CFS FRA2S. Cancer Lett 299:37–44. doi:10.1016/j.canlet.2010.08.001

    CAS  PubMed  Google Scholar 

  86. Ciullo M, Debily M-AA, Rozier L et al (2002) Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum Mol Genet 11:2887–2894. doi:10.1093/hmg/11.23.2887

    CAS  PubMed  Google Scholar 

  87. Blumrich A, Zapatka M, Brueckner LM et al (2011) The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers. Hum Mol Genet 20:1488–1501. doi:10.1093/hmg/ddr027

    CAS  PubMed  Google Scholar 

  88. Cohen AJ, Li FP, Berg S et al (1979) Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 301:592–595. doi:10.1056/NEJM197909133011107

    CAS  PubMed  Google Scholar 

  89. Paradee W, Wilke CM, Wang L et al (1996) A 350-kb cosmid contig in 3p14.2 that crosses the t(3;8) hereditary renal cell carcinoma translocation breakpoint and 17 aphidicolin-induced FRA3B breakpoints. Genomics 35:87–93. doi:10.1006/geno.1996.0326

    CAS  PubMed  Google Scholar 

  90. Gandhi M, Dillon LW, Pramanik S et al (2010) DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene 29:2272–2280. doi:10.1038/onc.2009.502

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Coquelle A, Pipiras E, Toledo F et al (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89:215–225

    CAS  PubMed  Google Scholar 

  92. Motoyama T, Hojo H, Watanabe H (1986) Comparison of seven cell lines derived from human gastric carcinomas. Acta Pathol Jpn 36:65–83. doi:10.1111/j.1440-1827.1986.tb01461.x

    CAS  PubMed  Google Scholar 

  93. Lehoux M, D’Abramo CM, Archambault J (2009) Molecular mechanisms of human papillomavirus-induced carcinogenesis. Public Health Genomics 12:268–280. doi:10.1159/000214918

    PubMed  Google Scholar 

  94. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419. doi:10.1126/science.1088547

    CAS  PubMed  Google Scholar 

  95. Bester AC, Schwartz M, Schmidt M et al (2006) Fragile sites are preferential targets for integrations of MLV vectors in gene therapy. Gene Ther 13:1057–1059. doi:10.1038/sj.gt.3302752

    CAS  PubMed  Google Scholar 

  96. Tsantoulis PK, Kotsinas A, Sfikakis PP et al (2008) Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene 27:3256–3264. doi:10.1038/sj.onc.1210989

    CAS  PubMed  Google Scholar 

  97. Murga M, Campaner S, Lopez-Contreras AJ et al (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18:1331–1335. doi:10.1038/nsmb.2189

    CAS  PubMed  Google Scholar 

  98. Dominguez-Sola D, Ying CY, Grandori C et al (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451. doi:10.1038/nature05953

    CAS  PubMed  Google Scholar 

  99. Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637. doi:10.1038/nature05268

    CAS  PubMed  Google Scholar 

  100. Burrell RA, McClelland SE, Endesfelder D et al (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494:492–496. doi:10.1038/nature11935

    CAS  PubMed  Google Scholar 

  101. Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111:779–789

    CAS  PubMed  Google Scholar 

  102. Casper AM, Durkin SG, Arlt MF, Glover TW (2004) Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet 75:654–660

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Durkin SG, Arlt MF, Howlett NG, Glover TW (2006) Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites. Oncogene 25:4381–4388

    CAS  PubMed  Google Scholar 

  104. Ozeri-Galai E, Schwartz M, Rahat A, Kerem B (2008) Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene 27:2109–2117. doi:10.1038/sj.onc.1210849

    CAS  PubMed  Google Scholar 

  105. Arlt MF, Xu B, Durkin SG et al (2004) BRCA1 is required for common-fragile-site stability via its G2/M checkpoint function. Mol Cell Biol 24:6701–6709

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Howlett NG, Taniguchi T, Durkin SG et al (2005) The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 14:693–701. doi:10.1093/hmg/ddi065

    CAS  PubMed  Google Scholar 

  107. Schwartz M, Oren YS, Bester AC et al (2009) Impaired replication stress response in cells from immunodeficiency patients carrying Cernunnos/XLF mutations. PLoS One 4:e4516. doi:10.1371/journal.pone.0004516

    PubMed Central  PubMed  Google Scholar 

  108. Musio A, Montagna C, Mariani T et al (2005) SMC1 involvement in fragile site expression. Hum Mol Genet 14:525–533. doi:10.1093/hmg/ddi049

    CAS  PubMed  Google Scholar 

  109. Zhu M, Weiss RS (2007) Increased common fragile site expression, cell proliferation defects, and apoptosis following conditional inactivation of mouse Hus1 in primary cultured cells. Mol Biol Cell 18:1044–1055. doi:10.1091/mbc.E06-10-0957

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Naim V, Wilhelm T, Debatisse M, Rosselli F (2013) ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat Cell Biol 15:1008–1015. doi:10.1038/ncb2793

    CAS  PubMed  Google Scholar 

  111. Ying S, Minocherhomji S, Chan KL et al (2013) MUS81 promotes common fragile site expression. Nat Cell Biol 15:1001–1007. doi:10.1038/ncb2773

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batsheva Kerem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozeri-Galai, E., Tur-Sinai, M., Bester, A.C. et al. Interplay between genetic and epigenetic factors governs common fragile site instability in cancer. Cell. Mol. Life Sci. 71, 4495–4506 (2014). https://doi.org/10.1007/s00018-014-1719-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1719-8

Keywords

Navigation