Cell. Mol. Life Sci. (2014) 71:4519-4544
DOI 10.1007/s00018-014-1717-x

Cellular and Molecular Life Sciences

MULTI-AUTHOR REVIEW

Are common fragile sites merely structural domains or highly
organized “functional” units susceptible to oncogenic stress?

Alexandros G. Georgakilas - Petros Tsantoulis -
Athanassios Kotsinas + Ioannis Michalopoulos -
Paul Townsend - Vassilis G. Gorgoulis

Received: 28 August 2014/ Accepted: 28 August 2014 /Published online: 20 September 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Common fragile sites (CFSs) are regions of
the genome with a predisposition to DNA double-strand
breaks in response to intrinsic (oncogenic) or extrinsic
replication stress. CFS breakage is a common feature in
carcinogenesis from its earliest stages. Given that a
number of oncogenes and tumor suppressors are located
within CFSs, a question that emerges is whether fragility
in these regions is only a structural “passive” incident or
an event with a profound biological effect. Furthermore,
there is sparse evidence that other elements, like non-
coding RNAs, are positioned with them. By analyzing
data from various libraries, like miRbase and ENCODE,
we show a prevalence of various cancer-related genes,
miRNAs, and regulatory binding sites, such as CTCF
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within CFSs. We propose that CFSs are not only sus-
ceptible structural domains, but highly organized
“functional” entities that when targeted, severe reper-
cussion for cell homeostasis occurs.
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Introduction

Activated oncogenes are a key feature of cancer devel-
opment from its earliest stages [1]. One of their major
effects is the induction of DNA damage via replication
stress (RS) [2]. Specifically, oncogene-induced DNA
replication stress (OIRS) leads to the formation of DNA
double-strand breaks (DSBs), due to replication forks
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(RFs) collapse, fueling genomic instability (GI) [2, 3]. In
early precancerous lesions, the collapse of DNA RFs
occurs preferentially at specific loci termed fragile sites
(FSs) [4]. As a result, FSs exhibit breaks, gaps, and
rearrangements, collectively termed FSs expression. This
is due to the activation of pathways responsible for fork
collapse resolution and completion of DNA replication,
which involve recombinogenic processes and DNA DSBs
production [2].

An important issue is whether the instability mani-
fested at these sites has any wider biological impact on
cancer development. As further discussed in the manu-
script, although FSs are heterogeneous in their
expression patterns, they possess unique features that
make them vulnerable to structural destabilization under
RS conditions. Are these regions simply prone to DNA
damage due to their intrinsic characteristics, conferring
only to GI? Sparse evidence indicates that FSs enclose
genes and non-coding RNAs, like microRNAs (miRs),
while their expression could be epigenetically modulated
by histones, implying that they are regions of the gen-
ome of a higher organization level (Fig. 1) [5-9].
Important bioinformatic resources are currently available
and can be exploited to define potential topological
associations between CFSs and these elements. Notably,
the miRbase is constantly expanding while the ENCODE
project [10] has deposited information on a vast range of
binding elements and genomic modifications, including
histone marks (like H3K79me2, H3K9ac, H3K4me3, and
H3K27ac) that have a prominent influence on the
expression process of the genome. As the pattern of
instability at FSs in human tumors is variable, suggesting
that it also depends on the cell type, this further com-
plicates the role of FSs in malignancy. Last but not least,
if such sites contribute to cancer development, why have
they not been evolutionary selected for elimination?
Could there be a higher reason that makes them at the
same time vulnerable “units” of the genome with
potentially meaningful function? Attempting to address
these questions, in the current work we conducted an
extensive review on the nature of their heterogeneity that
accounts for their preferential instability. Next, by
applying bioinformatic tools on data from the latest
miRbase and the ENCODE project, we reveal that these
sites are enriched in various (coding and non-coding)
elements, such as cancer-related genes, miRs, and
binding elements, as well as specific variations in his-
tone modifications (Fig. 1). Based on these findings, we
propose that these sites may represent unique “func-
tional” units of the genome that may have a complex
role upon OIRS with implications both in normal cell
survival and cancer progression.
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Fig. 1 CFSs are not only vulnerable structural domains but may also
be functional units of the genome that are sensitive to replication
stress. CFS’s stability is affected by replications stress (RS). During
cancer development, they are affected from the earliest precancerous
lesions due to oncogene-induced replication stress (OIRS). Breakage
at CFSs (broken red rectangle) may not only confer to genomic
instability (GI) (dashed black rectangle), but could also have wider
biological implications by affecting elements located within them
(question mark). DSBs DNA double-strand breaks

Heterogeneity of fragile sites

FSs have been assigned in two classes, defined as rare
fragile sites (RFSs) and common fragile sites (CFSs). Rare
FSs are mainly induced by folate deficiency, correspond to
dinucleotide or trinucleotide repeats, usually CGG,, and are
found in less than 5 % of the human population and in
specific families [11]. Their fragility is due to expansions of
the micro- or mini-satellites sequences that they contain and
in some cases are responsible for inherited diseases [11].
Therefore, RFSs will not be further discussed in this work.

Historically, CFSs were recognized as recurrent hotspots
of double-stranded DNA breaks in cultured lymphocytes
from healthy individuals [12]. They are present in all
individuals, are part of the normal chromosomes, but
exhibit different frequencies of expression in a population
(reviewed in [13, 14]). CFSs are typically vulnerable to
extrinsic replication stress, most notably to aphidicolin
(APH), an inhibitor of DNA polymerase a, 6 and &, but are
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otherwise quiescent under normal conditions. This obser-
vation has been gradually broadened to include breakage
patterns resulting from various replication inhibitors, such
as nucleotide analogs (5-azacytidine, bromodeoxyuridine)
or antitumor antibiotics (distamycin) and RS resulting from
folate deficiency. Dietary and environmental factors like
caffeine, cigarette smoke, and hypoxia may also enhance
FS expression [15]. Recently, the induction of stress during
the early S phase in B lymphocytes by hydroxyurea has
been found to provoke DNA damage in a distinct pattern,
corresponding to a new class of “early replicating fragile
sites” (ERFSs) [16]. They occur primarily in early repli-
cating DNA, close to replication origins, and are mainly
situated in actively transcribed gene clusters (coding
regions) [17]. This contrasts with CFSs, like FRA3B,
which are most sensitive during their replication in late S
phase [18]. Nevertheless, ERFSs seem also to arise from
RF collapse and are similarly sensitive to ATR inhibition
and oncogene-induced stress (see A. Nussenzweig chapter
in this issue). OIRS is expected to induce instability at both
ERFS and CFS, as suggested in two independent studies
[16, 19]. Recent reports using the phosphorylated form of
histone H2AX, the y-H2AX, as a marker of DSB induction
showed that ERFS were enriched for H2AX and y-H2AX,
while CFSs and heterochromatin lacked both, also sug-
gesting differential DNA damage response at these sites
[20]. Notably, both ERFSs and CFSs are rich in CpG-rich
regions [17, 19], implying that these classes of FSs may
either share structural similarities or the exact classification
of their members as early and late replicating ones may
need further re-assessment. Surprisingly, telomeric regions
also appear to exhibit fragility in a similar manner as CFSs
upon replication stress, including APH treatment [21].

It has been shown that CFS expression patterns depend
not only on culture conditions but also on cell type [22].
Although traditionally studied almost exclusively in lym-
phocytes, different CFSs have been observed in fibroblasts
[22, 23], breast, and colon epithelial cell lines [24, 25] and
erythroid cell lines [25]. Considerable overlap exists
between experiments, but the relative frequency of CFS
breaks varies significantly. For example, FRA3B is the
most frequent fragile locus in lymphocytes, but does not
seem to be fragile in epithelial cell lines [24, 26], possibly
due to the plasticity of replication programs in different
cell lineages or because of a putative “housekeeping” role
of FHIT. The second most fragile site, FRA16D, is very
frequently affected in epithelial breast cancer cell lines
(20-25 %), but only occasionally in colon epithelial cells
(~5 %). Clearly, a complete characterization of CFS
breakage probabilities will require a panel of different cell
types.

CFSs are found in different individuals and are con-
served across different species, including the mouse, the

rat, and many mammals [27, 28], and across kingdoms,
such as in the yeast S. cerevisiae [29]. Evolutionary con-
servation could argue in favor of a meaningful function if
CFSs are considered outliers compared with the overall
fragility of the genome in general. Nevertheless, variation
between individuals can be significant. In a study of 20
normal adults [30], only FRA3B and FRA16D were found
to be fragile in all individuals, and only 42 % of CFSs (19
of 45 identified) were present in the majority of individu-
als. In the earliest studies, less than 20 CFSs would explain
more than 80 % of gaps and breaks [12]. A similar distri-
bution was found in a population study of Deer mice,
where high-frequency CFSs constituted approximately
26 % of the population total breaks and 38 % of CFSs were
only found in single individuals.

Fragility of CFS

The issue of fragility at CFSs is a matter of intensive
investigation. CFSs replicate either late in S-phase or ini-
tiate replication in mid-S phase, but exhibit a significant
delay in completing it. Under conditions of RS, they may
remain unreplicated even during G2-phase and up to
mitosis leading eventually to their instability (as discussed
in next section and reviewed in [13, 14]). Several features
responsible for their replication sensitivity have not been
revealed until now. These include intrinsic structural
characteristics, the presence and overlap with large genes,
differences in replication features, and epigenetic modu-
lation [13, 14].

At the structural level, CFSs have the propensity to form
secondary non-B structures that interfere with the move-
ment of the replication fork thus leading to its collapse and
associated DNA breaks [31]. Specifically, at sequence level,
CFS are enriched in long stretches of AT dinucleotide-rich
repeats that may form stable secondary cruciform DNA
structures inducing fork stalling during DNA replication
and in general incomplete or delayed DNA replication [31,
32]. In an earlier study, we performed a whole-genome
analysis of CFS sequences and observed that they are on
average rich in GC and Alu sequences [19]. The Alu family
is a family of short interspersed repetitive elements (SINE)
of about 300 bp containing mid and terminal poly A-stret-
ches [33]. Interestingly, these elements are the most
abundant mobile elements, and thus potentially recombi-
nogenic in the human genome, and are implicated in various
inherited human diseases and in cancer [34].

CFSs have been associated with genes extending over
long genomic regions (“large genes™) [5]. The FHIT gene
in FRA3B and WWOX in FRA16D are striking examples,
measuring approximately 1.5 and 1.1 Mb respectively,
compared with a mean of 10-15 kb for protein coding
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genes. The PARK?2 gene, at approximately 1.4 Mb is also
associated with FRAGE and may be down-regulated in
ovarian tumors [30]. Intriguingly, genes over 800 kb may
be prone to form RNA:DNA hybrid loops (termed R-loops)
at sites of replication—transcription collision [35]. R-loops
are structures formed by the association of the nascent
transcript with the DNA template strand leaving unpaired
the complementary non-coding DNA strand. Replication of
large genes is time consuming and exposes the replication
machinery to a risk of collision with the transcriptional
machinery. In such an occurrence, the elongating RNA
polymerase is blocked, leading to increased R-loop for-
mation at Pol II pause sites. As a result, collision events
may induce CFS breakage and a consequent enhancement
of genomic instability [35].

Recent data have shed new light on the dynamics of the
replication process at CFSs, providing several new mech-
anistic aspects explaining their instability (reviewed in [13,
14]). In the first one, it was shown that stability of FRA16C
is perturbed under RS, as RFs progress more slowly and
stall upon accounting AT-rich regions within this site.
While in the bulk genome dormant origins are activated to
complete replication, these are not available within
FRA16C leading to delayed replication and instability [14]
(also see B. Kerem chapter in this issue). A second report
studying the mechanistic fragility of FRA3B, showed that
fork speed slowing and stalling is similar with respect to the
bulk genome, even under RS [26] (also see M. Debatisse
chapter in this issue). In this case, the inability to complete
replication was attributed to a large 700-kb core within this
site that was found to be poor in origins. To accomplish
replication of this site, origins from a long distance, located
in the flanking regions, are required to come in and cover its
length. The density and timing of origin firing events in the
flanking regions seem to dictate the timing of FRA3B
replication completion, thus influencing its stability. In a
third mechanistic model regarding the FRAG6E site, both
replication arrest and paucity of origin activation lead to RS
sensitivity, providing a functional combination of the two
previous models [36]. Interestingly, some CFSs like the
FRA3B do not exhibit stably these replication features in
each cell type, suggesting that CFSs may demonstrate dif-
ferent patterns of instability, which are tissue specific. This
may also explain why in various malignancies distinct
profiles of GI are observed at CFSs that characterize each
type of cancer. It would be interesting in the future to define
the replication behavior of each CFS according to the spe-
cific cell type. That would be helpful in defining and
possibly predicting the precise patterns of GI that take place
during cancer development.

The replication density and timing of the genome has
been proposed to be highly flexible and epigenetically
controlled rather than directed by specific sequence motifs
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[13]. Therefore, an epigenetic control of CFSs replication
stability may also apply. In support of this is the observed
H3K9/14 hypoacetylation pattern displayed by the six most
expressed CFSs in lymphoblastoid cells [9]. This histone
modification has been reported to be associated with
chromatin compactness and increased breakage. Also,
regions with evenly spaced nucleosomes, an unusual
chromatin structure preferentially formed at promoters and
regulatory binding sites, have also been observed in
FRA3B [37].

Overall, it seems that there is no single mechanism that
can explain the fragility of CFSs but rather a multitude.
They depend on several characteristics, including structural
properties of the FSs as well as dynamic features governing
their replication that apply in a given cell type. Interest-
ingly, they are not necessarily mutually exclusive and often
can function in complementary ways [13, 14]. The only
common shared aspect by all these mechanisms is that they
can eventually lead to a mechanical breakage of CFSs.

Maintenance of fragile site integrity

Instability at FSs is a recognized signature of DNA damage
induced by replication stress [2] and it is detected from the
earliest premalignant stages [3, 4, 19]. Replication check-
points are activated in response to the stress induced at
CFSs [38]. Central to these checkpoints are the DNA
damage response kinases, ATM and ATR, which respec-
tively sense DNA double-strand breaks and RF integrity
[38]. Specific targeting of these kinases in cellular models
revealed that ATR disruption or hypomorphic mutations
lead to chromosomal instability within CFS even under
normal replication, a phenomenon that is aggravated after
low doses of APH [39]. In addition, dual inhibition of ATM
and ATR using caffeine has been found to significantly
increase CFS breakage compared with ATR deficiency
alone, denoting also a role for ATM and a possible inter-
play with ATR in CFS protection [40, 41]. Inactivation of
several down-stream components of the ATR network like
Chkl1, HUSI, Claspin, and SMCI revealed similar effects,
although not as efficient as ATR loss (Table 1) [31, 42—44].

These checkpoints are vital as they ensure that DNA is
replicated and chromosomes are prepared for mitosis [38].
Nevertheless, CFSs exhibit an increased vulnerability to
RS leading to the activation of repair mechanisms [31].
The frequently observed presence of sister chromatid
exchanges (SCEs) at the majority of CFSs breaks after
APH treatment suggests that homologous recombination
(HR) plays a major role in response to DSBs induced under
conditions of RS [45]. The FANCD2 component of the
Fanconi anemia (FA) pathway has been shown to play a
role not only in HR-dependent replication recovery, but
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Table 1 Factors involved in control of CFSs stability and genome integrity

Factor Function Reference

ATR Main kinase-activating replication checkpoint [39, 75]

ATM Complementary acting kinase [76]

Chk1 Main ATR-downstream kinase involved in activation of the replication checkpoint [31]

Chk2 ATM-downstream kinase [76]

HUS1 Participates in the Rad9-Rad1l-Husl (9-1-1) complex and is homologous to the PCNA clamp. The complex [42]
phosphorylates ATR substrates upon loading to sites of DNA damage

Claspin Encodes for an adaptor protein which binds to BRCA1 and Chkl and facilitates the ATR-dependent [43]
phosphorylation of both proteins during DNA replication stress in human cells

SMC1 Member of the family of “structural maintenance of chromosomes” proteins participating in chromosome [77]
condensation, sister chromatid cohesion, and DNA repair. Prevents the collapse of stalled replication fork in an
ATR-dependent manner and is required for S-phase checkpoint activation

BRCAI ATR substrate, implicated in the activation of the G2/M checkpoint, homologous recombination, and DSB repair [78]

FANCD2 Component of the Fanconi anemia (FA) pathway, phosphorylated by ATR. Plays a role not only in HR- [79]
dependent replication recovery, but also in regulating CFSs stability

Polymerase m Involved in DNA synthesis of complex sequences, like repetitive and secondary structure that impede replication [80]
performing, the so-called ‘by-pass’ function

Rev3 Catalytic subunit of Pol{ that is required for maintaining fragile site stability in human cells [81]

Polymerase k Involved in DNA synthesis of complex sequences, like repetitive and secondary structure that impede replication [82]
performing

WRN RecQ helicase regulated in an ATR and ATM-dependent manner, which prevents DSBs formation at perturbed [83]
forks after replication stress. Promotes stability of arrested RFs and their efficient restart

BLM RecQ helicase contributing to restarting stalled forks through unwinding DNA structures and/or homologous  [49, 50]
recombination, to maintenance of pyrimidine pools balance, regulation of fork speed and decatenation of
UFBs at CFSs

RECQI1 Member of the RecQ family of DNA helicases. Promotes fork recovery and repair [84]

Topoisomerase I ~ Alleviate DNA secondary structures during replication by cleavage and re-ligation. Can facilitate oncogenic [85]

and II rearrangements at induced CFSs

MUS81-EMEI Endonuclease involved in resolving HJ-dependent replication intermediates. Required for fork repair and [41, 50]
resolving UFBs

PICH PICH (PIk1 interacting checkpoint) is a helicase/translocase involved in resolving UFBs in mitosis [49]

SNM1B/ A nuclease component of the FA pathway involved in homology-directed repair. Also facilitates DNA [86]

APOLLO localization of FANCD2 and BRCA1

Rad51 Component of the HR pathway involved in DSB repair and HJ mediated RF restart [47]

DNA-PKcs NHEJ pathway component [47]

Ligase IV NHEJ pathway component [47]

also in regulating CFSs stability (Table 1) (also reviewed
in [31]). Similarly, activation of BRCA1 and other DSB
repair proteins like RADS1 have also been found to be vital
for maintaining CFSs stability (Table 1) [46]. Apart from
HR the non-homologous end join pathway is also essential
for chromosomal stability at these sites [47]. Specifically,
by knocking down Rad51, DNA-PKcs, or Ligase IV, a
significantly increased expression of CFSs under RS has
been demonstrated. Notably, MDC1 and y-H2AX foci
were formed and co-localized with those of Rad51 and
DNA-PKcs, while y-H2AX and phospho-DNA-PKcs foci
localized at expressed FSs on metaphase chromosomes.
Other components implicated in resolving replication
over specific CFSs region include specialized polymerases
(Table 1) [48]. These polymerases, like DNA polymerase

eta (Pol 1), mainly deal with DNA synthesis of complex
sequences, like repetitive and secondary structures that
impede replication, by performing the so-called ‘by-pass’
function. Depletion of these specialized polymerases has
been shown to lead to persistence of unreplicated CFSs in
mitosis. Various helicases/translocases have been proposed
to promote fork restart at CFSs in non-redundant ways, like
the BLM, WRN, and RECQ1 through Holliday junction-
mediated fork remodeling that is independent of DSB
formation (Table 1) [41]. Their main purpose seems to be
resetting of structural intermediates arising from HR as
well as unwinding of DNA secondary structures, in order to
facilitate replication fork restart. Alternatively, nucleases,
such as the structural endonuclease MUS81-EMEI and the
FA pathway nuclease SNM1B/APOLLO, are responsible
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for DSB-mediated fork restart and/or elimination of per-
manently collapsed forks by cleavage of replication
intermediates and consequent DNA synthesis (Table 1)
[41].

Many of the above-described factors have been shown
to stabilize CFSs during S-phase replication. Nevertheless,
recent observations have shown that under RS, non-fully
replicated or interlinked DNA at CFSs may escape S and
G2-M checkpoints and enter mitosis (reviewed in [13, 49,
50]). Attempts to segregate these intermediates lead to
sister chromatid entanglement followed by non-disjunc-
tion, ultimately leading to formation of ultra-fine bridges
(UFBs) in anaphase cells. UFBs are defined by FANCD2/
FANCI FA proteins binding to their edges, while BLM and
PICH (PIkl-interacting checkpoint helicase) attach along
the bridge. These persistent replication intermediates have
been shown to be processed by the MUS81-EME1 nuclease
in early M-phase, possibly with the help of ERCCI, to
provide a controlled production of DNA breaks, aiming to
allow undisturbed disjunction of sister chromatids. In case
of failure, UFBs are formed as mentioned during anaphase.
At this stage, BLM helicase and PICH translocase assisted
by topoisomerase IIla (TOPIIla) and the BLM-associated
proteins RMI1/2 function as a second line of defense by
decatenating these structures and permitting chromatid
segregation [50]. If unresolved UFBs still persist, they will
eventually lead to chromosome miss-segregation by
uneven distribution of DNA between the daughter cells and
micronuclei formation. The transmitted errors at CFSs will
be shielded in 53BP1 nuclear bodies in the emerging G1-
daughter cells and possibly replicated in the S-phase by
high-fidelity polymerases. These results pose a new light
on CFSs cleavage, and led to the proposal that apart from
being detrimental in initiating genomic instability, it can
also serve as a mechanism for controlled production of
DNA breaks that rather maintain than compromise genome
integrity.

Several questions though emerge from this model that
has been established with extrinsic factors (chemical
inhibitors) that induce RS. How does this model apply and/
or differentiate pre-malignant cells that are known to
undergo OIRS? Which of the two types of damage,
MUSS81-EMEI1 cleavage or the decatenation inability,
confers to the cancer-associated genome instability? A
tempting but speculative model is that during premalignant
stages, MUS81-EMEI1 cleavage activity is probably aber-
rantly increased, leading to a high frequency of DSBs,
particularly at CFSs. This could be mediated by the active
oncogenes that are present at such stages [2] and which in
turn increase the activity of CDKs that regulate MUS81-
EMEI1 expression [50]. As long as the checkpoints and
their p53 effector are intact, the damage is repaired or the
antitumor barriers of apoptosis and senescence eliminate
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such cells [2]. A similar scenario regarding gross genome
damage due to decatenation inability may apply. Notably,
it has been recently shown that under moderate RS, CFSs
breaks can escape from efficient ATR checkpoint surveil-
lance, leading to mitotic tolerance of such aberrations [44].
Such a pool of cells could undergo selection for loss of
checkpoint function(s) and eventually accumulate DNA
damage, probably through both MUS81-EMEI processing
and chromatid non-disjunctions, provided that they are
compatible with survival. Eventually, progression to full
malignancy will ensue. This scenario fully concurs with
our previous findings showing a prevalence of CFSs
breakage along with the presence of UFBs and micronuclei
in U20S cells experiencing OIRS due to sustained
expression of the replication licensing factor (RLF) Cdtl
[51]. Importantly, clones of these cells that “escaped” from
the antitumor barriers, after prolonged Cdtl expression,
acquired a highly invasive potential. In a paradoxical way,
this recently described model of deliberate CFSs controlled
breakage to protect genome integrity of cells, may apply to
malignant cells in the sense that it allows them to survive at
the expense of genome integrity. Further expanding on this
model, an emerging question concerns the effect exerted
from the CFSs’ instability on the various elements like
genes and non-coding RNAs that are located within them.

Functional elements in fragile sites

Several major publications arising from the ENCODE
project [10] have underlined the importance of non-coding
DNA. Non-coding regions of the genome have been found
to participate in biochemical reactions with regulatory
potential, such as transcription factor binding, epigenetic
modifications, or long-distance interactions. Numerous
functions have been attributed to non-coding RNA,
including the expanding and best understood family of
microRNAs (miRs) that are involved in post-transcriptional
regulation of messenger RNA [52]. As a result of this
progress, CFSs content may be now understood at a finer
scale and the implications of CFS breakage will have to be
reexamined carefully.

Fragile sites and cancer-associated genes

While available data point to an overlap between genes and
CFSs [5], there is only one report showing that CFSs are
denser in protein coding genes, with their distribution
among fragile versus non-fragile regions varying among
the chromosomes [7]. At the same time, a systematic
review for the density of genes present within these gen-
ome areas is not available. To address this question, we
retrieved a list of 327 genes participating in pathways in
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cancer from the Kyoto Encyclopedia of Genes and Gen-
omes (KEGG)1 and investigated their association with both
cytogenetically and molecularly mapped CFSs. We found
that 110 cancer-related genes (33.6 % of all cancer-related
genes) are located within CFSs (Table 2). Based on this,
the density of cancer-related genes in a cytogenetically
defined CFS compared to the rest of the genome is 37.2 %
higher (Fig. 2a).

Fragile sites and microRNA genes

According to an early study, miRs are particularly frequent
in CFSs [6]. Out of the 186 miRs known at the time, 35
were found in, or very close (<3 Mb) to, CFSs, occurring
at a density (number of miRs per length) that was estimated
to be approximately 9 % higher than in non-FSs. A newer
analysis has found approximately 33.8 % of 715 miRs
within CFSs, corresponding to a relative 50 % (26-85 %)
higher density in regard to non-FSs, but the relation seems
to vary between chromosomes [7] with some, like chro-
mosome 16 and 19, having many more fragile than non-
fragile miRAs, and others, like chromosome 14, having a
lower incidence of miRNAs in fragile regions. Given that
the number of known miRs has more than doubled since
then, we have repeated this analysis with the recent version
of miRBase (v20, [53]) and have found 686 miRs out of
1,871 (36.7 %) within cytogenetically defined fragile sites
(Table 2) (corresponding incidence in molecularly mapped
CFSs is shown in Table 3). Thus, the relative density of
miR in cytogenetically defined CFSs is 57 % higher than in
the rest of the genome (Fig. 2a; Table 2). Specific pertinent
examples include tumor suppressors like hsa-mir-34a in
FRAIA and oncomirs like hsa-mir-21 in FRA17B. In
addition, more than 50 % of microRNAs seem to be
clustered in relatively short regions, up to 50 kb, often
containing multiple miR isoforms belonging to the same
family [54]. When mapped, approximately 28 % of miR
clusters overlap with known FSs. Rearrangements within
these regions can disrupt multiple miRs in a single hit and
produce complex phenotypic changes.

Fragile sites and regions with regulatory potential

Other DNA elements, such as regions with regulatory
potential, may also be contained or overlap with CFSs. As
an example, CTCF binding sites from ENCODE ChIP-seq
are distributed throughout the genome. CTCF is a critical
“weaver” of chromatin structure and function, and can
provide an anchor point for nucleosome positioning [55].
Indirectly, CTCF can influence the accessibility of chro-
matin and plays diverse roles in chromatin insulation, gene

! http://www.genome.jp/kegg/pathway/hsa/hsa05200.html.
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regulation, imprinting, intra/interchromosomal interac-
tions, nuclear compartmentalization, and alternative

splicing [56, 57]. In some cases, distal fragments bound by
CTCF have been found to mediate long-range interactions
by loop formation and could modulate transcription at
distant sites [58]. We examined the percentage of all
potential CTCF binding sites within molecularly mapped
CFSs and found that this ranges between 2.76 and 3.20 %
in different cell lines (Table 4). Relative to the total length
of fragile segments, this corresponds to an 18 %
(10-25 %)-fold increase in the number of potential CTCF
binding sites (Fig. 2a). Although it is impossible to know
whether CTCF binding at these sites exerts a meaningful
effect, its presence seems in accordance with the obser-
vation that many CFSs are gene-rich. Even more, CFSs
rearrangements could influence gene expression further
away on the same chromosome.

Fragile sites and histone modifications

Epigenetic modifications, such as histone methylation and
acetylation, can also take place within FS. It appears that
H3K9/14 hypoacetylation is a global feature of CFSs in a
lymphoblastoid cell line [9] and could impede replication
progression. Several enzymes modify key histone residues
with relatively high specificity and regulate, indirectly,
transcription, repair, and replication. Indeed, histone
modifications vary significantly between cell types and are
well correlated with transcription levels in the ENCODE
data (Figure 2 in [10]), especially for H3K79me2, H3K9ac,
H3K4me3, and H3K27ac. Histone 3 lysine 27 acetylation
(H3K27ac) co-localizes with active enhancers [59] and
regions with open chromatin structure and could play a role
in protecting against replication—transcription collisions
and R-loop formation. Intriguingly, H3K27ac varies
between cell types and CFSs (Fig. 2b, c). The average
ChIP-seq acetylation signal and the number of signal peaks
(data not shown) within cytogenetic CFSs are slightly
lower than the corresponding chromosome mean in K562
cells, but higher in HUVEC cells and equivocal for other
cell types. Such variability may explain the plasticity of
CFSs and their differential expression between individuals,
cell types, and culture conditions.

Histone 3 lysine 4 trimethylation is also associated with
active promoters [60] and correlates well with transcription
in the ENCODE data [10]. It appears that H3K4me3 may
also contribute to the DNA damage response and repair of
DSBs in yeast cells [61], mediating cellular responses to
genotoxic stresses, and interacting with the human tumor
suppressor INGI1, which is required for DNA repair and
apoptotic activities [62]. A recent study of ERFSs [9] has
shown that replication stall, as identified by anti-replication

@ Springer
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Fig. 2 Frequency of cancer-related genes, repetitive elements, miRs,
binding elements, and histone marks in CFSs. a CFSs exhibit a higher
density of cancer-related genes (obtained from Kyoto Encyclopedia
of Genes and Genomes), Alu repetitive elements [19], miRs, and the
CTCEF binding element relative to non-fragile regions. b CFSs exhibit
a differential density of the histone marks (i) Histone 3 lysine 27
acetylation (H3K27ac) and (ii) Histone 3 lysine 4 trimethylation
(H3K4me3), relative to non-fragile regions that is cell type origin-
dependent (data concerning histone modifications derived from ChIP-
seq experiments belonging to the ENCODE project were downloaded
from the UCSC server (http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeRegMarkH3k4me3/, http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k2

7ac/). Specifically, we obtained bigWig files for H3k4me3 and
H3k27ac modifications in the GM12878, H1-hesc, HSMM, HUVEC,
K562, NHEK, and NHLF cell types. Information concerning regions
of interest was extracted with the bigWigSummary utility, also
available from the UCSC server. Specifically, the average signal was

protein A ChIP, preferentially co-localizes with H3K4me3
(see supplemental figure 1 in [16]). Although cytogeneti-
cally defined CFSs as a whole do not show a large
deviation from the mean, some sites in particular, like
FRA3B and FRA16D, seem to be on average poor in
H3K4me3 while others, like FRA2E, FRA3C, and FRA7D
seem to be on average rich in H3K4me3 (Fig. 2c). When
the cell lines employed were grouped according to their

fibroblasts epithelial

calculated for every chromosome in every cell line by repeatedly
invoking: bigWigSummary-type = mean “bigwigfile” chrN start
end. Similarly, the average signal was calculated for cytogenetically
and molecularly mapped fragile sites. For every defined fragile site,
the mean histone modification signal of the corresponding chromo-
some was subtracted from the mean signal of the fragile region.
Signal difference from mean for site i = mean(FS;) — mean(chro-
mosomers;). The chromosome means varied within each cell type
(data not shown), as did the histone modifications between cell types)
(S histone signal). ¢ Frequency of histone marks per CFSs. Each CFS
exhibits a differential density of the histone marks. (i) Histone 3
lysine 4 trimethylation (H3K4me3) and (ii) Histone 3 lysine 27
acetylation (H3K27ac), relative to non-fragile regions averaged over
all cell types presented in Fig. 2 (using the data generated for Fig. 2b,
we also plotted a boxplot for individual cytogenetically defined CFSs
in all 7 cell lines mentioned above with respect to H3K4me3 and
H3K27ac. Significant heterogeneity between CFSs can be observed)

origin (cancerous versus embryonic versus normal epithe-
lial versus normal mesenchymal), a pattern regarding the
density of the H3K27ac and H3K4me3 within CFSs rela-
tive to non-fragile sites could be discerned (Fig. 2b).
Cancer and embryonic cells (K562, GM12878, H1-hESC)
displayed lower signals of H3K27ac and H3K4me3 relative
to the non-fragile regions, whereas a significantly different
distribution was noticed in the other cell line groups

@ Springer


http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k4me3/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k4me3/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k27ac/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k27ac/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k27ac/

4534

A. G. Georgakilas et al.

(c)

H3K4me3

E L]
(4] og
E . T
o . .
B °
FoouB el fon oF g8 TR P e
5 ° T ﬁ$ . 9[:35 = g8
£ é . = 1 - ¢ -E
g T L ?0 . n D
Q . . T
e ﬁ | i
o
S 2- .
o

QoWOIZoouNTIZEOLEOBA0ECoNE DO OTXE0aONOoULOOULOZIONA0EORSECRRO00

[T T g T TR T TR T TR TR T T T T T e e
Fragile site
il H3K27ac
2 - I il é
| | &

Difference from chromosome mean

el a
- wro w

2 s D g O Osgoseosganass REEE

HEEEREE R e e e

bt e Lrourrrefrirrrrrooreee e S

Fig. 2 continued

(p < 0.001, ANOVA). Despite the small number of cell
lines examined, a possible functional link between histone
modifications and the other elements (genes, non-coding
RNAs, regulatory sequences) positioned within the CFS
cannot be excluded (Fig. 1). This potential interplay may
be even more complex during carcinogenesis. Oncogenes
may distress this functional cross-talk by altering the epi-
genome of a particular region. As an example, oncogenic
Cdc6 was shown to act as “molecular switch” at certain
tumor-suppressor loci by regulating CTCF binding. The
latter led to suppression of the genes encoded and simul-
taneous firing of adjacent dormant origins. If such a
scenario takes place within CFS that are rich in CTCF sites

@ Springer

Fragile site

(Fig. 2a), and depending on the cellular context, the density
and timing of firing origins can be altered affecting repli-
cation dynamics [56, 57].

Our current understanding of CFSs is traditionally based
on a static mapping, often cytogenetic and imprecise,
which cannot fully capture the interaction of non-coding
DNA, regulatory elements, and histone modifications with
vulnerability to RS. Even though the current CFS mapping
successfully predicts response to extrinsic stress and OIRS,
a more accurate model of fragility will eventually have to
integrate experimental data at the nucleotide resolution
with other non-coding elements. This is an intriguing area
for further study.
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The list of molecularly mapped CFSs was compiled by performing a systematic search of the literature for each one of the known cytogenetically mapped fragile sites (n = 125). Whenever the

placement of STS markers or BACs on GRC37/hg19 was unknown, it was verified by megaBLAST (default parameters) of the complete sequence against the human chromosome sequences.

Only matches with greater than 90 % coverage were considered for CFS placement. Twenty-six (26) CFSs with a precise mapping were identified (see Table 4), whose coordinates were then

mapped to the reference genome version GRC37. Whenever the precise location of BACs was unknown, it was verified by alignment with NCBI Megablast (default settings). The annotation of

the reference human genome was obtained from UCSC (URL: hgdownload.cse.ucsc.edu/goldenPath/hg19/) in December 2013. The utility “bigWigSummary” was used to extract mean scores

for molecularly mapped fragile regions and randomly selected non-fragile control regions. The BAC/STS limits have been extracted from the cited publication and coordinates mapped on

GRC37. Note that FRA2C has been divided into two separate, molecularly defined hotspots

Fragile sites in carcinogenesis

Extending the concept of CFSs in carcinogenesis has been
a subject of active research since the discovery of an
association between cancer breakpoints and FSs [63].
Overall, it appears that CFSs are generally sensitive to
innate RS occurring naturally in various tumors and cell
lines [64]. Multiple clusters of homozygous deletions,
usually small, have been detected over known CFSs in an
exhaustive survey of cancer genomes but their expression
profile is variable [65]. For example, FRA2F, FRA3B,
FRAA4F, FRAS5H, and FRA16D were most affected while
others, like FRA2B and FRA4B, were least affected.
Recurrent alterations have been identified in FRA3B and
FRAI16D in several cancer types, leading to further inves-
tigation of the FHIT and WWOX genes, respectively, in
mouse models (see K. Huebner and R. Ageilan chapters in
this issue). Fragile sites FRAI0C and FRAI0G may be
involved in the formation of the oncogenic RET/PTC
rearrangement in papillary thyroid carcinoma [15]. Spe-
cifically, in RET/PTCI, the FRA10G-localized RET is
rearranged with the FRA10C-localized tumor suppressor
gene CCDC6, while in RET/PTC3 it is rearranged with
NCO4 that is located in FRA10G. In a similar manner, the
MYC oncogene is flanked by CFSs FRA8C and FRAS8D,
that may facilitate adjacent integration of HPV18 [66] or
MYC amplification [67]. Viral DNA integration in the
genome of a host cell can lead to cancer development and
CFSs provide preferential hotspots for this [68]. Particu-
larly, HPV16 E6 and E7 oncogenic products have been
shown to induce replication stress and DSBs in the host
cell. This occurs preferentially at CFSs allowing viral
genome integration at these sites [68].

Despite the abundance of CFS breaks in cancer, it would
be inappropriate to assume that alterations of genes resid-
ing within CFSs always confer a clonal advantage in cancer
development [65] without evidence of selection or at least
convincing causative models. Clearly, breakage probability
(passenger alterations) as a consequence of fragility and
clonal selection (driver alterations) in cancer development
are two separate phenomena that should not be confused.

Nevertheless, the impact of CFS instability in cancer
should not be easily dismissed or oversimplified. CFSs
breakpoints have been detected in preneoplastic lesions in
human and mouse models [4, 19] well before the emer-
gence of the malignant phenotype. Briefly, exposure of
xenografted normal human skin to growth factors prefer-
entially induces CFS instability. Similarly, hyperplastic
mouse urothelium from HRAS transgenic mice showed
numerous copy number alterations in fragile areas. CFS
instability is an early manifestation and can be attributed to
experimentally controlled, oncogene-induced stress in
these studies, in a way that more closely resembles
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Table 4 Data from ENCODE [10] with respect to molecularly mapped common fragile sites (CFSs) from Table 3

Name CTCF bs (count) CTCF bs (%) CTCF bs/kbp H3K27ac 99-way cons. score
FRAIE 97 0.002 0.261 1.32 0.133
FRAIH 17,338 0.372 1.631 3.07 -
FRA2Ctel 700 0.015 0.938 2.53 0.071
FRA2Ccen 1,108 0.024 1.486 1.56 0.111
FRA2G 1,501 0.032 1.698 4.22 0.114
FRA2H 132 0.003 0.255 1.44 0.103
FRA3B 4,156 0.089 0.982 1.57 0.105
FRA4F 4,765 0.102 0.671 1.63 0.085
FRAGH 33,735 0.724 3.607 8.14 0.12
FRAGF 2,104 0.045 2.123 2.93 0.126
FRAGE 6,274 0.135 1.081 2.47 0.062
FRA7B 23,331 0.5 1.907 3.13 -
FRATE 4,253 0.091 0.961 1.6 0.082
FRA7K 265 0.006 0.709 2.56 0.097
FRA7G 265 0.006 1.489 2.46 0.098
FRA7H 1,458 0.031 3.283 4.38 0.089
FRA7I 435 0.009 0.3 1.98 0.065
FRA8C 8,599 0.184 2.079 3.26 0.082
FRA9IG 168 0.004 0.455 1.2 0.142
FRA10F 5,878 0.126 2.051 2.57 0.071
FRAI11E 4,494 0.096 2.314 4.05 0.123
FRAI11G 9,545 0.205 2.136 2.57 0.126
FRAI13A 193 0.004 0.302 1.23 0.108
FRA13E 2,950 0.063 0.951 1.78 0.104
FRA16D 378 0.008 1.215 1.87 0.118
FRAXB 718 0.015 0.753 1.54 0.056

CTCF binding sites, studied in 89 cell lines, are shown respectively as absolute counts, with respect to the total number of CTCF binding sites in
the whole genome and as a frequency per kb. Average H3k27 acetylation scores from ChIP-seq analysis of the K562 cell line have been
calculated for each fragile site. Average conservation score between human and 99 vertebrates was obtained from the UCSC browser (http://
genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons100way). We compiled a list of molecularly mapped CFSs by performing a systematic
search of the literature for each one of the known cytogenetically mapped CFSs (n = 125). Twenty-six CFSs with a precise mapping were
identified (see Table 3), and their coordinates were then mapped to the reference genome version GRC37. Whenever the precise location of
BACs was unknown, it was verified by alignment with NCBI Megablast (default settings). The annotation of the reference human genome was
obtained from UCSC (URL: hgdownload.cse.ucsc.edu/goldenPath/hg19/) in December 2013. The utility “bigWigSummary” was used to extract
mean scores for molecularly mapped fragile regions and randomly selected non-fragile control regions

carcinogenesis than APH-induced stress. Therefore, it
could be argued that CFS alterations are frequent in cancer,
as described above [65], not just because of a higher
breakage probability but also because of an earlier
involvement, even before the complete deregulation of the
cellular machinery.

Furthermore, any double-strand break can have dire
consequences, such as the initiation of a breakage-fusion-
bridge cycle, especially when subtelomeric and peri-cen-
tromeric CFSs are disrupted simultaneously [69]. Through
this mechanism, CFS breaks can amplify oncogenes, delete
tumor suppressors or, most importantly, initiate persistent
chromosomal instability. Massive accumulation of local-
ized chromosomal rearrangements in a single time-point,

termed chromothripsis (literally: shattering of the chro-
mosome) and chromoanasynthesis, has recently been
identified in several cancer types [70]. Indirect evidence
suggests that CFSs may have an important role in this
process [71] by stalling the RF, favoring RF collapse and,
in extreme cases, chromosome pulverization leading to
clustering of chromosomal breaks [13]. Indeed, chromo-
some fragmentation distal to the CFS has been observed
under the microscope in some cases [71] and could be a
triggering factor for chromothripsis. On the other hand,
multi-step, recurrent CFS alterations could be difficult to
discriminate from single-step rearrangements, rendering
the identification of chromothripsis even more difficult. In
that scenario, CFS stability and localization is an important
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parameter in the bioinformatic algorithms that are applied
to define and model such cancer rearrangements. In addi-
tion, CFSs can contribute to the clustered shuttering of the
chromosomes also during the process of premature chro-
matin condensation (PCC) [72, 73] in which interphase
chromosomes or late replicating chromosome zones like
CFS or extranuclear bodies micronuclei are ‘induced’ to
condensation by various mitotic factors [74]. This reveals
more possibilities for CFSs to act as contributors to GI
through chromosome breakage. An interesting scenario
suggested that the G2-M mammalian checkpoint can fail to
delay mitotic onset as it may not be sensitive enough to
detect a few remaining long-replicating forks, thus allow-
ing chromatin condensation of late replicating CFS regions,
resulting in multiple DNA breaks [26, 44].

CFSs as “functional” units: a new perception

Common fragile sites have long been considered vulnera-
ble breakage sites in the genome in response to RS from
extrinsic factors. Their fragility has also been associated
with GI in cancer development. As we have previously
shown, CFSs are preferentially affected from the earliest
precancerous lesions, in response to OIRS [2, 4]. In the
current work, we first performed a review on the hetero-
geneity and fragility mechanisms affecting these sites.
Next, by applying bioinformatic tools and exploiting
available information in various databases, like the KEGG,
miRbase, and ENCODE, we show a prevalence of various
cancer-related genes, miRs, binding elements, and histone
modifications in CFSs (Figs. 1, 3). The presence of such a
wide spectrum of coding and non-coding elements changes
the view on CFSs content and their nature itself. Given that
CFSs are altered from the earliest stages in cancer, their
impact on cancer development may be more profound than
simply participating in the emergence of GI. On one hand,
cancer-related genes and miRs may be affected from such
early precancerous stages, therefore possibly exerting a
strong pressure for malignant progression (Fig. 3). On the
other hand, this pressure is also reinforced by alterations
and imbalances in the binding elements and histone pat-
terns, respectively, in the CFSs. Furthermore, collectively,
all these alterations may further affect in an “avalanche”
mode not only the stability of the CFSs, but overall of the
genome (Figs. 1, 3). Therefore, as the anti-tumor barriers
are gradually overwhelmed, this avalanche effect may
function in a positive feedback mode to promote cancer.
An important question that emerges is why CFSs are not
selected for elimination from the genome, but are rather
conserved features in mammals? A tempting but specula-
tive answer is that by locating a set of important coding and
non-coding elements in regions that replicate late and/or

@ Springer

with delay and thus are prone to instability, they may
function as alarm sensors scattered throughout the genome
in various chromosomes, to signify detrimental effects
from the RS on the cell. As long as the mammalian
checkpoints and repair mechanisms are not compromised,
cells can monitor and protect their genome and functional
integrity through such a dynamic interaction. Nevertheless,
this imposes the risk that if the checkpoints and the anti-
tumor barriers gradually fail, tumor promotion ensues
(Fig. 3). As we were able to examine only a small subset of
binding elements and histone modifications from the
ENCODE and the miRbase is constantly expanding, in the
future more in-depth studies are required to obtain a
comprehensive picture of CFSs and on their role in cancer.
Overall, CFSs may not be merely structural domains vul-
nerable only to breakage but highly organized “functional”
units that may have deeper biological consequences for the
cell when affected.
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Fig. 3 Model proposing that CFS apart from contributing to GI exert
wider biological effects during cancer development. CFSs are
preferentially affected from the earliest precancerous lesions, in
response to OIRS, conferring to GI. A wide spectrum of coding and
non-coding elements are present within CFSs. Cancer-related genes
and miRs may be affected from such early precancerous stages,
therefore possibly exerting a strong pressure for malignant progres-
sion. This pressure is also reinforced by alterations and imbalances in
the binding elements and histone patterns, respectively, in the CFSs.
Furthermore, collectively, all of these alterations may further affect in
an “avalanche” mode not only the stability of the CFSs, but overall of
the genome. As the anti-tumor barriers are gradually overwhelmed,
this avalanche effect may function in a positive feedback mode to
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