Skip to main content
Log in

The roles of endogenous retinoid signaling in organ and appendage regeneration

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The ability to regenerate injured or lost body parts has been an age-old ambition of medical science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been associated with these impressive regenerative capacities. The discovery 30 years ago that addition of retinoic acid to regenerating amphibian limbs causes “super-regeneration” initiated investigations into the presumptive roles of retinoic acid in regeneration of appendages and other organs. However, the evidence favoring or dismissing a role for endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway has opened up new routes to dissect its roles in regeneration. Here, we review the current understanding on endogenous functions of retinoic acid in regeneration and discuss key questions to be addressed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sánchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? BioEssays 22(6):578–590

    PubMed  Google Scholar 

  2. Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol (Amst) 25(3):161–170

    Google Scholar 

  3. Bellairs AA, Bryant SV (1968) Effects of amputation of limbs and digits of lacertid lizards. Anat Rec 161(4):489–495

    PubMed  CAS  Google Scholar 

  4. McLean KE, Vickaryous MK (2011) A novel amniote model of epimorphic regeneration: the leopard gecko, Eublepharis macularius. BMC Dev Biol 11:50

    PubMed  Google Scholar 

  5. Porrello ER, Pfleger KD, Seeber RM, Qian H, Oro C, Abogadie F, Delbridge LM, Thomas WG (2011) Heteromerization of angiotensin receptors changes trafficking and arrestin recruitment profiles. Cell Signal 23(11):1767–1776

    PubMed  CAS  Google Scholar 

  6. Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K (2011) Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 350(2):301–310

    PubMed  CAS  Google Scholar 

  7. Seifert A, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M (2012) Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489(7417):561–565

    PubMed  CAS  Google Scholar 

  8. Theodosiou M, Laudet V, Schubert M (2010) From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 67(9):1423–1445

    PubMed  CAS  Google Scholar 

  9. Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134(6):921–931

    PubMed  CAS  Google Scholar 

  10. Carvalho JE, Schubert M (2013) Retinoic acid: metabolism, developmental functions and evolution. In: Dakshinamurti K, Dakshinamurti S (eds) Vitamin-binding proteins—their functional consequences. CRC Press/Taylor & Francis Group (in press)

  11. Niazi IA, Saxena S (1978) Abnormal hind limb regeneration in tadpoles of the toad, Bufo andersoni, exposed to excess vitamin A. Folia Biol (Krak) 26(1):3–8

    CAS  Google Scholar 

  12. Maden M (1982) Vitamin A and pattern formation in the regenerating limb. Nature 295(5851):672–675

    PubMed  CAS  Google Scholar 

  13. Gudas LJ (2012) Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta 1821:213–221

    PubMed  CAS  Google Scholar 

  14. Maden M, Hind M (2003) Retinoic acid, a regeneration-inducing molecule. Dev Dyn 226(2):237–244

    PubMed  CAS  Google Scholar 

  15. Maden M, Hind M (2004) Retinoic acid in alveolar development, maintenance and regeneration. Philos Trans R Soc Lond B Biol Sci 359(1445):799–808

    PubMed  CAS  Google Scholar 

  16. Hind M, Gilthorpe A, Stinchcombe S, Maden M (2009) Retinoid induction of alveolar regeneration: from mice to man? Thorax 64(5):451–457

    PubMed  CAS  Google Scholar 

  17. Rawson NE, LaMantia AS (2006) Once and again: retinoic acid signaling in the developing and regenerating olfactory pathway. J Neurobiol 66(7):653–676

    PubMed  CAS  Google Scholar 

  18. Chernoff EA, Stocum DL, Nye HL, Cameron JA (2003) Urodele spinal cord regeneration and related processes. Dev Dyn 226(2):295–307

    PubMed  Google Scholar 

  19. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755–765

    PubMed  CAS  Google Scholar 

  20. Fleisch VC, Fraser B, Allison WT (2011) Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species. Biochim Biophys Acta 1812(3):364–380

    PubMed  CAS  Google Scholar 

  21. Mey J (2006) New therapeutic target for CNS injury? The role of retinoic acid signaling after nerve lesions. J Neurobiol 66(7):757–779

    PubMed  CAS  Google Scholar 

  22. Mey J, McCaffery P (2004) Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist 10(5):409–421

    PubMed  CAS  Google Scholar 

  23. Rhinn M, Dollé P (2012) Retinoic acid signalling during development. Development 139(5):843–858

    PubMed  CAS  Google Scholar 

  24. Kam RK, Deng Y, Chen Y, Zhao H (2012) Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2(1):11

    PubMed  CAS  Google Scholar 

  25. Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66(7):606–630

    PubMed  CAS  Google Scholar 

  26. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol-binding protein mediates cellular uptake of vitamin A. Science (N Y) 315(5813):820–825

    CAS  Google Scholar 

  27. Boleda MD, Saubi N, Farrés J, Parés X (1993) Physiological substrates for rat alcohol dehydrogenase classes: aldehydes of lipid peroxidation, omega-hydroxyfatty acids, and retinoids. Arch Biochem Biophys 307(1):85–90

    PubMed  CAS  Google Scholar 

  28. Kim CI, Leo MA, Lieber CS (1992) Retinol forms retinoic acid via retinal. Arch Biochem Biophys 294(2):388–393

    PubMed  CAS  Google Scholar 

  29. Yang ZN, Davis GJ, Hurley TD, Stone CL, Li TK, Bosron WF (1994) Catalytic efficiency of human alcohol dehydrogenases for retinol oxidation and retinal reduction. Alcohol Clin Exp Res 18(3):587–591

    PubMed  CAS  Google Scholar 

  30. Vasiliou V, Bairoch A, Tipton KF, Nebert DW (1999) Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 9(4):421–434

    PubMed  CAS  Google Scholar 

  31. Napoli JL (1996) Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin Immunol Immunopathol 80(3 Pt 2):S52–S62

    PubMed  CAS  Google Scholar 

  32. Mic FA, Molotkov A, Benbrook DM, Duester G (2003) Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc Natl Acad Sci USA 100(12):7135–7140

    PubMed  CAS  Google Scholar 

  33. Kane MA (2012) Analysis, occurrence, and function of 9-cis-retinoic acid. Biochim Biophys Acta 1821(1):10–20

    PubMed  CAS  Google Scholar 

  34. Schug TT, Berry D, Shaw NS, Travis SN, Noy N (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129(4):723–733

    PubMed  CAS  Google Scholar 

  35. Zhou XE, Suino-Powell KM, Xu Y, Chan CW, Tanabe O, Kruse S, Reynolds R, Engel JD, Xu HE (2011) The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. J Biol Chem 286(4):2877–2885

    PubMed  CAS  Google Scholar 

  36. Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE (2008) Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 6(9):e227

    PubMed  Google Scholar 

  37. Stehlin-Gaon C, Willmann D, Zeyer D, Sanglier S, Van Dorsselaer A, Renaud JP, Moras D, Schüle R (2003) All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat Struct Biol 10(10):820–825

    PubMed  CAS  Google Scholar 

  38. White RJ, Nie Q, Lander AD, Schilling TF (2007) Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol 5(11):e304

    PubMed  Google Scholar 

  39. Cai AQ, Radtke K, Linville A, Lander AD, Nie Q, Schilling TF (2012) Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development 139(12):2150–2155

    PubMed  CAS  Google Scholar 

  40. Nacu E, Tanaka EM (2011) Limb regeneration: a new development? Annu Rev Cell Dev Biol 27:409–440

    PubMed  CAS  Google Scholar 

  41. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21(1):172–185

    PubMed  CAS  Google Scholar 

  42. Yoshinari N, Kawakami A (2011) Mature and juvenile tissue models of regeneration in small fish species. Biol Bull 221(1):62–78

    PubMed  CAS  Google Scholar 

  43. Iovine MK (2007) Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol 3(10):613–618

    PubMed  CAS  Google Scholar 

  44. Akimenko MA, Marí-Beffa M, Becerra J, Géraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226(2):190–201

    PubMed  Google Scholar 

  45. Beck CW, Izpisúa Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6):1226–1248

    PubMed  CAS  Google Scholar 

  46. Mochii M, Taniguchi Y, Shikata I (2007) Tail regeneration in the Xenopus tadpole. Dev Growth Differ 49(2):155–161

    PubMed  Google Scholar 

  47. Ferretti P (2011) Regeneration of the vertebrate tail. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0001101.pub2

  48. Nye HL, Cameron JA, Chernoff EA, Stocum DL (2003) Regeneration of the urodele limb: a review. Dev Dyn 226(2):280–294

    PubMed  Google Scholar 

  49. Stocum DL, Cameron JA (2011) Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 240(5):943–968

    PubMed  Google Scholar 

  50. Maden M (1983) The effect of vitamin A on the regenerating axolotl limb. J Embryol Exp Morphol 77:273–295

    PubMed  CAS  Google Scholar 

  51. Maden M (2002) Retinoic acid and limb regeneration–a personal view. Int J Dev Biol 46(7):883–886

    PubMed  Google Scholar 

  52. Maden M (1994) Biolistics. The retinoic acid supergun affair. Curr Biol 4(3):281–284

    PubMed  CAS  Google Scholar 

  53. Bryant SV, Gardiner DM (1992) Retinoic acid, local cell–cell interactions, and pattern formation in vertebrate limbs. Dev Biol 152(1):1–25

    PubMed  CAS  Google Scholar 

  54. Morais da Silva S, Gates PB, Brockes JP (2002) The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3(4):547–555

    Google Scholar 

  55. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318(5851):772–777

    PubMed  CAS  Google Scholar 

  56. Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol 24:525–549

    PubMed  CAS  Google Scholar 

  57. Garza-Garcia A, Harris R, Esposito D, Gates PB, Driscoll PC (2009) Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. PLoS ONE 4(9):e7123

    PubMed  Google Scholar 

  58. Géraudie J, Monnot MJ, Brulfert A, Ferretti P (1995) Caudal fin regeneration in wild-type and long-fin mutant zebrafish is affected by retinoic acid. Int J Dev Biol 39(2):373–381

    PubMed  Google Scholar 

  59. White JA, Boffa MB, Jones B, Petkovich M (1994) A zebrafish retinoic acid receptor expressed in the regenerating caudal fin. Development 120(7):1861–1872

    PubMed  CAS  Google Scholar 

  60. Géraudie J, Ferretti P (1997) Correlation between RA-induced apoptosis and patterning defects in regenerating fins and limbs. Int J Dev Biol 41(3):529–532

    PubMed  Google Scholar 

  61. van Eeden FJ, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Warga RM, Nüsslein-Volhard C (1996) Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 123:255–262

    PubMed  Google Scholar 

  62. Zhang J, Wagh P, Guay D, Sanchez-Pulido L, Padhi B, Korzh V, Andrade-Navarro M, Akimenko M (2010) Loss of fish actinotrichia proteins and the fin-to-limb transition. Nature 466(7303):234–237

    PubMed  CAS  Google Scholar 

  63. Kawakami A, Fukazawa T, Takeda H (2004) Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration. Dev Dyn 231(4):693–699

    PubMed  Google Scholar 

  64. Mateus R, Pereira T, Sousa S, de Lima JE, Pascoal S, Saúde L, Jacinto A (2012) In vivo cell and tissue dynamics underlying zebrafish fin fold regeneration. PLoS ONE 7(12):e51766

    PubMed  CAS  Google Scholar 

  65. Mathew LK, Sengupta S, Franzosa JA, Perry J, La Du J, Andreasen EA, Tanguay RL (2009) Comparative expression profiling reveals an essential role for raldh2 in epimorphic regeneration. J Biol Chem 284(48):33642–33653

    PubMed  CAS  Google Scholar 

  66. Perz-Edwards A, Hardison NL, Linney E (2001) Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev Biol 229(1):89–101

    PubMed  CAS  Google Scholar 

  67. Waxman JS, Yelon D (2011) Zebrafish retinoic acid receptors function as context-dependent transcriptional activators. Dev Biol 352(1):128–140

    PubMed  CAS  Google Scholar 

  68. Begemann Schilling TF, Rauch GJ, Geisler R, Ingham PW (2001) The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 128(16):3081–3094

    Google Scholar 

  69. Grandel H, Lun K, Rauch GJ, Rhinn M, Piotrowski T, Houart C, Sordino P, Küchler AM, Schulte-Merker S, Geisler R, Holder N, Wilson SW, Brand M (2002) Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development 129(12):2851–2865

    PubMed  CAS  Google Scholar 

  70. Blum N, Begemann G (2012) Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration. Development 139(1):107–116

    PubMed  CAS  Google Scholar 

  71. Becerra J, Montes GS, Bexiga SR, Junqueira LC (1983) Structure of the tail fin in teleosts. Cell Tissue Res 230(1):127–137

    PubMed  CAS  Google Scholar 

  72. Poss KD, Keating MT, Nechiporuk A (2003) Tales of regeneration in zebrafish. Dev Dyn 226(2):202–210

    PubMed  Google Scholar 

  73. Stewart S, Stankunas K (2012) Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Devel Biol 365(2):339–349

    CAS  Google Scholar 

  74. Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S, Weidinger G (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20(5):713–724

    PubMed  CAS  Google Scholar 

  75. Tu S, Johnson SL (2011) Fate restriction in the growing and regenerating zebrafish fin. Dev Cell 20(5):725–732

    PubMed  CAS  Google Scholar 

  76. Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22(4):879–886

    PubMed  CAS  Google Scholar 

  77. Rawls JF, Johnson SL (2000) Zebrafish kit mutation reveals primary and secondary regulation of melanocyte development during fin stripe regeneration. Development 127(17):3715–3724

    PubMed  CAS  Google Scholar 

  78. Sousa S, Afonso N, Bensimon-Brito A, Fonseca M, Simões M, Leon J, Roehl H, Cancela ML, Jacinto A (2011) Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138(18):3897–3905

    PubMed  CAS  Google Scholar 

  79. Stoick-Cooper CL, Moon RT, Weidinger G (2007) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21(11):1292–1315

    PubMed  CAS  Google Scholar 

  80. Cammas L, Romand R, Fraulob V, Mura C, Dollé P (2007) Expression of the murine retinol dehydrogenase 10 (Rdh10) gene correlates with many sites of retinoid signalling during embryogenesis and organ differentiation. Dev Dyn 236(10):2899–2908

    PubMed  CAS  Google Scholar 

  81. Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, Rey JP, Ma JX, Staehling-Hampton K, Trainor PA (2007) RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 21(9):1113–1124

    PubMed  CAS  Google Scholar 

  82. Poleo G, Brown CW, Laforest L, Akimenko MA (2001) Cell proliferation and movement during early fin regeneration in zebrafish. Dev Dyn 221(4):380–390

    PubMed  CAS  Google Scholar 

  83. Santos-Ruiz L, Santamaría JA, Ruiz-Sánchez J, Becerra J (2002) Cell proliferation during blastema formation in the regenerating teleost fin. Dev Dyn 223(2):262–272

    PubMed  Google Scholar 

  84. Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD, Begemann G, Poss KD (2011) Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20(3):397–404

    PubMed  CAS  Google Scholar 

  85. Damm K, Heyman RA, Umesono K, Evans RM (1993) Functional inhibition of retinoic acid response by dominant negative retinoic acid receptor mutants. Proc Natl Acad Sci USA 90(7):2989–2993

    PubMed  CAS  Google Scholar 

  86. Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT (2007) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134(3):479–489

    PubMed  CAS  Google Scholar 

  87. Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT (2000) Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 222(2):347–358

    PubMed  CAS  Google Scholar 

  88. Lee Y, Grill S, Sanchez A, Murphy-Ryan M, Poss KD (2005) Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132(23):5173–5183

    PubMed  CAS  Google Scholar 

  89. Campbell LJ, Crews CM (2008) Wound epidermis formation and function in urodele amphibian limb regeneration. Cell Mol Life Sci 65(1):73–79

    PubMed  CAS  Google Scholar 

  90. Chablais F, Jazwinska A (2010) IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 137(6):871–879

    PubMed  CAS  Google Scholar 

  91. Lalevée S, Anno YN, Chatagnon A, Samarut E, Poch O, Laudet V, Benoit G, Lecompte O, Rochette-Egly C (2011) Genome-wide in silico identification of new conserved and functional retinoic acid receptor response elements (direct repeats separated by 5 bp). J Biol Chem 286(38):33322–33334

    PubMed  Google Scholar 

  92. Soprano DR, Qin P, Soprano KJ (2004) Retinoic acid receptors and cancers. Annu Rev Nutr 24:201–221

    PubMed  CAS  Google Scholar 

  93. Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27(50):6398–6406

    PubMed  CAS  Google Scholar 

  94. Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256(1):42–49

    PubMed  CAS  Google Scholar 

  95. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science (N Y) 305(5684):626–629

    CAS  Google Scholar 

  96. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell 122(6):927–939

    PubMed  CAS  Google Scholar 

  97. Sasi N, Hwang M, Jaboin J, Csiki I, Lu B (2009) Regulated cell death pathways: new twists in modulation of BCL2 family function. Mol Cancer Ther 8(6):1421–1429

    PubMed  CAS  Google Scholar 

  98. Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King MW, Saranjami B, Nye HL, Cameron JA, Stocum DL (2009) Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 7:83

    PubMed  Google Scholar 

  99. Gudas LJ, Wagner JA (2011) Retinoids regulate stem cell differentiation. J Cell Physiol 226(2):322–330

    PubMed  CAS  Google Scholar 

  100. Noy N (2010) Between death and survival: retinoic acid in regulation of apoptosis. Annu Rev Nutr 30:201–217

    PubMed  CAS  Google Scholar 

  101. Borland MG, Foreman JE, Girroir EE, Zolfaghari R, Sharma AK, Amin S, Gonzalez FJ, Ross AC, Peters JM (2008) Ligand activation of peroxisome proliferator-activated receptor-beta/delta inhibits cell proliferation in human HaCaT keratinocytes. Mol Pharmacol 74(5):1429–1442

    PubMed  CAS  Google Scholar 

  102. Whitehead GG, Makino S, Lien CL, Keating MT (2005) fgf20 is essential for initiating zebrafish fin regeneration. Science 310(5756):1957–1960

    PubMed  CAS  Google Scholar 

  103. Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, Brand M (2011) Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/lox strategies in zebrafish. Dev Dyn 240(1):108–115

    PubMed  CAS  Google Scholar 

  104. Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally controlled site-specific recombination in zebrafish. PLoS ONE 4(2):e4640

    PubMed  Google Scholar 

  105. Moro E, Ozhan-Kizil G, Mongera A, Beis D, Wierzbicki C, Young RM, Bournele D, Domenichini A, Valdivia LE, Lum L, Chen C, Amatruda J, Tiso N, Weidinger G, Argenton F (2012) In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol 366(2):327–340

    PubMed  CAS  Google Scholar 

  106. Maden M (1998) Retinoids as endogenous components of the regenerating limb and tail. Wound Repair Regen 6:358–365

    PubMed  CAS  Google Scholar 

  107. Lin J, Haffner MC, Zhang Y, Lee BH, Brennen WN, Britton J, Kachhap SK, Shim JS, Liu JO, Nelson WG, Yegnasubramanian S, Carducci MA (2011) Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate 71(4):333–343

    PubMed  CAS  Google Scholar 

  108. Lövborg H, Oberg F, Rickardson L, Gullbo J, Nygren P, Larsson R (2006) Inhibition of proteasome activity, nuclear factor-KappaB translocation and cell survival by the antialcoholism drug disulfiram. Int J Cancer 118(6):1577–1580

    PubMed  Google Scholar 

  109. Del Rincón SV, Scadding SR (2002) Retinoid antagonists inhibit normal patterning during limb regeneration in the axolotl, Ambystoma mexicanum. J Exp Zool 292(5):435–443

    PubMed  Google Scholar 

  110. Scadding SR, Maden M (1994) Retinoic acid gradients during limb regeneration. Dev Biol 162(2):608–617

    PubMed  CAS  Google Scholar 

  111. Viviano CM, Horton CE, Maden M, Brockes JP (1995) Synthesis and release of 9-cis retinoic acid by the urodele wound epidermis. Development 121:3753–3762

    CAS  Google Scholar 

  112. Giguère V, Ong ES, Evans RM, Tabin CJ (1989) Spatial and temporal expression of the retinoic acid receptor in the regenerating amphibian limb. Nature 337(6207):566–569

    PubMed  Google Scholar 

  113. Ragsdale CW, Petkovich M, Gates PB, Chambon P, Brockes JP (1989) Identification of a novel retinoic acid receptor in regenerative tissues of the newt. Nature 341(6243):654–657

    PubMed  CAS  Google Scholar 

  114. Ragsdale CW, Gates PB, Brockes JP (1992) Identification and expression pattern of a second isoform of the newt alpha retinoic acid receptor. Nucleic Acids Res 20(21):5851

    PubMed  CAS  Google Scholar 

  115. Ragsdale CW, Gates PB, Hill DS, Brockes JP (1993) Delta retinoic acid receptor isoform delta 1 is distinguished by its exceptional N-terminal sequence and abundance in the limb regeneration blastema. Mech Dev 40(1–2):99–112

    PubMed  CAS  Google Scholar 

  116. Carter C, Clark A, Spencer G, Carlone R (2011) Cloning and expression of a retinoic acid receptor β2 subtype from the adult newt: evidence for an early role in tail and caudal spinal cord regeneration. Dev Dyn 240(12):2613–2625

    PubMed  CAS  Google Scholar 

  117. Hill DS, Ragsdale CW, Brockes JP (1993) Isoform-specific immunological detection of newt retinoic acid receptor delta 1 in normal and regenerating limbs. Development 117(3):937–945

    PubMed  CAS  Google Scholar 

  118. Monaghan J, Athippozhy A, Seifert A, Putta S, Stromberg AJ, Maden M, Gardiner DM, Voss S (2012) Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biol Open 1(10):937–948. doi:10.1242/bio.20121594

    PubMed  Google Scholar 

  119. McEwan J, Lynch J, Beck CW (2011) Expression of key retinoic acid modulating genes suggests active regulation during development and regeneration of the amphibian limb. Dev Dyn 240(5):1259–1270

    PubMed  CAS  Google Scholar 

  120. Monaghan JR, Maden M (2012) Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration. Dev Biol 368:63–75

    PubMed  CAS  Google Scholar 

  121. Corcoran J, Maden M (1999) Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth. Nat Neurosci 2(4):307–308

    PubMed  CAS  Google Scholar 

  122. Corcoran J, Shroot B, Pizzey J, Maden M (2000) The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J Cell Sci 113(Pt 14):2567–2574

    PubMed  CAS  Google Scholar 

  123. So PL, Yip PK, Bunting S, Wong LF, Mazarakis ND, Hall S, McMahon S, Maden M, Corcoran JP (2006) Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth. Dev Biol 298(1):167–175

    PubMed  CAS  Google Scholar 

  124. Agudo M, Yip P, Davies M, Bradbury E, Doherty P, McMahon S, Maden M, Corcoran JP (2010) A retinoic acid receptor beta agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord. Neurobiol Dis 37(1):147–155

    PubMed  CAS  Google Scholar 

  125. Boylan JF, Gudas LJ (1992) The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. J Biol Chem 267(30):21486–21491

    PubMed  CAS  Google Scholar 

  126. Fiorella PD, Napoli JL (1994) Microsomal retinoic acid metabolism. Effects of cellular retinoic acid-binding protein (type I) and C18-hydroxylation as an initial step. J Biol Chem 269(14):10538–10544

    PubMed  CAS  Google Scholar 

  127. Won JY, Nam EC, Yoo SJ, Kwon HJ, Um S, Han HS, Kim SH, Byun Y, Kim SY (2004) The effect of cellular retinoic acid binding protein-I expression on the CYP26-mediated catabolism of all-trans retinoic acid and cell proliferation in head and neck squamous cell carcinoma. Metabolism 53(8):1007–1012

    PubMed  CAS  Google Scholar 

  128. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):60–65

    PubMed  CAS  Google Scholar 

  129. Maden M, Mustafa K (1982) The structure of 180 degrees supernumerary limbs and a hypothesis of their formation. Dev Biol 93(1):257–265

    PubMed  CAS  Google Scholar 

  130. Slack JM (1983) Positional information in the forelimb of the axolotl: properties of the posterior skin. J Embryol Exp Morphol 73:233–247

    PubMed  CAS  Google Scholar 

  131. Cooper KL, Hu JK, ten Berge D, Fernandez-Teran M, Ros MA, Tabin CJ (2011) Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 332(6033):1083–1086

    PubMed  CAS  Google Scholar 

  132. Roselló-Díez A, Ros MA, Torres M (2011) Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision. Science 332(6033):1086–1088

    PubMed  Google Scholar 

  133. Dmetrichuk JM, Carlone RL, Spencer GE (2006) Retinoic acid induces neurite outgrowth and growth cone turning in invertebrate neurons. Dev Biol 294(1):39–49

    PubMed  CAS  Google Scholar 

  134. Mey J, Morassutti DJ, Brook G, Liu RH, Zhang YP, Koopmans G, McCaffery P (2005) Retinoic acid synthesis by a population of NG2-positive cells in the injured spinal cord. Eur J Neurosci 21(6):1555–1568

    PubMed  Google Scholar 

  135. Maden M, Corcoran J (1996) Role of thyroid hormone and retinoid receptors in the homeotic transformation of tails into limbs in frogs. Dev Genet 19(1):85–93

    PubMed  CAS  Google Scholar 

  136. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190

    PubMed  CAS  Google Scholar 

  137. González-Rosa JM, Martín V, Peralta M, Torres M, Mercader N (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9):1663–1674

    PubMed  Google Scholar 

  138. Chablais F, Veit J, Rainer G, Jazwinska A (2011) The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11(1):21

    PubMed  Google Scholar 

  139. Schnabel K, Wu C, Kurth T, Weidinger G (2011) Regeneration of cryoinjury-induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 6(4):e18503

    PubMed  CAS  Google Scholar 

  140. Raya A, Koth CM, Büscher D, Kawakami Y, Itoh T, Raya RM, Sternik G, Tsai HJ, Rodríguez-Esteban C, Izpisúa-Belmonte JC (2003) Activation of notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA 100(Suppl 1):11889–11895

    PubMed  CAS  Google Scholar 

  141. Jopling C, Sleep E, Raya M, Martí M, Raya A, Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609

    PubMed  CAS  Google Scholar 

  142. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464(7288):601–605

    PubMed  CAS  Google Scholar 

  143. Sleep E, Boué S, Jopling C, Raya M, Raya A, Izpisua Belmonte JC (2010) Transcriptomics approach to investigate zebrafish heart regeneration. J Cardiovasc Med (Hagerstown) 11(5):369–380

    Google Scholar 

  144. Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT (2006) Gene expression analysis of zebrafish heart regeneration. PLoS Biol 4(8):e260

    PubMed  Google Scholar 

  145. Schebesta M, Lien CL, Engel FB, Keating MT (2006) Transcriptional profiling of caudal fin regeneration in zebrafish. Sci World J 6:38–54

    Google Scholar 

  146. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127(3):607–619

    PubMed  CAS  Google Scholar 

  147. González-Rosa J, Peralta M, Mercader N (2012) Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol 370(2):173–186

    PubMed  Google Scholar 

  148. Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, Poss KD (2011) tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138(14):2895–2902

    PubMed  CAS  Google Scholar 

  149. Moss JB, Xavier-Neto J, Shapiro MD, Nayeem SM, McCaffery P, Dräger UC, Rosenthal N (1998) Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol 199(1):55–71

    PubMed  CAS  Google Scholar 

  150. Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11(10):710–722

    PubMed  CAS  Google Scholar 

  151. Jopling C, Boue S, Belmonte JCI (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12(2):79

    PubMed  CAS  Google Scholar 

  152. Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM (1994) RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8(9):1007–1018

    PubMed  CAS  Google Scholar 

  153. Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch JL, Dollé P, Chambon P (1994) Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78(6):987–1003

    PubMed  CAS  Google Scholar 

  154. Kastner P, Messaddeq N, Mark M, Wendling O, Grondona JM, Ward S, Ghyselinck N, Chambon P (1997) Vitamin A deficiency and mutations of RXRalpha, RXRbeta and RARalpha lead to early differentiation of embryonic ventricular cardiomyocytes. Development 124(23):4749–4758

    PubMed  CAS  Google Scholar 

  155. Henry JJ, Tsonis PA (2010) Molecular and cellular aspects of amphibian lens regeneration. Prog Retin Eye Res 29(6):543–555

    PubMed  CAS  Google Scholar 

  156. Malloch EL, Perry KJ, Fukui L, Johnson VR, Wever J, Beck CW, King MW, Henry JJ (2009) Gene expression profiles of lens regeneration and development in Xenopus laevis. Dev Dyn 238(9):2340–2356

    PubMed  CAS  Google Scholar 

  157. Tsonis PA, Trombley MT, Rowland T, Chandraratna RA, del Rio-Tsonis K (2000) Role of retinoic acid in lens regeneration. Dev Dyn 219(4):588–593

    PubMed  CAS  Google Scholar 

  158. Tsonis PA, Tsavaris M, Call MK, Chandraratna RA, Del Rio-Tsonis K (2002) Expression and role of retinoic acid receptor alpha in lens regeneration. Dev Growth Differ 44(5):391–394

    PubMed  CAS  Google Scholar 

  159. Muneoka K, Allan C, Yang X, Lee J, Han M (2008) Mammalian regeneration and regenerative medicine. Birth Defects Res C Embryo Today 84(4):265–280

    PubMed  CAS  Google Scholar 

  160. Kierdorf U, Kierdorf H (2011) Deer antlers—a model of mammalian appendage regeneration: an extensive review. Gerontology 57(1):53–65

    PubMed  Google Scholar 

  161. Price J, Allen S (2004) Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond B Biol Sci 359(1445):809–822

    PubMed  CAS  Google Scholar 

  162. Kierdorf U, Li C, Price JS (2009) Improbable appendages: deer antler renewal as a unique case of mammalian regeneration. Semin Cell Dev Biol 20(5):535–542

    PubMed  Google Scholar 

  163. Rolf HJ, Kierdorf U, Kierdorf H, Schulz J, Seymour N, Schliephake H, Napp J, Niebert S, Wölfel H, Wiese KG (2008) Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler. PLoS ONE 3(4):e2064

    PubMed  Google Scholar 

  164. Weston AD, Hoffman LM, Underhill TM (2003) Revisiting the role of retinoid signaling in skeletal development. Birth Defects Res C Embryo Today 69(2):156–173

    PubMed  CAS  Google Scholar 

  165. Allen SP, Maden M, Price JS (2002) A role for retinoic acid in regulating the regeneration of deer antlers. Dev Biol 251(2):409–423

    PubMed  CAS  Google Scholar 

  166. Weston AD, Chandraratna RA, Torchia J, Underhill TM (2002) Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J Cell Biol 158(1):39–51

    PubMed  CAS  Google Scholar 

  167. Cash DE, Bock CB, Schughart K, Linney E, Underhill TM (1997) Retinoic acid receptor alpha function in vertebrate limb skeletogenesis: a modulator of chondrogenesis. J Cell Biol 136(2):445–457

    PubMed  CAS  Google Scholar 

  168. von Schroeder HP, Heersche JN (1998) Retinoic acid responsiveness of cells and tissues in developing fetal limbs evaluated in a RAREhsplacZ transgenic mouse model. J Orthop Res 16(3):355–364

    Google Scholar 

  169. Kierdorf U, Kierdorf H (1998) Effects of retinoic acid on pedicle and first antler growth in a fallow buck (Dama dama L.). Ann Anat 180(4):373–375

    PubMed  CAS  Google Scholar 

  170. Kierdorf U, Bartos L (1999) Treatment of the growing pedicle with retinoic acid increased the size of the first antlers in fallow deer (Dama dama L.). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 124(1):7–9

    PubMed  CAS  Google Scholar 

  171. Somorjai IM, Somorjai RL, Garcia-Fernàndez J, Escrivà H (2012) Vertebrate-like regeneration in the invertebrate chordate amphioxus. Proc Natl Acad Sci USA 109(2):517–522

    PubMed  CAS  Google Scholar 

  172. Schubert M, Holland ND, Laudet V, Holland LZ (2006) A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Dev Biol 296(1):190–202

    PubMed  CAS  Google Scholar 

  173. Dalfó D, Marqués N, Albalat R (2007) Analysis of the NADH-dependent retinaldehyde reductase activity of amphioxus retinol dehydrogenase enzymes enhances our understanding of the evolution of the retinol dehydrogenase family. FEBS J 274(14):3739–3752

    PubMed  Google Scholar 

  174. Dalfó D, Albalat R, Molotkov A, Duester G, Gonzàlez-Duarte R (2002) Retinoic acid synthesis in the prevertebrate amphioxus involves retinol oxidation. Dev Genes Evol 212(8):388–393

    PubMed  Google Scholar 

  175. Escriva H, Holland ND, Gronemeyer H, Laudet V, Holland LZ (2002) The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development 129(12):2905–2916

    PubMed  CAS  Google Scholar 

  176. Marlétaz F, Holland LZ, Laudet V, Schubert M (2006) Retinoic acid signaling and the evolution of chordates. Int J Biol Sci 2(2):38–47

    PubMed  Google Scholar 

  177. Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M (2008) Retinoic acid signaling in development: tissue-specific functions and evolutionary origins. Genesis 46(11):640–656

    PubMed  CAS  Google Scholar 

  178. Cañestro C, Postlethwait JH, Gonzàlez-Duarte R, Albalat R (2006) Is retinoic acid genetic machinery a chordate innovation? Evol Dev 8(5):394–406

    PubMed  Google Scholar 

  179. Albalat R, Brunet F, Laudet V, Schubert M (2011) Evolution of retinoid and steroid signaling: vertebrate diversification from an amphioxus perspective. Genome Biol Evol 3:985–1005

    PubMed  CAS  Google Scholar 

  180. Sobreira TJ, Marlétaz F, Simões-Costa M, Schechtman D, Pereira AC, Brunet F, Sweeney S, Pani A, Aronowicz J, Lowe CJ, Davidson B, Laudet V, Bronner M, de Oliveira PS, Schubert M, Xavier-Neto J (2011) Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans. Proc Natl Acad Sci USA 108(1):226–231

    PubMed  CAS  Google Scholar 

  181. Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE et al (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18(7):1100–1111

    PubMed  CAS  Google Scholar 

  182. Carnevali MDC, Burighel P (2010) Regeneration in echinoderms and ascidians. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0022102

  183. Dinsmore CE (2010) Regeneration: principles. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1038/npg.els.0001112

  184. Hara K, Fujiwara S, Kawamura K (1992) Retinoic acid can induce a secondary axis in developing buds of a colonial ascidian, Polyandrocarpa misakiensis. Dev Growth Differ 34(4):437–445

    Google Scholar 

  185. Kawamura K, Hara K, Fujiwara S (1993) Developmental role of endogenous retinoids in the determination of morphallactic field in budding tunicates. Development 117(3):835–845

    CAS  Google Scholar 

  186. Kamimura M, Fujiwara S, Kawamura K, Yubisui T (2000) Functional retinoid receptors in budding ascidians. Dev Growth Differ 42(1):1–8

    PubMed  CAS  Google Scholar 

  187. Rinkevich Y, Paz G, Rinkevich B, Reshef R (2007) Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol 5(4):e71

    PubMed  Google Scholar 

  188. Cañestro C, Postlethwait JH (2007) Development of a chordate anterior-posterior axis without classical retinoic acid signaling. Dev Biol 305(2):522–538

    PubMed  Google Scholar 

  189. Nagatomo K, Fujiwara S (2003) Expression of Raldh2, Cyp26 and Hox-1 in normal and retinoic acid-treated Ciona intestinalis embryos. Gene Expr Patterns 3(3):273–277

    PubMed  CAS  Google Scholar 

  190. Natale A, Sims C, Chiusano ML, Amoroso A, D’Aniello E, Fucci L, Krumlauf R, Branno M, Locascio A (2011) Evolution of anterior Hox regulatory elements among chordates. BMC Evol Biol 11:330

    PubMed  CAS  Google Scholar 

  191. Wada H, Escriva H, Zhang S, Laudet V (2006) Conserved RARE localization in amphioxus Hox clusters and implications for Hox code evolution in the vertebrate neural crest. Dev Dyn 235(6):1522–1531

    PubMed  CAS  Google Scholar 

  192. Albalat R, Cañestro C (2009) Identification of Aldh1a, Cyp26 and RAR orthologs in protostomes pushes back the retinoic acid genetic machinery in evolutionary time to the bilaterian ancestor. Chem Biol Interact 178(1–3):188–196

    PubMed  CAS  Google Scholar 

  193. Saló E, Abril JF, Adell T, Cebrià F, Eckelt K, Fernandez-Taboada E, Handberg-Thorsager M, Iglesias M, Molina MD, Rodríguez-Esteban G (2009) Planarian regeneration: achievements and future directions after 20 years of research. Int J Dev Biol 53(8–10):1317–1327

    PubMed  Google Scholar 

  194. Romero R, Bueno D (2001) Disto-proximal regional determination and intercalary regeneration in planarians, revealed by retinoic acid-induced disruption of regeneration. Int J Dev Biol 45(4):669–673

    PubMed  CAS  Google Scholar 

  195. Halme A, Cheng M, Hariharan IK (2010) Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 20(5):458–463

    PubMed  CAS  Google Scholar 

  196. Hopkins PM (2001) Limb regeneration in the fiddler crab, Uca pugilator: hormonal and growth factor control. Am Zool 41(3):389–398

    CAS  Google Scholar 

  197. Hopkins PM, Durica D, Washington T (2008) RXR isoforms and endogenous retinoids in the fiddler crab, Uca pugilator. Comp Biochem Physiol Part A Mol Integr Physiol 151(4):602–614

    Google Scholar 

  198. Hopkins PM, Durica DS (1995) Effects of all-trans retinoic acid on regenerating limbs of the fiddler crab, Uca pugilator. J Exp Zool 272:455–463

    CAS  Google Scholar 

  199. Chung AC, Durica DS, Clifton SW, Roe BA, Hopkins PM (1998) Cloning of crustacean ecdysteroid receptor and retinoid-X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Mol Cell Endocrinol 139(1–2):209–227

    PubMed  CAS  Google Scholar 

  200. Hopkins PM, Chung ACK, Durica DS (1999) Limb regeneration in the fiddler crab, Uca pugilator: histological, physiological and molecular considerations. Am Zool 39(3):513–526

    Google Scholar 

  201. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    PubMed  CAS  Google Scholar 

  202. Wong YF, Kopp JB, Roberts C, Scambler PJ, Abe Y, Rankin AC, Dutt N, Hendry BM, Xu Q (2011) Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system. PLoS ONE 6(2):e16770

    PubMed  CAS  Google Scholar 

  203. Anderson RJ, Ray CJ, Hattler BG (1998) Retinoic acid regulation of renal tubular epithelial and vascular smooth muscle cell function. J Am Soc Nephrol 9(5):773–781

    PubMed  CAS  Google Scholar 

  204. Humes HD, Cieslinski DA (1992) Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture. Exp Cell Res 201(1):8–15

    PubMed  CAS  Google Scholar 

  205. Price JS, Allen S, Faucheux C, Althnaian T, Mount JG (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 207(5):603–618

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to investigators whose work could not be cited due to space limitations. N.B. received financial support from the University of Konstanz and the Research Training Group 1331. This work was in part financed by a grant from the Deutsche Forschungsgemeinschaft (BE 1902/6-1 to G.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Begemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, N., Begemann, G. The roles of endogenous retinoid signaling in organ and appendage regeneration. Cell. Mol. Life Sci. 70, 3907–3927 (2013). https://doi.org/10.1007/s00018-013-1303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1303-7

Keywords

Navigation