Skip to main content

Advertisement

Log in

Transcriptional regulation of phosphate acquisition by higher plants

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Phosphorus (P), an essential macronutrient required for plant growth and development, is often limiting in natural and agro-climatic environments. To cope with heterogeneous or low phosphate (Pi) availability, plants have evolved an array of adaptive responses facilitating optimal acquisition and distribution of Pi. The root system plays a pivotal role in Pi-deficiency-mediated adaptive responses that are regulated by a complex interplay of systemic and local Pi sensing. Cross-talk with sugar, phytohormones, and other nutrient signaling pathways further highlight the intricacies involved in maintaining Pi homeostasis. Transcriptional regulation of Pi-starvation responses is particularly intriguing and involves a host of transcription factors (TFs). Although PHR1 of Arabidopsis is an extensively studied MYB TF regulating subset of Pi-starvation responses, it is not induced during Pi deprivation. Genome-wide analyses of Arabidopsis have shown that low Pi stress triggers spatiotemporal expression of several genes encoding different TFs. Functional characterization of some of these TFs reveals their diverse roles in regulating root system architecture, and acquisition and utilization of Pi. Some of the TFs are also involved in phytohormone-mediated root responses to Pi starvation. The biological roles of these TFs in transcriptional regulation of Pi homeostasis in model plants Arabidopsis thaliana and Oryza sativa are presented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, Boston

    Google Scholar 

  2. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  3. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  PubMed  CAS  Google Scholar 

  4. Fang Z, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180

    Article  CAS  Google Scholar 

  5. Ticconi CA, Abel S (2001) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    Article  CAS  Google Scholar 

  6. Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    Article  PubMed  CAS  Google Scholar 

  7. Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87

    Article  PubMed  CAS  Google Scholar 

  8. Doerner P (2008) Phosphate starvation signaling: a threesome controls systemic Pi homeostasis. Curr Opin Plant Biol 11:536–540

    Article  PubMed  CAS  Google Scholar 

  9. Lin W-Y, Lin S-I, Chiou T-J (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60:1427–1438

    Article  PubMed  CAS  Google Scholar 

  10. Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3:288–299

    Article  PubMed  CAS  Google Scholar 

  11. Vance CP (2010) Quantitative trait loci, epigenetics, sugars, and microRNAs: quaternaries in phosphate acquisition and use. Plant Physiol 154:582–588

    Article  PubMed  CAS  Google Scholar 

  12. Yang XJ, Finnegan PM (2010) Regulation of phosphate starvation responses in higher plants. Ann Bot 105:513–526

    Article  PubMed  CAS  Google Scholar 

  13. Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015

    Article  PubMed  CAS  Google Scholar 

  14. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  PubMed  CAS  Google Scholar 

  15. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  PubMed  CAS  Google Scholar 

  16. Misson J, Raghothama KG, Jain A et al (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    Article  PubMed  CAS  Google Scholar 

  17. Morcuende R, Bari R, Gibon Y et al (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    Article  PubMed  CAS  Google Scholar 

  18. Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    Article  PubMed  CAS  Google Scholar 

  19. Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L (2008) Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. J Exp Bot 59:2479–2497

    Article  PubMed  CAS  Google Scholar 

  20. Venkatachalam P, Jain A, Sahi SV, Raghothama KG (2009) Molecular cloning and characterization of phosphate (Pi) responsive genes in Gulf ryegrass (Lolium multiflorum L.): a Pi hyperaccumulator. Plant Mol Biol 69:1–21

    Article  PubMed  CAS  Google Scholar 

  21. Hsieh L-C, Lin S-I, Shih A-C, Chen J-W, Lin W-Y, Tseng C-Y, Li W-H, Chiou T-J (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed  Google Scholar 

  22. Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V et al (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6(9):e1001102. doi:10.1371/journal.pgen.10011

    Article  PubMed  CAS  Google Scholar 

  23. Thibaud M-C, Arrighi J-F, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y, Nussaume L (2010) Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J 64:775–789

    Article  PubMed  CAS  Google Scholar 

  24. Oshima Y (1982) Regulatory circuits for gene expression: the metabolism of galactose and of phosphate. In: Strathern J, Jones E, Broach J (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 159–180

    Google Scholar 

  25. Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Neidhardt R, Ingraham J, Lin E, Low K, Magasanik B, Reznikoff W, Riley M, Schaechter M, Umbrager H (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington D.C., pp 1357–1381

    Google Scholar 

  26. Lenburg ME, O’Shea EK (1996) Signaling phosphate starvation. Trends Biochem Sci 21:383–387

    PubMed  CAS  Google Scholar 

  27. Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA 96:15336–15341

    Article  PubMed  CAS  Google Scholar 

  28. Mouillon J-M, Persson BL (2006) New aspects on phosphate sensing and signaling in Saccharomyces cerevisiae. FEMS Yeast Res 6:171–176

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein AH, Baretlein DA, Danon A (1989) Phosphate starvation stress: an experimental system for molecular analysis. Plant Mol Biol Rep 7:7–16

    Article  CAS  Google Scholar 

  30. Mimura T, Dietz K-J, Kaiser W, Schramm MJ, Kaiser G, Heber U (1990) Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves. Planta 180:139–146

    Article  CAS  Google Scholar 

  31. Ogawa N, Saito H, Miura K, Paolo J, Magbanua V, Bun-ya M, Harashima S, Oshima Y (1995) Structure and distribution of specific cis-elements for transcriptional regulation of PHO84 in Saccharomyces cerevisiae. Mol Gen Genet 249:406–416

    Article  PubMed  CAS  Google Scholar 

  32. Liu C, Muchhal US, Raghothama KG (1997) Differential expression of TPSI1, a phosphate starvation-induced gene in tomato. Plant Mol Biol 33:867–874

    Article  PubMed  CAS  Google Scholar 

  33. Mukatira UT, Chuming L, Varadarajan DK, Raghothama KG (2001) Negative regulation of phosphate starvation-induced genes. Plant Physiol 127:1854–1862

    Article  PubMed  CAS  Google Scholar 

  34. Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  PubMed  CAS  Google Scholar 

  35. Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in genes expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    Article  PubMed  CAS  Google Scholar 

  36. Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    Article  PubMed  CAS  Google Scholar 

  37. Devaiah BN, Nagarajan VK, Raghothama KG (2007) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145:147–159

    Article  PubMed  CAS  Google Scholar 

  38. Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG (2009) Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol Plant 2:43–58

    Article  PubMed  CAS  Google Scholar 

  39. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev 15:2122–2133

    Article  PubMed  CAS  Google Scholar 

  40. Nilsson L, Müller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    Article  PubMed  CAS  Google Scholar 

  41. Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293

    Article  PubMed  CAS  Google Scholar 

  42. Chen A, Gu M, Sun S, Zhu L, Hong S, Xu G (2011) Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytol 189:1157–1169

    Article  PubMed  CAS  Google Scholar 

  43. Schunmann PH, Richardson AE, Smith FW, Delhaize E (2004) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55:855–865

    Article  PubMed  CAS  Google Scholar 

  44. Karthikeyan A, Ballachanda D, Raghothama K (2009) Promoter deletion analysis elucidates the role of cis elements and 5′UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. Physiol Plant 136:10–18

    Article  PubMed  CAS  Google Scholar 

  45. Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun D-J, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  PubMed  CAS  Google Scholar 

  46. Bari R, Datt Pant B, Stitt M, Scheible W-R (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed  CAS  Google Scholar 

  47. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    Article  PubMed  CAS  Google Scholar 

  48. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  49. Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39

    Article  PubMed  CAS  Google Scholar 

  50. Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress. Gene 248:23–32

    Article  PubMed  CAS  Google Scholar 

  51. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  52. Chen Y-F, Li L-Q, Xu Q, Kong Y-H, Wang H, Wu W-H (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21:3554–3566

    Article  PubMed  CAS  Google Scholar 

  53. Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  54. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  PubMed  CAS  Google Scholar 

  55. Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP (2011) Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol 156:1149–1163

    Article  PubMed  CAS  Google Scholar 

  56. Chen Z-H, Nimmo GA, Jenkins GI, Nimmo HG (2007) BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J 405:191–198

    PubMed  CAS  Google Scholar 

  57. Nole-Wilson S, Tranby T, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    Article  PubMed  CAS  Google Scholar 

  58. Camacho-Cristóbal JJ, Rexach J, Conéjéro G, Al-Ghazi Y, Nacry P, Doumas P (2008) PRD, an Arabidopsis AINTEGUMENTA-like gene, is involved in root architectural changes in response to phosphate starvation. Planta 228:511–522

    Article  PubMed  CAS  Google Scholar 

  59. Rossini L, Cribb L, Martin DJ, Langdale JA (2001) The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:1231–1244

    PubMed  CAS  Google Scholar 

  60. Liu H, Yang H, Wu C, Feng J, Liu X, Qin H, Wang D (2009) Overexpressing HRS1 confers hypersensitivity to low phosphate-elicited inhibition of primary root growth in Arabidopsis thaliana. J Integr Plant Biol 51:382–392

    Article  PubMed  CAS  Google Scholar 

  61. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    Article  PubMed  CAS  Google Scholar 

  62. Valdés-López O, Hernández G (2008) Transcriptional regulation and signaling in phosphorus starvation: what about legumes? J Integr Plant Biol 50:1213–1222

    Article  PubMed  CAS  Google Scholar 

  63. Yuan H, Liu D (2008) Signaling components involved in plant responses to phosphate starvation. J Integr Plant Biol 50:849–859

    Article  PubMed  CAS  Google Scholar 

  64. Nilsson L, Müller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant 139:129–143

    Article  PubMed  CAS  Google Scholar 

  65. Péret B, Clément M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    Article  PubMed  CAS  Google Scholar 

  66. Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007) Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J 50:982–994

    Article  PubMed  CAS  Google Scholar 

  67. Wasaki J, Yonetani R, Kuroda S et al (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 26:1515–1523

    Article  CAS  Google Scholar 

  68. Wasaki J, Shinano T, Onishi K et al (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57:2049–2059

    Article  PubMed  CAS  Google Scholar 

  69. Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 29:459–467

    Article  Google Scholar 

  70. Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    Article  CAS  Google Scholar 

  71. Lynch JP, Brown KM (2001) Topsoil foraging: an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  72. Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    Article  PubMed  CAS  Google Scholar 

  73. Jain A, Poling MD, Smith AP, Nagarajan VK, Lahner B, Meagher RB, Raghothama KG (2009) Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients. Plant Physiol 150:1033–1049

    Article  PubMed  CAS  Google Scholar 

  74. Smith AP, Jain A, Deal RB, Nagarajan VK, Poling MD, Raghothama KG, Meagher RB (2010) Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as transcriptional activator. Plant Physiol 152:217–225

    Article  PubMed  CAS  Google Scholar 

  75. Bhat KKS, Nye PH (1974) Diffusion of phosphate to plant roots in soil: III. Depletion around onion roots without root hairs. Plant Soil 41:383–394

    Article  Google Scholar 

  76. Bates TR, Lynch JP (2000) Plant growth and phosphorus accumulation of wild-type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). Am J Bot 87:958–963

    Article  PubMed  CAS  Google Scholar 

  77. Martín AC, del Pozo JC, Iglesias J, Rubio V, Solano R, de la Peña A, Leyva A, Paz-Ares J (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    Article  PubMed  Google Scholar 

  78. Williamson LC, Ribrioux S, Fitter AH, Leyser O (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  PubMed  CAS  Google Scholar 

  79. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Sompson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  PubMed  CAS  Google Scholar 

  80. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Pérez-Torres A, Rampey RA, Bartel B, Herrera-Estrella L (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis: identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol 137:681–691

    Article  PubMed  CAS  Google Scholar 

  81. Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127:899–909

    Article  PubMed  CAS  Google Scholar 

  82. Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382

    Article  CAS  Google Scholar 

  83. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  CAS  Google Scholar 

  84. Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    Article  PubMed  CAS  Google Scholar 

  85. Colón-Carmona A, You R, Haimovitch-Gal T, Doerner P (1999) Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J 20:503–508

    Article  PubMed  Google Scholar 

  86. Nacry P, Canivenc G, Muller B, Azmi A, Onckelen HV, Rossignol M, Doumas P (2005) A role for auxin redistribution in the response of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–2074

    Article  PubMed  CAS  Google Scholar 

  87. Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L (2006) Characterization of low phosphorus insensitive mutants reveals a cross talk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol 140:879–889

    Article  PubMed  CAS  Google Scholar 

  88. Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    Article  PubMed  CAS  Google Scholar 

  89. Lai F, Thacker J, Li Y, Doerner P (2007) Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Plant J 50:545–556

    Article  PubMed  CAS  Google Scholar 

  90. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    Article  PubMed  CAS  Google Scholar 

  91. Ward JT, Lahner B, Yakubova E, David E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147:1181–1191

    Article  PubMed  CAS  Google Scholar 

  92. Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    PubMed  CAS  Google Scholar 

  93. Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669–696

    Article  PubMed  CAS  Google Scholar 

  94. Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  CAS  Google Scholar 

  95. Thimm O, Essigmann B, Kloska S, Altman T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127:1030–1043

    Article  PubMed  CAS  Google Scholar 

  96. Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC (2006) Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie 88:1767–1771

    Article  PubMed  CAS  Google Scholar 

  97. Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Desnos T, Abel S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Natl Acad Sci USA 106:14174–14179

    Article  PubMed  CAS  Google Scholar 

  98. Torrey JG (1950) Induction of lateral roots by indoleacetic acid and decapitation. Am J Bot 37:257–264

    Article  CAS  Google Scholar 

  99. Tsugeki R, Fedoroff N (1999) Genetic ablation of root cap cells in Arabidopsis. Proc Natl Acad Sci USA 96:12941–12946

    Article  PubMed  CAS  Google Scholar 

  100. Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386

    Article  PubMed  CAS  Google Scholar 

  101. Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958

    Article  PubMed  CAS  Google Scholar 

  102. Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390

    Article  PubMed  CAS  Google Scholar 

  103. Zhang YJ, Lynch JP, Brown KM (2003) Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J Exp Bot 54:2351–2361

    Article  PubMed  CAS  Google Scholar 

  104. Nagarajan VK, Smith AA (2012) Ethylene’s role in phosphate starvation signaling: more than just a root growth regulator. Plant Cell Physiol 53:277–286

    Article  PubMed  CAS  Google Scholar 

  105. Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    Article  PubMed  CAS  Google Scholar 

  106. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  PubMed  CAS  Google Scholar 

  107. Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    Article  PubMed  CAS  Google Scholar 

  108. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ et al (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    PubMed  CAS  Google Scholar 

  109. Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    Article  PubMed  CAS  Google Scholar 

  110. Gilbert GA, Knight JD, Vance CP, Allan DL (2000) Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Ann Bot 85:921–928

    Article  CAS  Google Scholar 

  111. Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ 26:1053–1066

    Article  CAS  Google Scholar 

  112. Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J 37:801–814

    Article  PubMed  CAS  Google Scholar 

  113. Pérez-Torres C-A, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  PubMed  Google Scholar 

  114. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellins response. Nature 421:740–743

    Article  PubMed  CAS  Google Scholar 

  115. Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol 145:1460–1470

    Article  PubMed  CAS  Google Scholar 

  116. Liu C, Muchhal US, Mukatira U, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116:91–99

    Article  PubMed  CAS  Google Scholar 

  117. Burleigh SH, Harrison MJ (1999) The down regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol 119:241–248

    Article  PubMed  CAS  Google Scholar 

  118. Baldwin JC, Karthikeyan AS, Raghothama KG (2001) LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol 125:728–737

    Article  PubMed  CAS  Google Scholar 

  119. Aung K, Lin S-I, Wu C-C, Huang Y-T, Su C-L, Chiou T-J (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  PubMed  CAS  Google Scholar 

  120. Liu JQ, Allan DL, Vance CP (2010) Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399. Mol Plant 3:428–437

    Article  PubMed  CAS  Google Scholar 

  121. Kuo H-F, Chiou T-J (2011) The role of microRNAs in phosphorus deficiency signaling. Plant Physiol 156:1016–1024

    Article  PubMed  CAS  Google Scholar 

  122. Liu T-Y, Aung K, Tseng C-Y, Chang T-Y, Chen Y-S, Chiou T-J (2011) Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiol 156:1176–1189

    Article  PubMed  CAS  Google Scholar 

  123. Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  PubMed  CAS  Google Scholar 

  124. Franco-Zorrilla JM, Martín AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138:847–857

    Article  PubMed  CAS  Google Scholar 

  125. Liu J, Samac DA, Bucciarelli B, Allan DL, Carroll P, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  PubMed  CAS  Google Scholar 

  126. Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907–918

    Article  PubMed  CAS  Google Scholar 

  127. Mündermann L, Erasmus Y, Lane B, Coen E, Prusinkiewicz P (2005) Quantitative modeling of Arabidopsis development. Plant Physiol 139:960–968

    Article  PubMed  CAS  Google Scholar 

  128. Arsenault JL, Pouleur S, Messier C, Guay R (1995) WinRHIZO, a root-measuring system with a unique overlap correction method. HortScience 30:906

    Google Scholar 

  129. Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956

    Article  PubMed  CAS  Google Scholar 

  130. Zeng XQ, Chow WS, Su LJ, Peng XX, Peng CL (2010) Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. Physiol Plant 138:215–225

    Article  PubMed  CAS  Google Scholar 

  131. Plaxton WC, Carswell MC (1999) Metabolic aspects of the phosphorus starvation response in plants. In: Lerner HR (ed) Plants response to environmental stresses: from phytohormones to genome organization. Marcel Dekker, New York, pp 349–372

    Google Scholar 

  132. Ballicora MA, Iglesias AA, Preiss J (2004) ADP–glucose pyrophosphorylase:a regulatory enzyme for plant starch synthesis. Photosynth Res 79:1–24

    Article  PubMed  CAS  Google Scholar 

  133. Dai X, Wang Y, Yang A, Zhang W-H (2012) OsMYB2P-1, a R2R3 MYB transcription factor, is involved in regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159:169–183

    Article  PubMed  CAS  Google Scholar 

  134. Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M (2002) Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. J Biol Chem 31:27772–27781

    Article  CAS  Google Scholar 

  135. Tran HT, Hurley BA, Plaxton WC (2010) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27

    Article  CAS  Google Scholar 

  136. del Pozo JC, Allona I, Rubio V, Leyva A, de la Pena A, Aragoncillo C, Paz-Ares J (1999) A type 5 acid phosphates gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilizing/oxidative stress conditions. Plant J 19:579–589

    Article  PubMed  Google Scholar 

  137. Bariola PA, MacIntosh GC, Green PJ (1999) Regulation of S-like ribonuclease levels in Arabidopsis: antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation. Plant Physiol 119:331–342

    Article  PubMed  CAS  Google Scholar 

  138. Hartel H, Dormann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    Article  PubMed  CAS  Google Scholar 

  139. Yu B, Xu C, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99:5732–5737

    Article  PubMed  CAS  Google Scholar 

  140. Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transporter in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant J 39:629–642

    Article  PubMed  CAS  Google Scholar 

  141. Shin H, Shin H-S, Chen R, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    Article  PubMed  CAS  Google Scholar 

  142. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  143. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  144. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  PubMed  CAS  Google Scholar 

  145. Chiou T-J, Aung K, Lin S, Wu C, Chiang S, Su C (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  PubMed  CAS  Google Scholar 

  146. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  PubMed  CAS  Google Scholar 

  147. Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol 107:207–213

    PubMed  CAS  Google Scholar 

  148. Dong B, Rengel Z, Delhaize E (1998) Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Plant Physiol 205:251–256

    CAS  Google Scholar 

  149. Lin S-I, Chiang S-F, Lin W-Y, Chen J-W, Tseng C-Y, Wu P-C, Chiou T-J (2008) Regulatory network of microRNA399 and PHO2 by systemic signalling. Plant Physiol 147:732–746

    Article  PubMed  CAS  Google Scholar 

  150. Pant BD, Buhtz A, Kerr J, Schreiber WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  PubMed  CAS  Google Scholar 

  151. Wykoff DD, O’Shea EK (2001) Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159:1491–1499

    PubMed  CAS  Google Scholar 

  152. Duan K, Yi K, Dang L, Huang H, Wu W, Wu P (2008) Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J 54:965–975

    Article  PubMed  CAS  Google Scholar 

  153. Wang C, Ying S, Huang H, Li K, Wu P, Shou H (2009) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57:895–904

    Article  PubMed  CAS  Google Scholar 

  154. Liu F, Wang Z, Ren H, Shen C, Li Y, Ling HQ, Wu C, Lian X, Wu P (2010) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62:508–517

    Article  PubMed  CAS  Google Scholar 

  155. Whiteaker G, Gerloff GC, Gabelman WH, Lindgren D (1976) Intraspecific differences in growth of beans at stress levels of phosphorus. J Am Soc Hort Sci 101:472–475

    CAS  Google Scholar 

  156. Beebe S, Lynch J, Galwey N, Tohme J, Ochoa I (1997) A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95:325–336

    Article  Google Scholar 

  157. Gahoonia TS, Nielsen NE (1997) Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98:177–182

    Article  Google Scholar 

  158. Gahoonia TS, Nielsen NE (2004) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62

    Article  CAS  Google Scholar 

  159. Wissuwa M, Ae N (1999) Genotypic variation for phosphorus uptake from hardly soluble iron-phosphate in groundnut (Arachis hypogaea L.). Plant Soil 206:165–173

    Google Scholar 

  160. Wissuwa M, Ae N (2001) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breed 120:43–48

    Article  CAS  Google Scholar 

  161. Wissuwa M, Ae N (2001) Genotypic differences in the presence of hairs on roots and gynophores of peanuts (Arachis hypogaea L.) and their significance for phosphorus uptake. J Expt Bot 52:1703–1710

    Article  CAS  Google Scholar 

  162. Singh SP, Urrea CA, Gutierrez JA, Garcia J (1989) Selection for yield at two fertilizer levels in small seeded common bean. Can J Plant Sci 69:1011–1017

    Article  Google Scholar 

  163. Lynch JP, Beebe SE (1995) Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortScience 30:1165–1171

    CAS  Google Scholar 

  164. Narang RA, Bruene A, Altman T (2000) Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Plant Physiol 124:1786–1799

    Article  PubMed  CAS  Google Scholar 

  165. Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1:a major QTL increasing phosphorus uptake of rice. Theor Appl Genet 105:890–897

    Article  PubMed  CAS  Google Scholar 

  166. Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    Article  PubMed  CAS  Google Scholar 

  167. Heuer S, Lu X, Chin JH, Tanaka JP, Kanamori H, Matsumoto T, De Leon T, Ulat VJ, Ismail AM, Yano M, Wissuwa M (2009) Comparative sequence analyses of the major quantitative trait locus Phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnol J 7:456–471

    Article  PubMed  CAS  Google Scholar 

  168. Chin JH, Haefele SM, Gamuyao R, Ismail A, Wissuwa M, Heuer S (2010) Development and application of gene based markers for the major rice QTL phosphorus uptake 1. Theor Appl Genet 120:1073–1086

    Article  PubMed  CAS  Google Scholar 

  169. Misson J, Thibaud MC, Bechtold N, Raghothama KG, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741

    Article  PubMed  CAS  Google Scholar 

  170. Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA 94:7098–7102

    Article  PubMed  CAS  Google Scholar 

  171. Seo HM, Jung Y, Song S, Kim Y, Kwon T, Kim DH, Jeung SJ, Yi YB, Yi G, Nam MH et al (2008) Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnol Lett 30:1833–1838

    Article  PubMed  CAS  Google Scholar 

  172. Park MR, Baek SH, de los Reyes BG, Yun SJ (2007) Overexpression of a high-affinity phosphate transporter gene from tobacco (NtPT1) enhances phosphate uptake and accumulation in transgenic rice plants. Plant Soil 292:259–269

    Article  CAS  Google Scholar 

  173. Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. Funct Plant Biol 31:141–148

    Article  CAS  Google Scholar 

  174. Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101:7833–7838

    Article  PubMed  CAS  Google Scholar 

  175. González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    Article  PubMed  CAS  Google Scholar 

  176. Wu C (1997) Chromatin remodeling and the control of gene expression. J Biol Chem 272:28171–28174

    Article  PubMed  CAS  Google Scholar 

  177. Krogan NJ, Keogh MC, Datta N et al (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12:1565–1576

    Article  PubMed  CAS  Google Scholar 

  178. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348

    Article  PubMed  CAS  Google Scholar 

  179. Deal RB, Kandasamy MK, McKinney EC, Meagher RB (2005) The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. Plant Cell 17:2633–2646

    Article  PubMed  CAS  Google Scholar 

  180. Mitsuda N, Ohme-Takagi M (2009) Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol 50:1232–1248

    Article  PubMed  CAS  Google Scholar 

  181. Thibaud-Nissen F, Wu H, Richmond T, Redman JC, Johnson C, Green R, Arias J, Town CD (2006) Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant J 47:152–162

    Article  PubMed  CAS  Google Scholar 

  182. Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  PubMed  CAS  Google Scholar 

  183. Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-like15. Plant Cell 21:2563–2577

    Article  PubMed  CAS  Google Scholar 

  184. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  185. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555

    Article  PubMed  CAS  Google Scholar 

  186. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA grant (to K.G.R.) and by the Ministry of Science and Technology, Department of Biotechnology, Government of India (Ramalingaswamy Fellowship [2009] to A.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashchandra G. Raghothama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Nagarajan, V.K. & Raghothama, K.G. Transcriptional regulation of phosphate acquisition by higher plants. Cell. Mol. Life Sci. 69, 3207–3224 (2012). https://doi.org/10.1007/s00018-012-1090-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1090-6

Keywords

Navigation