Skip to main content
Log in

Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Bacterial Trk and Ktr, fungal Trk and plant HKT form a family of membrane transporters permeable to K+ and/or Na+ and characterized by a common structure probably derived from an ancestral K+ channel subunit. This transporter family, specific of non-animal cells, displays a large diversity in terms of ionic permeability, affinity and energetic coupling (H+–K+ or Na+–K+ symport, K+ or Na+ uniport), which might reflect a high need for adaptation in organisms living in fluctuating or dilute environments. Trk/Ktr/HKT transporters are involved in diverse functions, from K+ or Na+ uptake to membrane potential control, adaptation to osmotic or salt stress, or Na+ recirculation from shoots to roots in plants. Structural analyses of bacterial Ktr point to multimeric structures physically interacting with regulatory subunits. Elucidation of Trk/Ktr/HKT protein structures along with characterization of mutated transporters could highlight functional and evolutionary relationships between ion channels and transporters displaying channel-like features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schultz SG, Solomon AK (1961) Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol 45:355–369

    Article  CAS  PubMed  Google Scholar 

  2. Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239–298

    Article  CAS  Google Scholar 

  3. Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta Biomembr 1469:1–30

    Google Scholar 

  4. Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  CAS  PubMed  Google Scholar 

  5. Epstein W, Schultz SG (1965) Cation transport in Escherichia coli. V. Regulation of cation content. J Gen Physiol 49:221–234

    Article  CAS  PubMed  Google Scholar 

  6. Rhoads DB, Waters FB, Epstein W (1976) Cation transport in Escherichia coli. VIII. Potassium transport mutants. J Gen Physiol 67:325–341

    Article  CAS  PubMed  Google Scholar 

  7. Richey B, Cayley DS, Mossing MC, Kolka C, Anderson CF, Farrar TC, Record MT Jr (1987) Variability of the intracellular ionic environment of Escherichia coli. Differences between in vitro and in vivo effects of ion concentrations on protein–DNA interactions and gene expression. J Biol Chem 262:7157–7164

    CAS  PubMed  Google Scholar 

  8. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320

    Article  CAS  PubMed  Google Scholar 

  9. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  10. Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  CAS  PubMed  Google Scholar 

  11. Eisenman G (1961) On the elementary atomic origin of equilibrium ionic specificity. In: Membrane transport and metabolism. Academic Press, London, pp 163-179

  12. Maathuis FJM, Sanders D (1993) Energization of potassium uptake in Arabidopsis thaliana. Planta 191:302–307

    Article  CAS  Google Scholar 

  13. Camacho M, Ramos J, Rodríguez-Navarro A (1981) Potassium requirements of Saccharomyces cerevisiae. Curr Microbiol 6:295–299

    Article  CAS  Google Scholar 

  14. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  CAS  PubMed  Google Scholar 

  15. Rodríguez-Navarro A, Blatt MR, Slayman CL (1986) A potassium-proton symport in Neurospora crassa. J Gen Physiol 87:649–674

    Article  PubMed  Google Scholar 

  16. Blatt MR, Slayman CL (1987) Role of “active” potassium transport in the regulation of cytoplasmic pH by nonanimal cells. Proc Natl Acad Sci USA 84:2737–2741

    Article  CAS  PubMed  Google Scholar 

  17. Gassmann W, Rubio F, Schroeder JI (1996) Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J 10:852–869

    Article  Google Scholar 

  18. Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  CAS  PubMed  Google Scholar 

  19. Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665

    Article  CAS  PubMed  Google Scholar 

  20. Basset M, Conéjéro G, Lepetit M, Fourcroy P, Sentenac H (1995) Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana. Plant Mol Biol 29:947–958

    Article  CAS  PubMed  Google Scholar 

  21. Mouline K, Véry A-A, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud J-B, Sentenac H (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev 16:339–350

    Article  CAS  PubMed  Google Scholar 

  22. Xu J, Li H-D, Chen L-Q, Wang Y, Liu L-L, He L, Wu W-H (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  CAS  PubMed  Google Scholar 

  23. Polarek JW, Williams G, Epstein W (1992) The products of the kdpDE operon are required for expression of the Kdp ATPase of Escherichia coli. J Bacteriol 174:2145–2151

    CAS  PubMed  Google Scholar 

  24. Epstein W, Kim BS (1971) Potassium transport loci in Escherichia coli K-12. J Bacteriol 108:639–644

    CAS  PubMed  Google Scholar 

  25. Gaber RF, Styles CA, Fink GR (1988) TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8:2848–2859

    CAS  PubMed  Google Scholar 

  26. Schlösser A, Kluttig S, Hamann A, Bakker EP (1991) Subcloning, nucleotide sequence, and expression of TrkG, a gene that encodes an integral membrane protein involved in potassium uptake via the Trk system of Escherichia coli. J Bacteriol 173:3170–3176

    PubMed  Google Scholar 

  27. Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura T, Yuda R, Unemoto T, Bakker EP (1998) KtrAB, a new type of bacterial K+-uptake system from Vibrio alginolyticus. J Bacteriol 180:3491–3494

    CAS  PubMed  Google Scholar 

  29. Haro R, Sainz L, Rubio F, Rodríguez-Navarro A (1999) Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31:511–520

    Article  CAS  PubMed  Google Scholar 

  30. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  CAS  PubMed  Google Scholar 

  31. Gierth M, Mäser P (2007) Potassium transporters in plants—Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    Article  CAS  PubMed  Google Scholar 

  32. Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family—multiple functions. Ann Bot 99:1035–1041

    Article  CAS  PubMed  Google Scholar 

  33. Bañuelos MA, Klein RD, Alexander-Bowman SJ, Rodríguez-Navarro A (1995) A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J 14:3021–3027

    PubMed  Google Scholar 

  34. Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry A-A, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  CAS  PubMed  Google Scholar 

  35. Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  Google Scholar 

  36. Ramos J, Contreras P, Rodríguez-Navarro A (1985) A potassium transport mutant of Saccharomyces cerevisiae. Arch Microbiol 143:88–93

    Article  CAS  Google Scholar 

  37. Lichtenberg-Fraté H, Reid JD, Heyer M, Höfer M (1996) The SpTRK gene encodes a potassium-specific transport protein TKHp in Schizosaccharomyces pombe. J Membr Biol 152:169–181

    Article  PubMed  Google Scholar 

  38. Takase K, Kakinuma S, Yamato I, Konishi K, Igarashi K, Kakinuma Y (1994) Sequencing and characterization of the ntp gene cluster for vacuolar-type Na+-translocating ATPase of Enterococcus hirae. J Biol Chem 269:11037–11044

    CAS  PubMed  Google Scholar 

  39. Nakamura T, Yamamuro N, Stumpe S, Unemoto T, Bakker EP (1998) Cloning of the TrkAH gene cluster and characterization of the Trk K+-uptake system of Vibrio alginolyticus. Microbiology 144:2281–2289

    Article  CAS  PubMed  Google Scholar 

  40. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    Article  CAS  PubMed  Google Scholar 

  41. Ko CH, Gaber RF (1991) TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273

    CAS  PubMed  Google Scholar 

  42. Bañuelos MA, Madrid R, Rodríguez-Navarro A (2000) Individual functions of the HAK and TRK potassium transporters of Schwanniomyces occidentalis. Mol Microbiol 37:671–679

    Article  PubMed  Google Scholar 

  43. Fairbairn DJ, Liu W, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD (2000) Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol 43:515–525

    Article  CAS  PubMed  Google Scholar 

  44. Bossemeyer D, Borchard A, Dosch DC, Helmer GC, Epstein W, Booth IR, Bakker EP (1989) K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other Trk gene products for attachment to the cytoplasmic membrane. J Biol Chem 264:16403–16410

    CAS  PubMed  Google Scholar 

  45. Dosch DC, Helmer GL, Sutton SH, Salvacion FF, Epstein W (1991) Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake potassium. J Bacteriol 173:687–696

    CAS  PubMed  Google Scholar 

  46. Nakamura T, Matsuba Y, Yamamuro N, Booth IR, Unemoto T (1994) Cloning and sequencing of a K+ transport gene (TrkA) from the marine bacterium Vibrio alginolyticus. Biochim Biophys Acta 1219:701–705

    PubMed  Google Scholar 

  47. Schlösser A, Meldorf M, Stumpe S, Bakker EP, Epstein W (1995) TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J Bacteriol 177:1908–1910

    PubMed  Google Scholar 

  48. Kraegeloh A, Amendt B, Kunte HJ (2005) Potassium transport in a halophilic member of the bacteria domain: identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581T. J Bacteriol 187:1036–1043

    Article  CAS  PubMed  Google Scholar 

  49. Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185:1289–1298

    Article  CAS  PubMed  Google Scholar 

  50. Matsuda N, Kobayashi H, Katoh H, Ogawa T, Futatsugi L, Nakamura T, Bakker EP, Uozumi N (2004) Na+-dependent K+ uptake Ktr system from the cyanobacterium Synechocystis sp. PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock. J Biol Chem 279:54952–54962

    Article  CAS  PubMed  Google Scholar 

  51. Liu W, Schachtman DP, Zhang W (2000) Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance. J Biol Chem 275:27924–27932

    CAS  PubMed  Google Scholar 

  52. Jan LY, Jan YN (1994) Potassium channels and their evolving gates. Nature 371:119–122

    Article  CAS  PubMed  Google Scholar 

  53. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  54. Durell SR, Hao Y, Nakamura T, Bakker EP, Guy R (1999) Evolutionary relationship between K+ channels and symporters. Biophys J 77:775–788

    Article  CAS  PubMed  Google Scholar 

  55. Kato Y, Sakaguchi M, Mori Y, Saito K, Nakamura T, Bakker EP, Sato Y, Goshima S, Uozumi N (2001) Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc Natl Acad Sci USA 98:6488–6493

    Article  CAS  PubMed  Google Scholar 

  56. Zeng GF, Pypaert M, Slayman CL (2004) Epitope tagging of the yeast K+ carrier Trk2p demonstrates folding that is consistent with a channel-like structure. J Biol Chem 279:3003–3013

    Article  CAS  PubMed  Google Scholar 

  57. Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk1, 2 symporters based on the structure of the KcsA K+ channel. Biophys J 77:789–807

    Article  CAS  PubMed  Google Scholar 

  58. Schlösser A, Hamann A, Bossemeyer D, Schneider E, Bakker EP (1993) NAD+ binding to the Escherichia coli K+-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD+ in bacterial transport. Mol Microbiol 9:533–543

    Article  PubMed  Google Scholar 

  59. Roosild TP, Miller S, Booth IR, Choe S (2002) A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell 109:781–791

    Article  CAS  PubMed  Google Scholar 

  60. Jiang Y, Pico A, Cadene M, Chait BT, MacKinnon R (2001) Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29:593–601

    Article  CAS  PubMed  Google Scholar 

  61. Albright RA, Ibar JL, Kim CU, Gruner SM, Morais-Cabral JH (2006) The RCK domain of the KtrAB K+ transporter: multiple conformations of an octameric ring. Cell 126:1147–1159

    Article  CAS  PubMed  Google Scholar 

  62. Kuo MM, Haynes WJ, Loukin SH, Kung C, Saimi Y (2005) Prokaryotic K+ channels: from crystal structures to diversity. FEMS Microbiol Rev 29:961–985

    Article  CAS  PubMed  Google Scholar 

  63. Morbach S, Kramer R (2003) Impact of transport processes in the osmotic response of Corynebacterium glutamicum. J Biotechnol 104:69–75

    Article  CAS  PubMed  Google Scholar 

  64. Stumpe A, Schlösser A, Schleyer M, Bakker EP (1996) K+ circulation across the prokaryotic cell membrane: K+-uptake systems. In: Handbook of biological physics: transport processes in eukaryotic and prokaryotic organelles. Elsevier, Amsterdam, pp 473–499

  65. Tholema N, Bakker EP, Suzuki A, Nakamura T (1999) Change to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+ dependent K+ uptake system KtrAB from Vibrio alginolyticus. FEBS Lett 450:217–220

    Article  CAS  PubMed  Google Scholar 

  66. Meury J, Kepes A (1981) The regulation of potassium fluxes for the adjustment and maintenance of potassium levels in Escherichia coli. Eur J Biochem 119:165–170

    Article  CAS  PubMed  Google Scholar 

  67. Trchounian AA, Ogandjanian ES (1996) An electrochemical study of energy-dependent potassium accumulation in E. coli Part 15. K+-uptaking activity on glycolysing Trk mutants. Bioelectrochemistry 39:161–166

    Article  CAS  Google Scholar 

  68. Harms C, Domoto Y, Celik C, Rahe E, Stumpe S, Schmid R, Nakamura T, Bakker EP (2001) Identification of the ABC protein SapD as the subunit that confers ATP dependence to the K+-uptake systems TrkH and TrkG from Escherichia coli K-12. Microbiology 147:2991–3003

    CAS  PubMed  Google Scholar 

  69. Rhoads DB, Epstein W (1977) Energy coupling to net K+ transport in Escherichia coli K-12. J Biol Chem 252:1394–1401

    CAS  PubMed  Google Scholar 

  70. Stewart LM, Bakker EP, Booth IR (1985) Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP. J Gen Microbiol 131:77–85

    CAS  PubMed  Google Scholar 

  71. Clayton RA, White O, Ketchum KA, Venter JC (1997) The first genome from the third domain of life. Nature 387:459–462

    Article  CAS  PubMed  Google Scholar 

  72. Berry S, Esper B, Karandashova I, Teuber M, Elanskaya I, Rogner M, Hagemann M (2003) Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 mainly depends on a Ktr-like system encoded by slr1509 (ntpJ). FEBS Lett 548:53–58

    Article  CAS  PubMed  Google Scholar 

  73. Albright RA, Joh K, Morais-Cabral JH (2007) Probing the structure of the dimeric KtrB membrane protein. J Biol Chem 282:35046–35055

    Article  CAS  PubMed  Google Scholar 

  74. Tholema N, Bruggen MV, Mäser P, Nakamura T, Schroeder JI, Kobayashi H, Uozumi N, Bakker EP (2005) All four putative selectivity filter glycine residues in KtrB are essential for high affinity and selective K+ uptake by the KtrAB system from Vibrio alginolyticus. J Biol Chem 280:41146–41154

    Article  CAS  PubMed  Google Scholar 

  75. Bakker EP, Harold FM (1980) Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force. J Biol Chem 255:433–440

    CAS  PubMed  Google Scholar 

  76. Trchounian A, Kobayashi H (1998) Relationship of K+-uptaking system with H+-translocating ATPase in Enterococcus hirae, grown at a high or low alkaline pH. Curr Microbiol 36:114–118

    Article  CAS  PubMed  Google Scholar 

  77. Kawano M, Abuki R, Igarashi K, Kakinuma Y (2000) Evidence for Na+ influx via the NtpJ protein of the KtrII K+ uptake system in Enterococcus hirae. J Bacteriol 182:2507–2512

    Article  CAS  PubMed  Google Scholar 

  78. Murata T, Takase K, Yamato I, Igarashi K, Kakinuma Y (1996) The ntpJ gene in the Enterococcus hirae ntp operon encodes a component of KtrII potassium transport system functionally independent of vacuolar Na+-ATPase. J Biol Chem 271:10042–10047

    Article  CAS  PubMed  Google Scholar 

  79. Uozumi N (2001) Escherichia coli as an expression system for K+ transport systems from plants. Am J Physiol Cell Physiol 281:C733–C739

    CAS  PubMed  Google Scholar 

  80. Rodríguez-Navarro A, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol 159:940–945

    PubMed  Google Scholar 

  81. Madrid R, Gomez MJ, Ramos J, Rodríguez-Navarro A (1998) Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 273:14838–14844

    Article  CAS  PubMed  Google Scholar 

  82. Lalucque H, Silar P (2004) Incomplete penetrance and variable expressivity of a growth defect as a consequence of knocking out two K+ transporters in the euascomycete fungus Podospora anserina. Genetics 166:125–133

    Article  CAS  PubMed  Google Scholar 

  83. Vidal M, Buckley AM, Hilger F, Gaber RF (1990) Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae. Genetics 125:313–320

    CAS  PubMed  Google Scholar 

  84. Ko CH, Buckley AM, Gaber RF (1990) TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 125:305–312

    CAS  PubMed  Google Scholar 

  85. Ramos J, Alijo R, Haro R, Rodríguez-Navarro A (1994) TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. J Bacteriol 176:249–252

    CAS  PubMed  Google Scholar 

  86. Michel B, Lozano C, Rodríguez M, Coria R, Ramírez J, Peña A (2006) The yeast potassium transporter TRK2 is able to substitute for TRK1 in its biological function under low K and low pH conditions. Yeast 23:581–589

    Article  CAS  PubMed  Google Scholar 

  87. Soldatenkov VA, Velasco JA, Avila MA, Dritschilo A, Notario V (1995) Isolation and characterization of SpTRK, a gene from Schizosaccharomyces pombe predicted to encode a K+ transporter protein. Gene 161:97–101

    Article  CAS  PubMed  Google Scholar 

  88. Calero F, Gómez N, Ariño J, Ramos J (2000) Trk1 and Trk2 define the major K+ transport system in fission yeast. J Bacteriol 182:394–399

    Article  CAS  PubMed  Google Scholar 

  89. Calero F, Montiel V, Caracuel Z, Cabello-Hurtado F, Ramos J (2004) On the role of Trk1 and Trk2 in Schizosaccharomyces pombe under different ion stress conditions. FEMS Yeast Res 4:619–624

    Article  CAS  PubMed  Google Scholar 

  90. Prista C, González-Hernández JC, Ramos J, Loureiro-Dias MC (2007) Cloning and characterization of two K+ transporters of Debaryomyces hansenii. Microbiology 153:3034–3043

    Article  CAS  PubMed  Google Scholar 

  91. Rodríguez-Navarro A, Ramos J (1986) Two systems mediate rubidium uptake in Neurospora crassa: one exhibits the dual-uptake isotherm. Biochim Biophys Acta Biomembr 857:229–237

    Article  Google Scholar 

  92. Blatt MR, Rodríguez-Navarro A, Slayman CL (1987) Potassium-proton symport in Neurospora: kinetic control by pH and membrane potential. J Membr Biol 98:169–189

    Article  CAS  PubMed  Google Scholar 

  93. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  PubMed  Google Scholar 

  94. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  PubMed  Google Scholar 

  95. Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Segurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Dequard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarre B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9:R77

    Article  PubMed  CAS  Google Scholar 

  96. Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  97. van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martin JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Dohren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    Article  CAS  PubMed  Google Scholar 

  98. Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C, Tatry M-V, Berger C, Laudié M, Legeai F, Karsenty E, Delseny M, Zimmermann S, Sentenac H (2004) Large-scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytol 164:505–513

    Article  CAS  Google Scholar 

  99. Corratgé C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud J-B, Lacombe B, Sentenac H (2007) Molecular and functional characterization of a Na+–K+ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. J Biol Chem 282:26057–26066

    Article  PubMed  CAS  Google Scholar 

  100. Haro R, Rodríguez-Navarro A (2002) Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1564:114–122

    Article  CAS  PubMed  Google Scholar 

  101. Kuroda T, Bihler H, Bashi E, Slayman CL, Rivetta A (2004) Chloride channel function in the yeast TRK-potassium transporters. J Membr Biol 198:177–192

    Article  CAS  PubMed  Google Scholar 

  102. Rivetta A, Slayman CL, Kuroda T (2005) Quantitative modeling of chloride conductance in yeast Trk potassium transporters. Biophys J 89:2412–2426

    Article  CAS  PubMed  Google Scholar 

  103. Miranda M, Bashi E, Vylkova S, Edgerton M, Slayman C, Rivetta A (2009) Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on Candida albicans. FEMS Yeast Res 9:278–292

    Article  CAS  PubMed  Google Scholar 

  104. Véry A-A, Gaymard F, Bosseux C, Sentenac H, Thibaud J-B (1995) Expression of a cloned plant K+ channel in Xenopus oocytes : analysis of macroscopic currents. Plant J 7:321–332

    Article  PubMed  Google Scholar 

  105. Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud J-B (2000) A Shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    Article  CAS  PubMed  Google Scholar 

  106. Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud J-B, Sentenac H (2001) Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276:3215–3221

    Article  CAS  PubMed  Google Scholar 

  107. Kochian LV, Lucas WJ (1988) Potassium transport in roots. Adv Bot Res 15:93–178

    Article  CAS  Google Scholar 

  108. Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot M-L (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1647

    Article  PubMed  Google Scholar 

  109. Amrutha RN, Sekhar PN, Varshney RK, Kishor PBK (2007) Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Sci 172:708–721

    Article  CAS  Google Scholar 

  110. Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K (2006) Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. Plant J 48:296–306

    Article  CAS  PubMed  Google Scholar 

  111. Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  PubMed  Google Scholar 

  112. Lebaudy A, Véry A-A, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581:2357–2366

    Article  CAS  PubMed  Google Scholar 

  113. Bañuelos MA, Garciadeblás B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  Google Scholar 

  114. Santa-Maria GE, Rubio F, Dubcovsky J, Rodríguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  CAS  PubMed  Google Scholar 

  115. Santa-Maria GE, Danna CH, Czibener C (2000) High-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways. Plant Physiol 123:297–306

    Article  CAS  PubMed  Google Scholar 

  116. Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin H-X, Luan S, Mäser P, Pantoja O, Rodríguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Véry A-A, Zhu J-K, Dennis ES, Tester M (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  CAS  PubMed  Google Scholar 

  117. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  CAS  PubMed  Google Scholar 

  118. Mäser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker EP, Shinmyo A, Oiki S, Schroeder JI, Uozumi N (2002) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc Natl Acad Sci USA 99:6428–6433

    Article  PubMed  CAS  Google Scholar 

  119. Jabnoune M, Espéout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry A-A (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971

    Article  CAS  PubMed  Google Scholar 

  120. Liu W, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol 127:283–294

    Article  CAS  PubMed  Google Scholar 

  121. Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao C, Pantoja O, Bohnert HJ (2003) Expression of the cation transporter McHKT1 in a halophyte. Plant Mol Biol 52:967–980

    Article  CAS  PubMed  Google Scholar 

  122. Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  Google Scholar 

  123. Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937

    Article  CAS  PubMed  Google Scholar 

  124. Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y, Zhu M-Z, Wang Z-Y, Luan S, Lin H-X (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  125. Golldack D, Su H, Quigley F, Kamasani UR, Munoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    Article  CAS  PubMed  Google Scholar 

  126. Haro R, Bañuelos MA, Senn ME, Barrero-Gil J, Rodríguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506

    Article  CAS  PubMed  Google Scholar 

  127. Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161

    Article  PubMed  Google Scholar 

  128. Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

  129. Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet 2:e210

    Article  PubMed  CAS  Google Scholar 

  130. Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Env 30:497–507

    Article  CAS  Google Scholar 

  131. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    Article  CAS  PubMed  Google Scholar 

  132. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  Google Scholar 

  133. Gorham J, Hardy C, Wyn Jones RG, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588

    Article  CAS  Google Scholar 

  134. Gorham J, Bridges J, Dubcovsky J, Dvorak J, Hollington PA, Luo MC, Khan JA (1997) Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat. New Phytol 137:109–116

    Article  CAS  Google Scholar 

  135. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  PubMed  Google Scholar 

  136. Ardie SW, Xie L, Takahashi R, Liu S, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60:3491–3502

    Article  CAS  PubMed  Google Scholar 

  137. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149

    Article  CAS  PubMed  Google Scholar 

  138. Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96:158–168

    Article  CAS  Google Scholar 

  139. Walker NA, Sanders D, Maathuis FJM (1996) High-affinity potassium uptake in plants. Science 273:977–979

    Article  CAS  PubMed  Google Scholar 

  140. Bañuelos MA, Haro R, Fraile-Escanciano A, Rodríguez-Navarro A (2008) Effects of polylinker uATGs on the function of grass HKT1 transporters expressed in yeast cells. Plant Cell Physiol 49:1128–1132

    Article  PubMed  CAS  Google Scholar 

  141. Haro R, Rodríguez-Navarro A (2003) Functional analysis of the M2D helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1613:1–6

    Article  CAS  PubMed  Google Scholar 

  142. Kato N, Akai M, Zulkifli L, Matsuda N, Kato Y, Goshima S, Hazama A, Yamagami M, Guy HR, Uozumi N (2007) Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters. Channels 1:161–171

    PubMed  Google Scholar 

  143. Diatloff E, Kumar R, Schachtman DP (1998) Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter. FEBS Lett 432:31–36

    Article  CAS  PubMed  Google Scholar 

  144. Rubio F, Schwarz M, Gassmann W, Schroeder JI (1999) Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. J Biol Chem 274:6839–6847

    Article  CAS  PubMed  Google Scholar 

  145. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  PubMed  Google Scholar 

  146. Dong J, Shi N, Berke I, Chen L, Jiang Y (2005) Structures of the MthK RCK domain and the effect of Ca2+ on gating ring stability. J Biol Chem 280:41716–41724

    Article  CAS  PubMed  Google Scholar 

  147. Ye S, Li Y, Chen L, Jiang Y (2006) Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels. Cell 126:1161–1173

    Article  CAS  PubMed  Google Scholar 

  148. Roosild TP, Castronovo S, Miller S, Li C, Rasmussen T, Bartlett W, Gunasekera B, Choe S, Booth IR (2009) KTN (RCK) domains regulate K+ channels and transporters by controlling the dimer-hinge conformation. Structure 17:893–903

    Article  CAS  PubMed  Google Scholar 

  149. Parra-Lopez C, Lin R, Aspedon A, Groisman EA (1994) A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. EMBO J 13:3964–3972

    CAS  PubMed  Google Scholar 

  150. Baev D, Rivetta A, Vylkova S, Sun JN, Zeng G-F, Slayman CL, Edgerton M (2004) The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5. J Biol Chem 279:55060–55072

    Article  CAS  PubMed  Google Scholar 

  151. Chen Y-C, Chuang Y-C, Chang C-C, Jeang C-L, Chang M-C (2004) A K+ uptake protein, TrkA, is required for serum, protamine, and polymyxin B resistance in Vibrio vulnificus. Infect Immun 72:629–636

    Article  CAS  PubMed  Google Scholar 

  152. Zulkifli L, Uozumi N (2006) Mutation of His-157 in the second pore loop drastically reduces the activity of the Synechocystis Ktr-type transporter. J Bacteriol 188:7985–7987

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ina Talke (Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany) for critical reading and helpful corrections of the manuscript. This work was supported by the ANR Génoplante TRANSPORTOME (ANR_06_GPLA_012 to C.C.-F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sentenac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corratgé-Faillie, C., Jabnoune, M., Zimmermann, S. et al. Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell. Mol. Life Sci. 67, 2511–2532 (2010). https://doi.org/10.1007/s00018-010-0317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0317-7

Keywords

Navigation