Skip to main content

Advertisement

Log in

Monoamine oxidases in development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Monoamine oxidases (MAOs) are flavoproteins of the outer mitochondrial membrane that catalyze the oxidative deamination of biogenic and xenobiotic amines. In mammals there are two isoforms (MAO-A and MAO-B) that can be distinguished on the basis of their substrate specificity and their sensitivity towards specific inhibitors. Both isoforms are expressed in most tissues, but their expression in the central nervous system and their ability to metabolize monoaminergic neurotransmitters have focused MAO research on the functionality of the mature brain. MAO activities have been related to neurodegenerative diseases as well as to neurological and psychiatric disorders. More recently evidence has been accumulating indicating that MAO isoforms are expressed not only in adult mammals, but also before birth, and that defective MAO expression induces developmental abnormalities in particular of the brain. This review is aimed at summarizing and critically evaluating the new findings on the developmental functions of MAO isoforms during embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MAO:

Monoamine oxidase

LOX:

Lipoxygenase

COX:

Cyclooxygenase

DAAO:

d-Amino acid oxidase

TPH:

Tryptophan hydroxylase

EN:

Epinephrine (adrenalin)

NE:

Norepinephrin (noradrenalin)

DA:

Dopamine

5-HT:

5-Hydroxytryptamine (serotonin)

5-Htr:

Serotonin receptor

References

  1. Gaweska H, Fitzpatrick PF (2011) Structures and mechanism of the monoamine oxidase family. Biomol Concepts 2(5):365–377. doi:10.1515/BMC.2011.030

    Article  PubMed  Google Scholar 

  2. Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217. doi:10.1146/annurev.neuro.22.1.197

    Article  PubMed  CAS  Google Scholar 

  3. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101(16):6062–6067. doi:10.1073/pnas.0400782101.0400782101

    Article  PubMed  CAS  Google Scholar 

  4. Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60(13–14):1527–1533. doi:10.1016/j.addr.2008.06.002

    Article  PubMed  CAS  Google Scholar 

  5. Mandel S, Grunblatt E, Riederer P, Gerlach M, Levites Y, Youdim MB (2003) Neuroprotective strategies in Parkinson’s disease : an update on progress. CNS Drugs 17(10):729–762. pii: 17104

    Google Scholar 

  6. Blaschko H, Richter D, Schlossmann H (1937) The oxidation of adrenaline and other amines. Biochem J 31(12):2187–2196

    PubMed  CAS  Google Scholar 

  7. Wang CC, Borchert A, Ugun-Klusek A, Tang LY, Lui WT, Chu CY, Billett E, Kuhn H, Ufer C (2011) Monoamine oxidase a expression is vital for embryonic brain development by modulating developmental apoptosis. J Biol Chem 286(32):28322–28330. doi:10.1074/jbc.M111.241422

    Article  PubMed  CAS  Google Scholar 

  8. Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11(15):1983–1993

    Article  PubMed  CAS  Google Scholar 

  9. Scrutton NS (2004) Chemical aspects of amine oxidation by flavoprotein enzymes. Nat Prod Rep 21(6):722–730. doi:10.1039/b306788m

    Article  PubMed  CAS  Google Scholar 

  10. Yu PH, Bailey BA, Durden DA, Boulton AA (1986) Stereospecific deuterium substitution at the alpha-carbon position of dopamine and its effect on oxidative deamination catalyzed by MAO-A and MAO-B from different tissues. Biochem Pharmacol 35(6):1027–1036. pii: 0006-2952(86)90094-8

    Google Scholar 

  11. Jonsson T, Edmondson DE, Klinman JP (1994) Hydrogen tunneling in the flavoenzyme monoamine oxidase B. Biochemistry 33(49):14871–14878

    Article  PubMed  CAS  Google Scholar 

  12. Nandigama RK, Edmondson DE (2000) Structure–activity relations in the oxidation of phenethylamine analogues by recombinant human liver monoamine oxidase A. Biochemistry 39 (49):15258–15265. pii: bi001957h

    Google Scholar 

  13. Walker MC, Edmondson DE (1994) Structure–activity relationships in the oxidation of benzylamine analogues by bovine liver mitochondrial monoamine oxidase B. Biochemistry 33(23):7088–7098

    Article  PubMed  CAS  Google Scholar 

  14. Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A (2009) Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 48(20):4220–4230. doi:10.1021/bi900413g

    Article  PubMed  CAS  Google Scholar 

  15. Binda C, Newton-Vinson P, Hubalek F, Edmondson DE, Mattevi A (2002) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 9(1):22–26. doi:10.1038/nsb732

    Article  PubMed  CAS  Google Scholar 

  16. De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 102(36):12684–12689. doi:10.1073/pnas.0505975102

    Article  PubMed  CAS  Google Scholar 

  17. Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci USA 105(15):5739–5744. doi:10.1073/pnas.0710626105

    Article  PubMed  CAS  Google Scholar 

  18. Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, Edmondson DE, Mattevi A (2007) Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 50(23):5848–5852. doi:10.1021/jm070677y

    Article  PubMed  CAS  Google Scholar 

  19. Ma J, Yoshimura M, Yamashita E, Nakagawa A, Ito A, Tsukihara T (2004) Structure of rat monoamine oxidase A and its specific recognitions for substrates and inhibitors. J Mol Biol 338(1):103–114. doi:10.1016/j.jmb.2004.02.032

    Article  PubMed  CAS  Google Scholar 

  20. Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A (2003) Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci USA 100(17):9750–9755. doi:10.1073/pnas.1633804100

    Article  PubMed  CAS  Google Scholar 

  21. Chen K, Wu HF, Shih JC (1996) Influence of C terminus on monoamine oxidase A and B catalytic activity. J Neurochem 66(2):797–803

    Article  PubMed  CAS  Google Scholar 

  22. Gottowik J, Malherbe P, Lang G, Da Prada M, Cesura AM (1995) Structure/function relationships of mitochondrial monoamine oxidase A and B chimeric forms. Eur J Biochem 230(3):934–942

    Article  PubMed  CAS  Google Scholar 

  23. Upadhyay AK, Borbat PP, Wang J, Freed JH, Edmondson DE (2008) Determination of the oligomeric states of human and rat monoamine oxidases in the outer mitochondrial membrane and octyl beta-D-glucopyranoside micelles using pulsed dipolar electron spin resonance spectroscopy. Biochemistry 47(6):1554–1566. doi:10.1021/bi7021377

    Article  PubMed  CAS  Google Scholar 

  24. Milczek EM, Binda C, Rovida S, Mattevi A, Edmondson DE (2011) The ‘gating’ residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition. FEBS J 278(24):4860–4869. doi:10.1111/j.1742-4658.2011.08386.x

    Article  PubMed  CAS  Google Scholar 

  25. Hubalek F, Binda C, Khalil A, Li M, Mattevi A, Castagnoli N, Edmondson DE (2005) Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J Biol Chem 280(16):15761–15766. doi:10.1074/jbc.M500949200

    Article  PubMed  CAS  Google Scholar 

  26. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih JC et al (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268(5218):1763–1766

    Article  PubMed  CAS  Google Scholar 

  27. Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC (1997) Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 17(2):206–210. doi:10.1038/ng1097-206

    Article  PubMed  CAS  Google Scholar 

  28. Chen JF, Steyn S, Staal R, Petzer JP, Xu K, Van Der Schyf CJ, Castagnoli K, Sonsalla PK, Castagnoli N Jr, Schwarzschild MA (2002) 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 277(39):36040–36044. doi:10.1074/jbc.M206830200

    Article  PubMed  CAS  Google Scholar 

  29. Broadley KJ (2010) The vascular effects of trace amines and amphetamines. Pharmacol Ther 125(3):363–375. doi:10.1016/j.pharmthera.2009.11.005

    Article  PubMed  CAS  Google Scholar 

  30. Henchcliffe C, Severt WL (2011) Disease modification in Parkinson’s disease. Drugs Aging 28(8):605–615. doi:10.2165/11591320-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  31. Chen EY, Fujinaga M, Giaccia AJ (1999) Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology 60(4):215–225. doi:10.1002/(SICI)1096-9926(199910)60:4<215:AID-TERA6>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  32. Hansen JM (2006) Oxidative stress as a mechanism of teratogenesis. Birth Defects Res C Embryo Today 78(4):293–307. doi:10.1002/bdrc.20085

    Article  PubMed  CAS  Google Scholar 

  33. Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H (2010) Redox control in mammalian embryo development. Antioxid Redox Signal 13(6):833–875. doi:10.1089/ars.2009.3044

    Article  PubMed  CAS  Google Scholar 

  34. Leese HJ (1995) Metabolic control during preimplantation mammalian development. Hum Reprod Update 1(1):63–72

    Article  PubMed  CAS  Google Scholar 

  35. Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99(2):673–679

    Article  PubMed  CAS  Google Scholar 

  36. Webster WS, Abela D (2007) The effect of hypoxia in development. Birth Defects Res C Embryo Today 81(3):215–228. doi:10.1002/bdrc.20102

    Article  PubMed  CAS  Google Scholar 

  37. Saam J, Rosini E, Molla G, Schulten K, Pollegioni L, Ghisla S (2010) O2 reactivity of flavoproteins: dynamic access of dioxygen to the active site and role of a H+ relay system in d-amino acid oxidase. J Biol Chem 285(32):24439–24446. doi:10.1074/jbc.M110.131193

    Article  PubMed  CAS  Google Scholar 

  38. Saam J, Ivanov I, Walther M, Holzhutter HG, Kuhn H (2007) Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci USA 104(33):13319–13324. doi:10.1073/pnas.0702401104

    Article  PubMed  CAS  Google Scholar 

  39. Jahng JW, Houpt TA, Wessel TC, Chen K, Shih JC, Joh TH (1997) Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization. Synapse 25(1):30–36. doi:10.1002/(SICI)1098-2396(199701)25:1<30:AID-SYN4>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  40. Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25(2):439–456 0306-4522(88)90250-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  41. Saura J, Bleuel Z, Ulrich J, Mendelowitsch A, Chen K, Shih JC, Malherbe P, Da Prada M, Richards JG (1996) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70(3):755–774. pii: S0306-4522(96)83013-2

    Google Scholar 

  42. Billett EE (2004) Monoamine oxidase (MAO) in human peripheral tissues. Neurotoxicology 25(1–2):139–148. doi:10.1016/S0161-813X(03)00094-9

    Article  PubMed  CAS  Google Scholar 

  43. Yamada M, Yasuhara H (2004) Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology 25(1–2):215–221. doi:10.1016/S0161-813X(03)00097-4

    Article  PubMed  CAS  Google Scholar 

  44. Youdim MB, Finberg JP (1987) Monoamine oxidase B inhibition and the “cheese effect”. J Neural Transm Suppl 25:27–33

    PubMed  CAS  Google Scholar 

  45. Hansen MB, Witte AB (2008) The role of serotonin in intestinal luminal sensing and secretion. Acta Physiol (Oxf) 193(4):311–323. doi:10.1111/j.1748-1716.2008.01870.x

    Article  CAS  Google Scholar 

  46. Li G, Xu J, Wang P, Velazquez H, Li Y, Wu Y, Desir GV (2008) Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation 117(10):1277–1282. doi:10.1161/CIRCULATIONAHA.107.732032

    Article  PubMed  CAS  Google Scholar 

  47. Ben-Harari RR, Youdim MB (1981) Ontogenesis of uptake and deamination of 5-hydroxytryptamine, dopamine and beta-phenylethylamine in isolated perfused lung and lung homogenates from rats. Br J Pharmacol 72(4):731–737

    Article  PubMed  CAS  Google Scholar 

  48. Chaitidis P, Billett EE, O’Donnell VB, Fajardo AB, Fitzgerald J, Kuban RJ, Ungethuem U, Kuhn H (2004) Th2 response of human peripheral monocytes involves isoform-specific induction of monoamine oxidase-A. J Immunol 173(8):4821–4827. pii: 173/8/4821

    Google Scholar 

  49. Sivasubramaniam SD, Finch CC, Billett MA, Baker PN, Billett EE (2002) Monoamine oxidase expression and activity in human placentae from pre-eclamptic and normotensive pregnancies. Placenta 23(2–3):163–171. doi:10.1053/plac.2001.0770

    Article  PubMed  CAS  Google Scholar 

  50. Bond PA, Cundall RL (1977) Properties of monoamine oxidase (MAO) in human blood platelets, plasma, lymphocytes and granulocytes. Clin Chim Acta 80(2):317–326

    Article  PubMed  CAS  Google Scholar 

  51. Suarez-Merino B, Bye J, McDowall J, Ross M, Craig IW (2001) Sequence analysis and transcript identification within 1.5 MB of DNA deleted together with the NDP and MAO genes in atypical Norrie disease patients presenting with a profound phenotype. Hum Mutat 17(6):523. doi:10.1002/humu.1140

    Article  PubMed  CAS  Google Scholar 

  52. Chen ZY, Hotamisligil GS, Huang JK, Wen L, Ezzeddine D, Aydin-Muderrisoglu N, Powell JF, Huang RH, Breakefield XO, Craig I et al (1991) Structure of the human gene for monoamine oxidase type A. Nucleic Acids Res 19(16):4537–4541

    Article  PubMed  CAS  Google Scholar 

  53. Kundu TK, Rao MR (1999) CpG islands in chromatin organization and gene expression. J Biochem 125(2):217–222

    Article  PubMed  CAS  Google Scholar 

  54. Wierstra I (2008) Sp1: emerging roles–beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372(1):1–13. doi:10.1016/j.bbrc.2008.03.074

    Article  PubMed  CAS  Google Scholar 

  55. Wong WK, Chen K, Shih JC (2003) Decreased methylation and transcription repressor Sp3 up-regulated human monoamine oxidase (MAO) B expression during Caco-2 differentiation. J Biol Chem 278(38):36227–36235. doi:10.1074/jbc.M305549200

    Article  PubMed  CAS  Google Scholar 

  56. Shumay E, Fowler JS (2010) Identification and characterization of putative methylation targets in the MAOA locus using bioinformatic approaches. Epigenetics 5(4):325–342. pii: 11719

    Google Scholar 

  57. Chen K, Ou XM, Chen G, Choi SH, Shih JC (2005) R1, a novel repressor of the human monoamine oxidase A. J Biol Chem 280(12):11552–11559. doi:10.1074/jbc.M410033200

    Article  PubMed  CAS  Google Scholar 

  58. Wu JB, Chen K, Li Y, Lau YF, Shih JC (2009) Regulation of monoamine oxidase A by the SRY gene on the Y chromosome. FASEB J 23(11):4029–4038. doi:10.1096/fj.09-139097

    Article  PubMed  CAS  Google Scholar 

  59. Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal development in mammals. Physiol Rev 87(1):1–28. doi:10.1152/physrev.00009.2006

    Article  PubMed  CAS  Google Scholar 

  60. Wu JB, Chen K, Ou XM, Shih JC (2009) Retinoic acid activates monoamine oxidase B promoter in human neuronal cells. J Biol Chem 284(25):16723–16735. doi:10.1074/jbc.M901779200

    Article  PubMed  CAS  Google Scholar 

  61. Shih JC, Wu JB, Chen K (2011) Transcriptional regulation and multiple functions of MAO genes. J Neural Transm 118(7):979–986. doi:10.1007/s00702-010-0562-9

    Article  PubMed  CAS  Google Scholar 

  62. Manoli I, Le H, Alesci S, McFann KK, Su YA, Kino T, Chrousos GP, Blackman MR (2005) Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J 19(10):1359–1361. doi:10.1096/fj.04-3660fje

    PubMed  CAS  Google Scholar 

  63. Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103(3):273–279

    Article  PubMed  CAS  Google Scholar 

  64. Syagailo YV, Stober G, Grassle M, Reimer E, Knapp M, Jungkunz G, Okladnova O, Meyer J, Lesch KP (2001) Association analysis of the functional monoamine oxidase A gene promoter polymorphism in psychiatric disorders. Am J Med Genet 105(2):168–171 10.1002/ajmg.1193

    Article  PubMed  CAS  Google Scholar 

  65. Gutierrez B, Arias B, Gasto C, Catalan R, Papiol S, Pintor L, Fananas L (2004) Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders. Psychiatr Genet 14 (4):203–208. pii: 00041444-200412000-00007

    Google Scholar 

  66. Jorm AF, Henderson AS, Jacomb PA, Christensen H, Korten AE, Rodgers B, Tan X, Easteal S (2000) Association of a functional polymorphism of the monoamine oxidase A gene promoter with personality and psychiatric symptoms. Psychiatr Genet 10(2):87–90

    Article  PubMed  CAS  Google Scholar 

  67. Kirov G, Norton N, Jones I, McCandless F, Craddock N, Owen MJ (1999) A functional polymorphism in the promoter of monoamine oxidase A gene and bipolar affective disorder. Int J Neuropsychopharmacol 2(4):293–298. doi:10.1017/S1461145799001601

    Article  PubMed  CAS  Google Scholar 

  68. Kunugi H, Ishida S, Kato T, Tatsumi M, Sakai T, Hattori M, Hirose T, Nanko S (1999) A functional polymorphism in the promoter region of monoamine oxidase-A gene and mood disorders. Mol Psychiatry 4(4):393–395

    Article  PubMed  CAS  Google Scholar 

  69. Cao X, Rui L, Pennington PR, Chlan-Fourney J, Jiang Z, Wei Z, Li XM, Edmondson DE, Mousseau DD (2009) Serine 209 resides within a putative p38(MAPK) consensus motif and regulates monoamine oxidase-A activity. J Neurochem 111(1):101–110. doi:10.1111/j.1471-4159.2009.06300.x

    Article  PubMed  CAS  Google Scholar 

  70. Morishima M, Harada N, Hara S, Sano A, Seno H, Takahashi A, Morita Y, Nakaya Y (2006) Monoamine oxidase A activity and norepinephrine level in hippocampus determine hyperwheel running in SPORTS rats. Neuropsychopharmacology 31(12):2627–2638. doi:10.1038/sj.npp.1301028

    Article  PubMed  CAS  Google Scholar 

  71. Rothmond DA, Weickert CS, Webster MJ (2012) Developmental changes in human dopamine neurotransmission: cortical receptors and terminators. BMC Neurosci 13:18. doi:10.1186/1471-2202-13-18

    Article  PubMed  CAS  Google Scholar 

  72. Fitzgerald JC, Ufer C, De Girolamo LA, Kuhn H, Billett EE (2007) Monoamine oxidase-A modulates apoptotic cell death induced by staurosporine in human neuroblastoma cells. J Neurochem 103(6):2189–2199. doi:10.1111/j.1471-4159.2007.04921.x

    Article  PubMed  CAS  Google Scholar 

  73. Chen K, Wu HF, Shih JC (1993) The deduced amino acid sequences of human platelet and frontal cortex monoamine oxidase B are identical. J Neurochem 61(1):187–190

    Article  PubMed  CAS  Google Scholar 

  74. Youdim MB (1988) Platelet monoamine oxidase B: use and misuse. Experientia 44(2):137–141

    Article  PubMed  CAS  Google Scholar 

  75. Klaiber EL, Broverman DM, Vogel W, Peterson LG, Snyder MB (1996) Individual differences in changes in mood and platelet monoamine oxidase (MAO) activity during hormonal replacement therapy in menopausal women. Psychoneuroendocrinology 21(7):575–592. pii: S0306453096000236

    Google Scholar 

  76. Magder S (2006) Reactive oxygen species: toxic molecules or spark of life? Crit Care 10(1):208. doi:10.1186/cc3992

    Article  PubMed  Google Scholar 

  77. Wiesner R, Kasuschke A, Kuhn H, Anton M, Schewe T (1989) Oxygenation of mitochondrial membranes by the reticulocyte lipoxygenase. Action on monoamine oxidase activities A and B. Biochim Biophys Acta 986(1):11–17. pii: 0005-2736(89)90266-6

    Google Scholar 

  78. Vindis C, Seguelas MH, Lanier S, Parini A, Cambon C (2001) Dopamine induces ERK activation in renal epithelial cells through H2O2 produced by monoamine oxidase. Kidney Int 59(1):76–86. doi:10.1046/j.1523-1755.2001.00468.x

    Article  PubMed  CAS  Google Scholar 

  79. Mialet-Perez J, Bianchi P, Kunduzova O, Parini A (2007) New insights on receptor-dependent and monoamine oxidase-dependent effects of serotonin in the heart. J Neural Transm 114(6):823–827. doi:10.1007/s00702-007-0695-7

    Article  PubMed  CAS  Google Scholar 

  80. Chaitidis P, Billett E, Kuban RJ, Ungethuem U, Kuhn H (2005) Expression regulation of MAO isoforms in monocytic cells in response to Th2 cytokines. Med Sci Monit 11(8):BR259–BR265. pii: 6629

    Google Scholar 

  81. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271(8):4138–4142

    Article  PubMed  CAS  Google Scholar 

  82. Brigelius-Flohe R, Flohe L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15(8):2335–2381. doi:10.1089/ars.2010.3534

    Article  PubMed  CAS  Google Scholar 

  83. Kunduzova OR, Bianchi P, Pizzinat N, Escourrou G, Seguelas MH, Parini A, Cambon C (2002) Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renal ischemia-reperfusion. FASEB J 16(9):1129–1131. doi:10.1096/fj.01-1008fje

    PubMed  CAS  Google Scholar 

  84. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24(1):21–44. doi:10.1080/02699050500284218

    Article  PubMed  CAS  Google Scholar 

  85. Molnar A, Theodoras AM, Zon LI, Kyriakis JM (1997) Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. J Biol Chem 272(20):13229–13235

    Article  PubMed  CAS  Google Scholar 

  86. Kaludercic N, Carpi A, Menabo R, Di Lisa F (1813) Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 7:1323–1332. doi:10.1016/j.bbamcr.2010.09.010

    Google Scholar 

  87. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8(9):722–728. doi:10.1038/nrm2240

    Article  PubMed  CAS  Google Scholar 

  88. Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104(6–7):661–677

    Article  PubMed  CAS  Google Scholar 

  89. Kanduc D, Mittelman A, Serpico R, Sinigaglia E, Sinha AA, Natale C, Santacroce R, Di Corcia MG, Lucchese A, Dini L, Pani P, Santacroce S, Simone S, Bucci R, Farber E (2002) Cell death: apoptosis versus necrosis (review). Int J Oncol 21(1):165–170

    PubMed  CAS  Google Scholar 

  90. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. doi:10.1038/sj.cdd.4400476

    Article  PubMed  CAS  Google Scholar 

  91. Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14(8):1437–1448. doi:10.1089/ars.2010.3596

    Article  PubMed  CAS  Google Scholar 

  92. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21(1):92–101. doi:10.1016/j.devcel.2011.06.017

    Article  PubMed  CAS  Google Scholar 

  93. Holley AK, Dhar SK, St Clair DK (2010) Manganese superoxide dismutase versus p53: the mitochondrial center. Ann N Y Acad Sci 1201:72–78. doi:10.1111/j.1749-6632.2010.05612.x

    Article  PubMed  CAS  Google Scholar 

  94. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34(2):145–169. pii: S0891584902011978

    Google Scholar 

  95. Cohen G, Farooqui R, Kesler N (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94(10):4890–4894

    Article  PubMed  CAS  Google Scholar 

  96. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29 (3–4):222–230. pii: S0891-5849(00)00317-8

    Google Scholar 

  97. Del Rio D, Serafini M, Pellegrini N (2002) Selected methodologies to assess oxidative/antioxidant status in vivo: a critical review. Nutr Metab Cardiovasc Dis 12(6):343–351

    PubMed  Google Scholar 

  98. Cao X, Li XM, Mousseau DD (2009) Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: possible influence by distinct signalling pathways. Life Sci 85(5–6):262–268. doi:10.1016/j.lfs.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  99. Wong CW, McNally C, Nickbarg E, Komm BS, Cheskis BJ (2002) Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc Natl Acad Sci USA 99(23):14783–14788. doi:10.1073/pnas.192569699

    Article  PubMed  CAS  Google Scholar 

  100. Wong WK, Ou XM, Chen K, Shih JC (2002) Activation of human monoamine oxidase B gene expression by a protein kinase C MAPK signal transduction pathway involves c-Jun and Egr-1. J Biol Chem 277(25):22222–22230. doi:10.1074/jbc.M202844200

    Article  PubMed  CAS  Google Scholar 

  101. Ou X-M, Chen K, Shih JC (2006) Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Nat Acad Sci 103(29):10923–10928. doi:10.1073/pnas.0601515103

    Article  PubMed  CAS  Google Scholar 

  102. Herlenius E, Lagercrantz H (2004) Development of neurotransmitter systems during critical periods. Exp Neurol 190(Suppl 1):S8–21. doi:10.1016/j.expneurol.2004.03.027

    Article  PubMed  CAS  Google Scholar 

  103. Cikos S, Fabian D, Makarevich AV, Chrenek P, Koppel J (2011) Biogenic monoamines in preimplantation development. Hum Reprod 26(9):2296–2305. doi:10.1093/humrep/der233

    Article  PubMed  Google Scholar 

  104. Fernandez-Pardal J, Gimeno MF, Gimeno AL (1986) Catecholamines in sow graafian follicles at proestrus and at diestrus. Biol Reprod 34(3):439–445

    Article  PubMed  CAS  Google Scholar 

  105. Khatchadourian C, Menezo Y, Gerard M, Thibault C (1987) Catecholamines within the rabbit oviduct at fertilization time. Hum Reprod 2(1):1–5

    Article  PubMed  CAS  Google Scholar 

  106. Way AL, Barbato GF, Killian GJ (2001) Identification of norepinephrine in bovine oviductal fluid by high performance liquid chromatography. Life Sci 70(5):567–576

    Article  PubMed  CAS  Google Scholar 

  107. Skarzynski DJ, Uenoyama Y, Kotwica J, Okuda K (1999) Noradrenaline stimulates the production of prostaglandin f2alpha in cultured bovine endometrial cells. Biol Reprod 60(2):277–282

    Article  PubMed  CAS  Google Scholar 

  108. Basu B, Desai R, Balaji J, Chaerkady R, Sriram V, Maiti S, Panicker MM (2008) Serotonin in pre-implantation mouse embryos is localized to the mitochondria and can modulate mitochondrial potential. Reproduction 135(5):657–669. doi:10.1530/REP-07-0577

    Article  PubMed  CAS  Google Scholar 

  109. Il’kova G, Rehak P, Vesela J, Cikos S, Fabian D, Czikkova S, Koppel J (2004) Serotonin localization and its functional significance during mouse preimplantation embryo development. Zygote 12(3):205–213

    Article  PubMed  CAS  Google Scholar 

  110. Khozhai LI, Puchkov VF, Otellin VA (1995) The effect of a serotonin deficiency on mammalian embryonic development. Ontogenez 26(5):350–355

    PubMed  CAS  Google Scholar 

  111. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600. doi:10.1126/science.1072530

    Article  PubMed  CAS  Google Scholar 

  112. Vesela J, Rehak P, Mihalik J, Czikkova S, Pokorny J, Koppel J (2003) Expression of serotonin receptors in mouse oocytes and preimplantation embryos. Physiol Res 52(2):223–228

    PubMed  CAS  Google Scholar 

  113. Amireault P, Dube F (2005) Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol Pharmacol 68(6):1678–1687. doi:10.1124/mol.104.010124

    PubMed  CAS  Google Scholar 

  114. Cikos S, Vesela J, Il’kova G, Rehak P, Czikkova S, Koppel J (2005) Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos. Mol Reprod Dev 71(2):145–153. doi:10.1002/mrd.20256

    Article  PubMed  CAS  Google Scholar 

  115. Cikos S, Rehak P, Czikkova S, Vesela J, Koppel J (2007) Expression of adrenergic receptors in mouse preimplantation embryos and ovulated oocytes. Reproduction 133(6):1139–1147. doi:10.1530/REP-07-0006

    Article  PubMed  CAS  Google Scholar 

  116. Amireault P, Dube F (2005) Serotonin and its antidepressant-sensitive transport in mouse cumulus-oocyte complexes and early embryos. Biol Reprod 73(2):358–365. doi:10.1095/biolreprod.104.039313

    Article  PubMed  CAS  Google Scholar 

  117. Mihalik J, Maslankova J, Spakovska T, Marekova M, Hodorova I, Kusnir J, Rybarova S, Ferenc P, Schmidtova K (2010) Impact of 2 doses of clorgyline on the rat preimplantation embryo development and the monoamine levels in urine. Reprod Sci 17(8):734–741. doi:10.1177/1933719110369181

    Article  PubMed  CAS  Google Scholar 

  118. Herlenius E, Lagercrantz H (2001) Neurotransmitters and neuromodulators during early human development. Early Hum Dev 65(1):21–37. pii: S037837820100189X

    Google Scholar 

  119. Lauder JM, Wallace JA, Krebs H (1981) Roles for serotonin in neuroembryogenesis. Adv Exp Med Biol 133:477–506

    Article  PubMed  CAS  Google Scholar 

  120. Golden GS (1982) A review of the neuroembryology of monoamine systems. Brain Res Bull 9(1–6):553–558

    Article  PubMed  CAS  Google Scholar 

  121. Fox K, Henley J, Isaac J (1999) Experience-dependent development of NMDA receptor transmission. Nat Neurosci 2(4):297–299. doi:10.1038/7203

    Article  PubMed  CAS  Google Scholar 

  122. Lauder JM (1993) Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci 16(6):233–240

    Article  PubMed  CAS  Google Scholar 

  123. Buznikov GA, Lambert HW, Lauder JM (2001) Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. Cell Tissue Res 305(2):177–186

    Article  PubMed  CAS  Google Scholar 

  124. Pendleton RG, Rasheed A, Roychowdhury R, Hillman R (1998) A new role for catecholamines: ontogenesis. Trends Pharmacol Sci 19(7):248–251. pii: S0165614798012188

    Google Scholar 

  125. Ringstedt T, Tang LQ, Persson H, Lendahl U, Lagercrantz H (1995) Expression of c-fos, tyrosine hydroxylase, and neuropeptide mRNA in the rat brain around birth: effects of hypoxia and hypothermia. Pediatr Res 37(1):15–20

    Article  PubMed  CAS  Google Scholar 

  126. Lauder JM, Bloom FE (1974) Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol 155(4):469–481. doi:10.1002/cne.901550407

    Article  PubMed  CAS  Google Scholar 

  127. Naqui SZ, Harris BS, Thomaidou D, Parnavelas JG (1999) The noradrenergic system influences the fate of Cajal-Retzius cells in the developing cerebral cortex. Brain Res Dev Brain Res 113(1–2):75–82

    Article  PubMed  CAS  Google Scholar 

  128. Patterson PH, Chun LL (1977) The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Dev Biol 56(2):263–280. pii: 0012-1606(77)90269-X

    Google Scholar 

  129. Berger-Sweeney J, Hohmann CF (1997) Behavioral consequences of abnormal cortical development: insights into developmental disabilities. Behav Brain Res 86(2):121–142. pii: S0166-4328(96)02251-6

    Google Scholar 

  130. Sundstrom E, Kolare S, Souverbie F, Samuelsson EB, Pschera H, Lunell NO, Seiger A (1993) Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Brain Res Dev Brain Res 75(1):1–12

    Article  PubMed  CAS  Google Scholar 

  131. Yavarone MS, Shuey DL, Tamir H, Sadler TW, Lauder JM (1993) Serotonin and cardiac morphogenesis in the mouse embryo. Teratology 47(6):573–584. doi:10.1002/tera.1420470609

    Article  PubMed  CAS  Google Scholar 

  132. Levin M, Buznikov GA, Lauder JM (2006) Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci 28(3):171–185. doi:10.1159/000091915

    Article  PubMed  CAS  Google Scholar 

  133. Lauder JM, Krebs H (1978) Serotonin as a differentiation signal in early neurogenesis. Dev Neurosci 1(1):15–30

    Article  PubMed  CAS  Google Scholar 

  134. Hohmann CF, Walker EM, Boylan CB, Blue ME (2007) Neonatal serotonin depletion alters behavioral responses to spatial change and novelty. Brain Res 1139:163–177. doi:10.1016/j.brainres.2006.12.095

    Article  PubMed  CAS  Google Scholar 

  135. Connors SL, Matteson KJ, Sega GA, Lozzio CB, Carroll RC, Zimmerman AW (2006) Plasma serotonin in autism. Pediatr Neurol 35(3):182–186. doi:10.1016/j.pediatrneurol.2006.02.010

    Article  PubMed  Google Scholar 

  136. Janssen PA, Leysen JE, Megens AA, Awouters FH (1999) Does phenylethylamine act as an endogenous amphetamine in some patients? Int J Neuropsychopharmacol 2(3):229–240. doi:10.1017/S1461145799001522

    Article  PubMed  CAS  Google Scholar 

  137. Kitamura T, Munakata M, Haginoya K, Tsuchiya S, Iinuma K (2008) Beta-phenylethylamine inhibits K+ currents in neocortical neurons of the rat: a possible mechanism of beta-phenylethylamine-induced seizures. Tohoku J Exp Med 215(4):333–340. pii: JST.JSTAGE/tjem/215.333

    Google Scholar 

  138. Hirano M, Uchimura H, Shiraishi A, Kuroki T, Matsumoto T, Tsutsumi T (1989) Beta-phenylethylamine and amphetamine: similar aspects in their behavioropharmacological and neurochemical characteristics. Yakubutsu Seishin Kodo 9(4):335–348

    PubMed  CAS  Google Scholar 

  139. Branchek TA, Blackburn TP (2003) Trace amine receptors as targets for novel therapeutics: legend, myth and fact. Curr Opin Pharmacol 3(1):90–97. pii: S1471489202000280

    Google Scholar 

  140. Jackson DM (1975) Beta-phenylethylamine and locomotor activity in mice. Interaction with catecholaminergic neurones and receptors. Arzneimittelforschung 25(4):622–626

    PubMed  CAS  Google Scholar 

  141. Costall B, Naylor RJ, Pinder RM (1975) Dyskinetic phenomena caused by the intrastriatal injection of phenylethylamine, phenylpiperazine, tetrahydroisoquinoline and tetrahydronaphthalene derivatives in the guinea pig. Eur J Pharmacol 31(1):94–109

    Article  PubMed  CAS  Google Scholar 

  142. Zharikov SI, Zharikova AD, Budantsev A (1979) Effect of beta-phenylethylamine on the dopaminergic system of rat brain. Neirofiziologiia 11(6):578–584

    PubMed  CAS  Google Scholar 

  143. Sengupta T, Mohanakumar KP (2010) 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice. Neurochem Int 57(6):637–646. doi:10.1016/j.neuint.2010.07.013

    Article  PubMed  CAS  Google Scholar 

  144. Lopez-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 16(5):502–515. pii: CPD-Albert Adell (Albert Adell)

    Google Scholar 

  145. Zifa E, Fillion G (1992) 5-Hydroxytryptamine receptors. Pharmacol Rev 44(3):401–458

    PubMed  CAS  Google Scholar 

  146. Choi DS, Maroteaux L (1996) Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 391(1–2):45–51. pii: 0014-5793(96)00695-3

    Google Scholar 

  147. Boyson SJ, Adams CE (1997) D1 and D2 dopamine receptors in perinatal and adult basal ganglia. Pediatr Res 41(6):822–831

    Article  PubMed  CAS  Google Scholar 

  148. Eisenhofer G (2001) The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91(1):35–62. pii: S0163-7258(01)00144-9

    Google Scholar 

  149. Nirenberg MJ, Liu Y, Peter D, Edwards RH, Pickel VM (1995) The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei. Proc Natl Acad Sci USA 92(19):8773–8777

    Article  PubMed  CAS  Google Scholar 

  150. Bjork K, Svenningsson P (2011) Modulation of monoamine receptors by adaptor proteins and lipid rafts: role in some effects of centrally acting drugs and therapeutic agents. Annu Rev Pharmacol Toxicol 51:211–242. doi:10.1146/annurev-pharmtox-010510-100520

    Article  PubMed  CAS  Google Scholar 

  151. Murphy DL, Lesch KP (2008) Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9(2):85–96. doi:10.1038/nrn2284

    Article  PubMed  CAS  Google Scholar 

  152. Berbel P, Auso E, Garcia-Velasco JV, Molina ML, Camacho M (2001) Role of thyroid hormones in the maturation and organisation of rat barrel cortex. Neuroscience 107(3):383–394. pii: S0306-4522(01)00368-2

    Google Scholar 

  153. Hansson SR, Mezey E, Hoffman BJ (1998) Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. II. Expression in neural crest derivatives and their target sites in the rat. Brain Res Dev Brain Res 110(1):159–174. pii: S0165380698001035

    Google Scholar 

  154. Lewinsohn R, Glover V, Sandler M (1980) Development of benzylamine oxidase and monoamine oxidase A and B in man. Biochem Pharmacol 29(9):1221–1230

    Article  PubMed  CAS  Google Scholar 

  155. Grimsby J, Lan NC, Neve R, Chen K, Shih JC (1990) Tissue distribution of human monoamine oxidase A and B mRNA. J Neurochem 55(4):1166–1169

    Article  PubMed  CAS  Google Scholar 

  156. Rao K, Nagendra SN, Subhash MN (1995) Monoamine oxidase isoenzymes in rat brain: differential changes during postnatal development but not aging. Neurobiol Aging 16(5):833–836. pii: 019745809500061I

    Google Scholar 

  157. Nicotra A, Pierucci F, Parvez H, Senatori O (2004) Monoamine oxidase expression during development and aging. Neurotoxicology 25(1–2):155–165. doi:10.1016/S0161-813X(03)00095-0

    Article  PubMed  CAS  Google Scholar 

  158. Vitalis T, Fouquet C, Alvarez C, Seif I, Price D, Gaspar P, Cases O (2002) Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. J Comp Neurol 442(4):331–347. doi:10.1002/cne.10093

    Article  PubMed  CAS  Google Scholar 

  159. Nguyen TT, Tseng YT, McGonnigal B, Stabila JP, Worrell LA, Saha S, Padbury JF (1999) Placental biogenic amine transporters: in vivo function, regulation and pathobiological significance. Placenta 20(1):3–11. doi:10.1053/plac.1998.0348

    Article  PubMed  CAS  Google Scholar 

  160. Ramamoorthy S, Prasad PD, Kulanthaivel P, Leibach FH, Blakely RD, Ganapathy V (1993) Expression of a cocaine-sensitive norepinephrine transporter in the human placental syncytiotrophoblast. Biochemistry 32(5):1346–1353

    Article  PubMed  CAS  Google Scholar 

  161. Padbury JF (1989) Functional maturation of the adrenal medulla and peripheral sympathetic nervous system. Baillieres Clin Endocrinol Metab 3(3):689–705

    Article  PubMed  CAS  Google Scholar 

  162. Prasad PD, Hoffmans BJ, Moe AJ, Smith CH, Leibach FH, Ganapathy V (1996) Functional expression of the plasma membrane serotonin transporter but not the vesicular monoamine transporter in human placental trophoblasts and choriocarcinoma cells. Placenta 17(4):201–207

    Article  PubMed  CAS  Google Scholar 

  163. Bzoskie L, Blount L, Kashiwai K, Tseng YT, Hay WW Jr, Padbury JF (1995) Placental norepinephrine clearance: in vivo measurement and physiological role. Am J Physiol 269(1 Pt 1):E145–E149

    PubMed  CAS  Google Scholar 

  164. Juorio AV, Chedrese PJ, Li XM (1989) The influence of ovarian hormones on the rat oviductal and uterine concentration of noradrenaline and 5-hydroxytryptamine. Neurochem Res 14(9):821–827

    Article  PubMed  CAS  Google Scholar 

  165. Belmar J, Lara H, Galleguillos X (1983) Changes in noradrenergic vesicle markers of rabbit oviducts during progesterone treatment. Biol Reprod 29(3):594–604

    Article  PubMed  CAS  Google Scholar 

  166. Helm G, Owman C, Rosengren E, Sjoberg NO (1982) Regional and cyclic variations in catecholamine concentration of the human fallopian tube. Biol Reprod 26(4):553–558

    Article  PubMed  CAS  Google Scholar 

  167. Hansson SR, Bottalico B, Noskova V, Casslen B (2009) Monoamine transporters in human endometrium and decidua. Hum Reprod Update 15(2):249–260. doi:10.1093/humupd/dmn048

    Article  PubMed  CAS  Google Scholar 

  168. Mitchell JA, Hammer RE, Goldman H (1983) Serotonin-induced disruption of implantation in the rat: II. Suppression of decidualization. Biol Reprod 29(1):151–156

    Article  PubMed  CAS  Google Scholar 

  169. Lang U, Prada J, Clark KE (1993) Systemic and uterine vascular response to serotonin in third trimester pregnant ewes. Eur J Obstet Gynecol Reprod Biol 51(2):131–138

    Article  PubMed  CAS  Google Scholar 

  170. Hobel CJ, Parvez H, Parvez S, Lirette M, Papiernik E (1981) Enzymes for epinephrine synthesis and metabolism in the myometrium, endometrium, red blood cells, and plasma of pregnant human subjects. Am J Obstet Gynecol 141(8):1009–1018

    PubMed  CAS  Google Scholar 

  171. Beglopoulos V, Shen J (2004) Gene-targeting technologies for the study of neurological disorders. Neuromolecular Med 6(1):13–30. doi:10.1385/NMM:6:1:013

    Article  PubMed  CAS  Google Scholar 

  172. Senechal Y, Larmet Y, Dev KK (2006) Unraveling in vivo functions of amyloid precursor protein: insights from knockout and knockdown studies. Neurodegener Dis 3(3):134–147. doi:10.1159/000094772

    Article  PubMed  CAS  Google Scholar 

  173. Wolfer DP, Crusio WE, Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25(7):336–340. pii: S0166223602021926

    Google Scholar 

  174. Ochiai Y, Itoh K, Sakurai E, Adachi M, Tanaka Y (2006) Substrate selectivity of monoamine oxidase A, monoamine oxidase B, diamine oxidase, and semicarbazide-sensitive amine oxidase in COS-1 expression systems. Biol Pharm Bull 29(12):2362–2366. pii: JST.JSTAGE/bpb/29.2362

    Google Scholar 

  175. Napolitano A, Cesura AM, Da Prada M (1995) The role of monoamine oxidase and catechol O-methyltransferase in dopaminergic neurotransmission. J Neural Transm Suppl 45:35–45

    PubMed  CAS  Google Scholar 

  176. Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49(5):835–842. doi:10.1021/bi9020378

    Article  PubMed  CAS  Google Scholar 

  177. Oliver R 3rd, Friday E, Turturro F, Welbourne T (2010) Troglitazone regulates anaplerosis via a pull/push affect on glutamate dehydrogenase mediated glutamate deamination in kidney-derived epithelial cells; implications for the Warburg effect. Cell Physiol Biochem 26(4–5):619–628. doi:10.1159/000322329

    Article  PubMed  CAS  Google Scholar 

  178. Rubio V, Grisolia S (1981) Human carbamoylphosphate synthetase I. Enzyme 26(5):233–239

    PubMed  CAS  Google Scholar 

  179. Colombo JP, Beruter J, Bachmann C, Peheim E (1977) Enzymes of ammonia detoxication after portacaval shunt in the rat. I. Carbamylphosphate synthetase and aspartate transcarbamylase. Enzyme 22(6):391–398

    PubMed  CAS  Google Scholar 

  180. Albrecht J, Zielinska M, Norenberg MD (2010) Glutamine as a mediator of ammonia neurotoxicity: A critical appraisal. Biochem Pharmacol 80(9):1303–1308. doi:10.1016/j.bcp.2010.07.024

    Article  PubMed  CAS  Google Scholar 

  181. Burke WJ, Kumar VB, Pandey N, Panneton WM, Gan Q, Franko MW, O’Dell M, Li SW, Pan Y, Chung HD, Galvin JE (2008) Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 115(2):193–203. doi:10.1007/s00401-007-0303-9

    Article  PubMed  CAS  Google Scholar 

  182. Mexas LM, Florang VR, Doorn JA (2011) Inhibition and covalent modification of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Neurotoxicology 32(4):471–477. doi:10.1016/j.neuro.2011.03.013

    Article  PubMed  CAS  Google Scholar 

  183. Anderson DG, Mariappan SV, Buettner GR, Doorn JA (2011) Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem 286(30):26978–26986. doi:10.1074/jbc.M111.249532

    Article  PubMed  CAS  Google Scholar 

  184. Seif I, De Maeyer E, Riviere I, De Maeyer-Guignard J (1991) Stable antiviral expression in BALB/c 3T3 cells carrying a beta interferon sequence behind a major histocompatibility complex promoter fragment. J Virol 65(2):664–671

    PubMed  CAS  Google Scholar 

  185. Grimsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci USA 88(9):3637–3641

    Article  PubMed  CAS  Google Scholar 

  186. Scott AL, Bortolato M, Chen K, Shih JC (2008) Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. NeuroReport 19(7):739–743. doi:10.1097/WNR.0b013e3282fd6e88

    Article  PubMed  CAS  Google Scholar 

  187. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580

    Article  PubMed  CAS  Google Scholar 

  188. Kim JJ, Shih JC, Chen K, Chen L, Bao S, Maren S, Anagnostaras SG, Fanselow MS, De Maeyer E, Seif I, Thompson RF (1997) Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice. Proc Natl Acad Sci USA 94(11):5929–5933

    Article  PubMed  CAS  Google Scholar 

  189. Lajard AM, Bou C, Monteau R, Hilaire G (1999) Serotonin levels are abnormally elevated in the fetus of the monoamine oxidase-A-deficient transgenic mouse. Neurosci Lett 261(1–2):41–44. pii: S0304-3940(98)01012-X

    Google Scholar 

  190. Chen K, Holschneider DP, Wu W, Rebrin I, Shih JC (2004) A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. J Biol Chem 279(38):39645–39652. doi:10.1074/jbc.M405550200

    Article  PubMed  CAS  Google Scholar 

  191. Koide Y, Kobayashi K (1984) Developmental changes in the activity and substrate specificities of mouse brain monoamine oxidase. Neurochem Res 9(5):595–606

    Article  PubMed  CAS  Google Scholar 

  192. Cases O, Vitalis T, Seif I, De Maeyer E, Sotelo C, Gaspar P (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16(2):297–307. pii: S0896-6273(00)80048-3

    Google Scholar 

  193. Rebsam A, Seif I, Gaspar P (2002) Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 22(19):8541–8552. pii: 22/19/8541

    Google Scholar 

  194. Li H, Crair MC (2011) How do barrels form in somatosensory cortex? Ann N Y Acad Sci 1225:119–129. doi:10.1111/j.1749-6632.2011.06024.x

    Article  PubMed  Google Scholar 

  195. Upton AL, Salichon N, Lebrand C, Ravary A, Blakely R, Seif I, Gaspar P (1999) Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development. J Neurosci 19(16):7007–7024

    PubMed  CAS  Google Scholar 

  196. Petros TJ, Rebsam A, Mason CA (2008) Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 31:295–315. doi:10.1146/annurev.neuro.31.060407.125609

    Article  PubMed  CAS  Google Scholar 

  197. Bou-Flores C, Lajard AM, Monteau R, De Maeyer E, Seif I, Lanoir J, Hilaire G (2000) Abnormal phrenic motoneuron activity and morphology in neonatal monoamine oxidase A-deficient transgenic mice: possible role of a serotonin excess. J Neurosci 20(12):4646–4656. pii: 20/12/4646

    Google Scholar 

  198. Greer JJ, Funk GD, Ballanyi K (2006) Preparing for the first breath: prenatal maturation of respiratory neural control. J Physiol 570(Pt 3):437–444. doi:10.1113/jphysiol.2005.097238

    PubMed  CAS  Google Scholar 

  199. Cazalets JR, Gardette M, Hilaire G (2000) Locomotor network maturation is transiently delayed in the MAOA-deficient mouse. J Neurophysiol 83(4):2468–2470

    PubMed  CAS  Google Scholar 

  200. Nishimaru H, Kudo N (2000) Formation of the central pattern generator for locomotion in the rat and mouse. Brain Res Bull 53(5):661–669. pii: S0361-9230(00)00399-3

    Google Scholar 

  201. Iizuka M, Nishimaru H, Kudo N (1998) Development of the spatial pattern of 5-HT-induced locomotor rhythm in the lumbar spinal cord of rat fetuses in vitro. Neurosci Res 31(2):107–111. pii: S0168-0102(98)00029-7

    Google Scholar 

  202. Narayanan CH, Fox MW, Hamburger V (1971) Prenatal development of spontaneous and evoked activity in the rat (Rattus norvegicus albinus). Behaviour 40(1):100–134

    Article  PubMed  CAS  Google Scholar 

  203. Cases O, Lebrand C, Giros B, Vitalis T, De Maeyer E, Caron MG, Price DJ, Gaspar P, Seif I (1998) Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs. J Neurosci 18(17):6914–6927

    PubMed  CAS  Google Scholar 

  204. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66(9):1673–1680. pii: S0006295203005562

    Google Scholar 

  205. McKinney J, Knappskog PM, Haavik J (2005) Different properties of the central and peripheral forms of human tryptophan hydroxylase. J Neurochem 92(2):311–320. doi:10.1111/j.1471-4159.2004.02850.x

    Article  PubMed  CAS  Google Scholar 

  206. Cote F, Fligny C, Bayard E, Launay JM, Gershon MD, Mallet J, Vodjdani G (2007) Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci USA 104(1):329–334. doi:10.1073/pnas.0606722104

    Article  PubMed  CAS  Google Scholar 

  207. Koe BK, Weissman A (1966) p-Chlorophenylalanine: a specific depletor of brain serotonin. J Pharmacol Exp Ther 154(3):499–516

    PubMed  CAS  Google Scholar 

  208. Acharya SB, Goswami NG, Debnath PK (1989) Uterine and placental 5-HT profile in different gestational period of albino rats. Indian J Exp Biol 27(6):505–509

    PubMed  CAS  Google Scholar 

  209. Pytliak M, Vargova V, Mechirova V, Felsoci M (2011) Serotonin receptors—from molecular biology to clinical applications. Physiol Res 60(1):15–25. pii: 931903

    Google Scholar 

  210. Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92(2–3):179–212. pii: S0163725801001693

    Google Scholar 

  211. Zheng G, Dwoskin LP, Crooks PA (2006) Vesicular monoamine transporter 2: role as a novel target for drug development. AAPS J 8(4):E682–E692. doi:10.1208/aapsj080478

    Article  PubMed  CAS  Google Scholar 

  212. Pratuangdejkul J, Schneider B, Launay JM, Kellermann O, Manivet P (2008) Computational approaches for the study of serotonin and its membrane transporter SERT: implications for drug design in neurological sciences. Curr Med Chem 15(30):3214–3227

    Article  PubMed  CAS  Google Scholar 

  213. Salichon N, Gaspar P, Upton AL, Picaud S, Hanoun N, Hamon M, De Maeyer E, Murphy DL, Mossner R, Lesch KP, Hen R, Seif I (2001) Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J Neurosci 21(3):884–896. pii: 21/3/884

    Google Scholar 

  214. Di Pasquale E, Monteau R, Hilaire G (1994) Involvement of the rostral ventro-lateral medulla in respiratory rhythm genesis during the peri-natal period: an in vitro study in newborn and fetal rats. Brain Res Dev Brain Res 78(2):243–252

    Article  PubMed  Google Scholar 

  215. Shih JC, Ridd MJ, Chen K, Meehan WP, Kung MP, Seif I, De Maeyer E (1999) Ketanserin and tetrabenazine abolish aggression in mice lacking monoamine oxidase A. Brain Res 835(2):104–112. pii: S0006-8993(99)01478-X

    Google Scholar 

  216. Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res 26(2):259–275. pii: 0006-8993(71)90218-6

    Google Scholar 

  217. Bras H, Gaytan SP, Portalier P, Zanella S, Pasaro R, Coulon P, Hilaire G (2008) Prenatal activation of 5-HT2A receptor induces expression of 5-HT1B receptor in phrenic motoneurons and alters the organization of their premotor network in newborn mice. Eur J Neurosci 28(6):1097–1107. doi:10.1111/j.1460-9568.2008.06407.x

    Article  PubMed  Google Scholar 

  218. Doseff AI (2004) Apoptosis: the sculptor of development. Stem Cells Dev 13(5):473–483. doi:10.1089/1547328042417255

    Article  PubMed  Google Scholar 

  219. Greenwood J, Gautier J (2005) From oogenesis through gastrulation: developmental regulation of apoptosis. Semin Cell Dev Biol 16(2):215–224. doi:10.1016/j.semcdb.2004.12.002

    Article  PubMed  CAS  Google Scholar 

  220. Blaschke AJ, Staley K, Chun J (1996) Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122(4):1165–1174

    PubMed  CAS  Google Scholar 

  221. Ferrer I, Soriano E, del Rio JA, Alcantara S, Auladell C (1992) Cell death and removal in the cerebral cortex during development. Prog Neurobiol 39(1):1–43. pii: 0301-0082(92)90029-E

    Google Scholar 

  222. Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4(12):1002–1012. doi:10.1038/nrn1256

    Article  PubMed  CAS  Google Scholar 

  223. Schaper C, Zhu Y, Kouklei M, Culmsee C, Krieglstein J (2000) Stimulation of 5-HT(1A) receptors reduces apoptosis after transient forebrain ischemia in the rat. Brain Res 883(1):41–50. pii: S0006-8993(00)02876-6

    Google Scholar 

  224. Persico AM, Baldi A, Dell’Acqua ML, Moessner R, Murphy DL, Lesch KP, Keller F (2003) Reduced programmed cell death in brains of serotonin transporter knockout mice. NeuroReport 14(3):341–344. doi:10.1097/01.wnr.0000058244.21747.83

    Article  PubMed  CAS  Google Scholar 

  225. Stankovski L, Alvarez C, Ouimet T, Vitalis T, El-Hachimi KH, Price D, Deneris E, Gaspar P, Cases O (2007) Developmental cell death is enhanced in the cerebral cortex of mice lacking the brain vesicular monoamine transporter. J Neurosci 27(6):1315–1324. doi:10.1523/JNEUROSCI.4395-06.2007

    Article  PubMed  CAS  Google Scholar 

  226. Trouche E, Mias C, Seguelas MH, Ordener C, Cussac D, Parini A (2010) Characterization of monoamine oxidases in mesenchymal stem cells: role in hydrogen peroxide generation and serotonin-dependent apoptosis. Stem Cells Dev 19(10):1571–1578. doi:10.1089/scd.2009.0353

    Article  PubMed  CAS  Google Scholar 

  227. Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644(2–3):83–94. doi:10.1016/j.bbamcr.2003.08.012

    Article  PubMed  CAS  Google Scholar 

  228. Glasgow JN, Qiu J, Rassin D, Grafe M, Wood T, Perez-Pol JR (2001) Transcriptional regulation of the BCL-X gene by NF-kappaB is an element of hypoxic responses in the rat brain. Neurochem Res 26(6):647–659

    Article  PubMed  CAS  Google Scholar 

  229. Mitomo K, Nakayama K, Fujimoto K, Sun X, Seki S, Yamamoto K (1994) Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitro. Gene 145(2):197–203

    Article  PubMed  CAS  Google Scholar 

  230. Cheng A, Scott AL, Ladenheim B, Chen K, Ouyang X, Lathia JD, Mughal M, Cadet JL, Mattson MP, Shih JC (2010) Monoamine oxidases regulate telencephalic neural progenitors in late embryonic and early postnatal development. J Neurosci 30(32):10752–10762. doi:10.1523/JNEUROSCI.2037-10.2010

    Article  PubMed  CAS  Google Scholar 

  231. Ou XM, Chen K, Shih JC (2006) Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Natl Acad Sci USA 103(29):10923–10928. doi:10.1073/pnas.0601515103

    Article  PubMed  CAS  Google Scholar 

  232. Alonso M, Melani M, Converso D, Jaitovich A, Paz C, Carreras MC, Medina JH, Poderoso JJ (2004) Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. J Neurochem 89(1):248–256. doi:10.1111/j.1471-4159.2004.02323.x

    Article  PubMed  CAS  Google Scholar 

  233. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20(10):2175–2183

    Article  PubMed  CAS  Google Scholar 

  234. Naska S, Cenni MC, Menna E, Maffei L (2004) ERK signaling is required for eye-specific retino-geniculate segregation. Development 131(15):3559–3570. doi:10.1242/dev.01212

    Article  PubMed  CAS  Google Scholar 

  235. Gerlach M, Youdim MB, Riederer P (1996) Pharmacology of selegiline. Neurology 47(6 Suppl 3):S137–S145

    Article  PubMed  CAS  Google Scholar 

  236. Collins FA, Murphy DL, Reiss AL, Sims KB, Lewis JG, Freund L, Karoum F, Zhu D, Maumenee IH, Antonarakis SE (1992) Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. Am J Med Genet 42(1):127–134. doi:10.1002/ajmg.1320420126

    Article  PubMed  CAS  Google Scholar 

  237. Juorio AV, Greenshaw AJ, Wishart TB (1988) Reciprocal changes in striatal dopamine and beta-phenylethylamine induced by reserpine in the presence of monoamine oxidase inhibitors. Naunyn Schmiedebergs Arch Pharmacol 338(6):644–648

    Article  PubMed  CAS  Google Scholar 

  238. Berry MD, Scarr E, Zhu MY, Paterson IA, Juorio AV (1994) The effects of administration of monoamine oxidase-B inhibitors on rat striatal neurone responses to dopamine. Br J Pharmacol 113(4):1159–1166

    Article  PubMed  CAS  Google Scholar 

  239. Boulton AA, Juorio AV, Paterson IA (1990) Phenylethylamine in the CNS: effects of monoamine oxidase inhibiting drugs, deuterium substitution and lesions and its role in the neuromodulation of catecholaminergic neurotransmission. J Neural Transm Suppl 29:119–129

    PubMed  CAS  Google Scholar 

  240. Linnoila M, Karoum F, Cutler NR, Potter WZ (1983) Temporal association between depression-dependent dyskinesias and high urinary phenylethylamine output. Biol Psychiatry 18(4):513–516

    PubMed  CAS  Google Scholar 

  241. Potkin SG, Wyatt RJ, Karoum F (1980) Phenylethylamine (PEA) and phenylacetic acid (PAA) in the urine of chronic schizophrenic patients and controls. Psychopharmacol Bull 16(1):52–54

    PubMed  CAS  Google Scholar 

  242. Sabelli HC, Fawcett J, Gusovsky F, Javaid JI, Wynn P, Edwards J, Jeffriess H, Kravitz H (1986) Clinical studies on the phenylethylamine hypothesis of affective disorder: urine and blood phenylacetic acid and phenylalanine dietary supplements. J Clin Psychiatry 47(2):66–70

    PubMed  CAS  Google Scholar 

  243. Scremin OU, Holschneider DP, Chen K, Li MG, Shih JC (1999) Cerebral cortical blood flow maps are reorganized in MAOB-deficient mice. Brain Res 824(1):36–44. pii: S0006-8993(99)01167-1

    Google Scholar 

  244. Nagatsu T (2004) Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neurotoxicology 25(1–2):11–20. doi:10.1016/S0161-813X(03)00085-8

    Article  PubMed  CAS  Google Scholar 

  245. Fligny C, Hatia S, Amireault P, Mallet J, Cote F (2009) Mammalian prenatal development: the influence of maternally derived molecules. BioEssays 31(9):935–943. doi:10.1002/bies.200800217

    Article  PubMed  CAS  Google Scholar 

  246. Salisbury AL, Ponder KL, Padbury JF, Lester BM (2009) Fetal effects of psychoactive drugs. Clin Perinatol 36(3):595–619. doi:10.1016/j.clp.2009.06.002

    Article  PubMed  Google Scholar 

  247. Fattore L, Piras G, Corda MG, Giorgi O (2009) The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology 34(5):1091–1101. doi:10.1038/npp.2008.43

    Article  PubMed  CAS  Google Scholar 

  248. Seidler FJ, Temple SW, McCook EC, Slotkin TA (1995) Cocaine inhibits central noradrenergic and dopaminergic activity during the critical developmental period in which catecholamines influence cell development. Brain Res Dev Brain Res 85(1):48–53. pii: 0165380694001864

    Google Scholar 

  249. Chan K, Dodd PA, Day L, Kullama L, Ervin MG, Padbury J, Ross MG (1992) Fetal catecholamine, cardiovascular, and neurobehavioral responses to cocaine. Am J Obstet Gynecol 167(6):1616–1623

    PubMed  CAS  Google Scholar 

  250. Bzoskie L, Blount L, Kashiwai K, Humme J, Padbury JF (1997) The contribution of transporter-dependent uptake to fetal catecholamine clearance. Biol Neonate 71(2):102–110

    Article  PubMed  CAS  Google Scholar 

  251. Jensen A, Hohmann M, Kunzel W (1987) Redistribution of fetal circulation during repeated asphyxia in sheep: effects on skin blood flow, transcutaneous PO2, and plasma catecholamines. J Dev Physiol 9(1):41–55

    PubMed  CAS  Google Scholar 

  252. Jones S, Kornblum JL, Kauer JA (2000) Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J Neurosci 20(15):5575–5580. pii: 20/15/5575

    Google Scholar 

  253. Taylor MJ, Freemantle N, Geddes JR, Bhagwagar Z (2006) Early onset of selective serotonin reuptake inhibitor antidepressant action: systematic review and meta-analysis. Arch Gen Psychiatry 63(11):1217–1223. doi:10.1001/archpsyc.63.11.1217

    Article  PubMed  CAS  Google Scholar 

  254. Hendrick V, Stowe ZN, Altshuler LL, Hwang S, Lee E, Haynes D (2003) Placental passage of antidepressant medications. Am J Psychiatry 160(5):993–996

    Article  PubMed  Google Scholar 

  255. Weissman AM, Levy BT, Hartz AJ, Bentler S, Donohue M, Ellingrod VL, Wisner KL (2004) Pooled analysis of antidepressant levels in lactating mothers, breast milk, and nursing infants. Am J Psychiatry 161(6):1066–1078

    Article  PubMed  Google Scholar 

  256. Chambers CD, Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Jones KL, Mitchell AA (2006) Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med 354(6):579–587. doi:10.1056/NEJMoa052744

    Article  PubMed  CAS  Google Scholar 

  257. Wogelius P, Norgaard M, Gislum M, Pedersen L, Munk E, Mortensen PB, Lipworth L, Sorensen HT (2006) Maternal use of selective serotonin reuptake inhibitors and risk of congenital malformations. Epidemiology 17(6):701–704. doi:10.1097/01.ede.0000239581.76793.ae

    Article  PubMed  Google Scholar 

  258. Noorlander CW, Ververs FF, Nikkels PG, van Echteld CJ, Visser GH, Smidt MP (2008) Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities. PLoS One 3(7):e2782. doi:10.1371/journal.pone.0002782

    Article  PubMed  CAS  Google Scholar 

  259. Hemels ME, Einarson A, Koren G, Lanctot KL, Einarson TR (2005) Antidepressant use during pregnancy and the rates of spontaneous abortions: a meta-analysis. Ann Pharmacother 39(5):803–809. doi:10.1345/aph.1E547

    Article  PubMed  Google Scholar 

  260. Wen SW, Yang Q, Garner P, Fraser W, Olatunbosun O, Nimrod C, Walker M (2006) Selective serotonin reuptake inhibitors and adverse pregnancy outcomes. Am J Obstet Gynecol 194(4):961–966. doi:10.1016/j.ajog.2006.02.019

    Article  PubMed  CAS  Google Scholar 

  261. Williams KE, Marsh WK, Rasgon NL (2007) Mood disorders and fertility in women: a critical review of the literature and implications for future research. Hum Reprod Update 13(6):607–616. doi:10.1093/humupd/dmm019

    Article  PubMed  Google Scholar 

  262. Glanzman DL (1994) Postsynaptic regulation of the development and long-term plasticity of Aplysia sensorimotor synapses in cell culture. J Neurobiol 25(6):666–693. doi:10.1002/neu.480250608

    Article  PubMed  CAS  Google Scholar 

  263. Homberg JR, Schubert D, Gaspar P (2010) New perspectives on the neurodevelopmental effects of SSRIs. Trends Pharmacol Sci 31(2):60–65. doi:10.1016/j.tips.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  264. Lira A, Zhou M, Castanon N, Ansorge MS, Gordon JA, Francis JH, Bradley-Moore M, Lira J, Underwood MD, Arango V, Kung HF, Hofer MA, Hen R, Gingrich JA (2003) Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54(10):960–971. pii: S0006322303006966

    Google Scholar 

  265. Holmes A, Murphy DL, Crawley JN (2003) Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 54(10):953–959. pii: S0006322303009521

    Google Scholar 

  266. Nulman I, Rovet J, Stewart DE, Wolpin J, Gardner HA, Theis JG, Kulin N, Koren G (1997) Neurodevelopment of children exposed in utero to antidepressant drugs. N Engl J Med 336(4):258–262. doi:10.1056/NEJM199701233360404

    Article  PubMed  CAS  Google Scholar 

  267. McElhatton PR, Garbis HM, Elefant E, Vial T, Bellemin B, Mastroiacovo P, Arnon J, Rodriguez-Pinilla E, Schaefer C, Pexieder T, Merlob P, Dal Verme S (1996) The outcome of pregnancy in 689 women exposed to therapeutic doses of antidepressants. A collaborative study of the European Network of Teratology Information Services (ENTIS). Reprod Toxicol 10(4):285–294. pii: 0890623896000573

    Google Scholar 

  268. Paykel ES (1995) Clinical efficacy of reversible and selective inhibitors of monoamine oxidase A in major depression. Acta Psychiatr Scand Suppl 386:22–27

    Article  PubMed  CAS  Google Scholar 

  269. Fulton B, Benfield P (1996) Moclobemide. An update of its pharmacological properties and therapeutic use. Drugs 52(3):450–474

    Article  PubMed  CAS  Google Scholar 

  270. Boyer EW, Shannon M (2005) The serotonin syndrome. N Engl J Med 352(11):1112–1120. doi:10.1056/NEJMra041867

    Article  PubMed  CAS  Google Scholar 

  271. Mihalik J, Kravcukova P, Spakovska T, Marekova M, Schmidtova K (2008) Study of high deprenyl dose on the preimplantation embryo development and lymphocyte DNA in rat. Gen Physiol Biophys 27(2):121–126

    PubMed  CAS  Google Scholar 

  272. Stimmel GL, Dopheide JA, Stahl SM (1997) Mirtazapine: an antidepressant with noradrenergic and specific serotonergic effects. Pharmacotherapy 17(1):10–21

    PubMed  CAS  Google Scholar 

  273. Nezvalova-Henriksen K, Spigset O, Nordeng H (2010) Triptan exposure during pregnancy and the risk of major congenital malformations and adverse pregnancy outcomes: results from the Norwegian Mother and Child Cohort Study. Headache 50(4):563–575. doi:10.1111/j.1526-4610.2010.01619.x

    Article  PubMed  Google Scholar 

  274. Bzoskie L, Yen J, Tseng YT, Blount L, Kashiwai K, Padbury JF (1997) Human placental norepinephrine transporter mRNA: expression and correlation with fetal condition at birth. Placenta 18(2–3):205–210

    Article  PubMed  CAS  Google Scholar 

  275. Pratt NC, Lisk RD (1989) Effects of social stress during early pregnancy on litter size and sex ratio in the golden hamster (Mesocricetus auratus). J Reprod Fertil 87(2):763–769

    Article  PubMed  CAS  Google Scholar 

  276. Nepomnaschy PA, Welch KB, McConnell DS, Low BS, Strassmann BI, England BG (2006) Cortisol levels and very early pregnancy loss in humans. Proc Natl Acad Sci USA 103(10):3938–3942. doi:10.1073/pnas.0511183103

    Article  PubMed  CAS  Google Scholar 

  277. Peyronnet J, Roux JC, Geloen A, Tang LQ, Pequignot JM, Lagercrantz H, Dalmaz Y (2000) Prenatal hypoxia impairs the postnatal development of neural and functional chemoafferent pathway in rat. J Physiol 524 Pt 2:525–537. pii: PHY_0151

    Google Scholar 

  278. Weinstock M (1997) Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neurosci Biobehav Rev 21(1):1–10. pii: S0149-7634(96)00014-0

    Google Scholar 

  279. Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E, Lanthorn TH (2008) Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One 3(10):e3301. doi:10.1371/journal.pone.0003301

    Article  PubMed  CAS  Google Scholar 

  280. Rosini E, Pollegioni L, Ghisla S, Orru R, Molla G (2009) Optimization of d-amino acid oxidase for low substrate concentrations—towards a cancer enzyme therapy. FEBS J 276(17):4921–4932. doi:10.1111/j.1742-4658.2009.07191.x

    Article  PubMed  CAS  Google Scholar 

  281. Ludwig P, Holzhutter HG, Colosimo A, Silvestrini MC, Schewe T, Rapoport SM (1987) A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. Eur J Biochem 168(2):325–337

    Article  PubMed  CAS  Google Scholar 

  282. Van Os CP, Rijke-Schilder GP, Van Halbeek H, Verhagen J, Vliegenthart JF (1981) Double dioxygenation of arachidonic acid by soybean lipoxygenase-1. Kinetics and regio-stereo specificities of the reaction steps. Biochim Biophys Acta 663(1):177–193

    Article  PubMed  Google Scholar 

  283. Wu G, Lu JM, van der Donk WA, Kulmacz RJ, Tsai AL (2011) Cyclooxygenase reaction mechanism of prostaglandin H synthase from deuterium kinetic isotope effects. J Inorg Biochem 105(3):382–390. doi:10.1016/j.jinorgbio.2010.11.015

    Article  PubMed  CAS  Google Scholar 

  284. Zhao X, Ma W, Das SK, Dey SK, Paria BC (2000) Blastocyst H(2) receptor is the target for uterine histamine in implantation in the mouse. Development 127(12):2643–2651

    PubMed  CAS  Google Scholar 

  285. Shuey DL, Sadler TW, Tamir H, Lauder JM (1993) Serotonin and morphogenesis. Transient expression of serotonin uptake and binding protein during craniofacial morphogenesis in the mouse. Anat Embryol (Berl) 187(1):75–85

    Article  CAS  Google Scholar 

  286. Cote F, Thevenot E, Fligny C, Fromes Y, Darmon M, Ripoche MA, Bayard E, Hanoun N, Saurini F, Lechat P, Dandolo L, Hamon M, Mallet J, Vodjdani G (2003) Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci USA 100(23):13525–13530. doi:10.1073/pnas.2233056100

    Article  PubMed  CAS  Google Scholar 

  287. Cote F, Fligny C, Fromes Y, Mallet J, Vodjdani G (2004) Recent advances in understanding serotonin regulation of cardiovascular function. Trends Mol Med 10(5):232–238. doi:10.1016/j.molmed.2004.03.007

    Article  PubMed  CAS  Google Scholar 

  288. Audero E, Coppi E, Mlinar B, Rossetti T, Caprioli A, Banchaabouchi MA, Corradetti R, Gross C (2008) Sporadic autonomic dysregulation and death associated with excessive serotonin autoinhibition. Science 321(5885):130–133. doi:10.1126/science.1157871

    Article  PubMed  CAS  Google Scholar 

  289. Wang YM, Gainetdinov RR, Fumagalli F, Xu F, Jones SR, Bock CB, Miller GW, Wightman RM, Caron MG (1997) Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19(6):1285–1296. pii: S0896-6273(00)80419-5

    Google Scholar 

  290. Nebigil CG, Choi DS, Dierich A, Hickel P, Le Meur M, Messaddeq N, Launay JM, Maroteaux L (2000) Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 97(17):9508–9513. pii: 97/17/9508

    Google Scholar 

  291. Herve P, Launay JM, Scrobohaci ML, Brenot F, Simonneau G, Petitpretz P, Poubeau P, Cerrina J, Duroux P, Drouet L (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99(3):249–254. pii: S0002934399801569

    Google Scholar 

  292. Szczypka MS, Rainey MA, Kim DS, Alaynick WA, Marck BT, Matsumoto AM, Palmiter RD (1999) Feeding behavior in dopamine-deficient mice. Proc Natl Acad Sci USA 96(21):12138–12143

    Article  PubMed  CAS  Google Scholar 

  293. Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83(7):1197–1209. pii: 0092-8674(95)90145-0

    Google Scholar 

  294. Thomas SA, Matsumoto AM, Palmiter RD (1995) Noradrenaline is essential for mouse fetal development. Nature 374(6523):643–646. doi:10.1038/374643a0

    Article  PubMed  CAS  Google Scholar 

  295. Markova LN, Sadykova KA, Sakharova N (1990) The effect of biogenic monoamine antagonists on the development of preimplantation mouse embryos cultured in vitro. Zh Evol Biokhim Fiziol 26(5):726–732

    PubMed  CAS  Google Scholar 

  296. Ufer C, Wang CC, Fahling M, Schiebel H, Thiele BJ, Billett EE, Kuhn H, Borchert A (2008) Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev 22(13):1838–1850. doi:10.1101/gad.466308

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Thomas Horn at Charité-Universitätsmedizin Berlin for producing the structural figures used in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Ufer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C.C., Billett, E., Borchert, A. et al. Monoamine oxidases in development. Cell. Mol. Life Sci. 70, 599–630 (2013). https://doi.org/10.1007/s00018-012-1065-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1065-7

Keywords

Navigation