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Abstract. Objective and design: In the present study we
investigated the effect of SCF and/or IgE on histamine, TNF-
o and chemokines released from bone marrow-derived mast
cells (BMMC) as well as chemokine receptor expression.
Material and methods: BMMC were derived from femoral
bone marrow of CBA/J mice. The purity of BMMC was
>98% after 3 weeks. BMMC (2.5x10° cells/well) were
incubated in the presence or absence of either SCF, IgE plus
DNP or a combination of SCF and IgE for 6 and 18 h. Cell-
free supernatants were recovered to measure CC chemo-
kines, TNF-a and histamine release utilizing ELISA assays.
CC chemokine family receptors were detected by RT-PCR
analysis, and confirmed using functional chemotactic assays.
Results: Histamine levels were comparable between SCF and
IgE stimulated cells, whereas TNF-a production was signifi-
cantly greater after IgE compared to SCF stimulation. SCF
and/or IgE-stimulated BMMC released CC chemokines,
CCL22 (MDC), CCL17 (TARC) and CCL2 (MCP-1). In-
creased mRNA expression of CCR1, CCR2, CCR3, and
CCRS5 was detected in SCF and IgE-stimulated BMMC:s.
Functional chemotactic assays confirmed the expression data.
Conclusion: SCF and IgE can up-regulate the expression of
chemokines and chemokine receptors on mast cells. Thus,
SCF may play a significant role in their activation and
inflammation during allergic responses.
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Introduction

Mast cells are multifunctional cells that can initiate or modu-
late various inflammatory processes. These cells contain
many preformed mediators that, when released, may induce
initial and necessary interactions between circulating leuko-
cytes and the endothelium of postcapillary venules [1]. The

Correspondence to: N. W. Lukacs

activation and degranulation of mast cell populations are
responses that can be mediated by either antigen-specific,
surface bound IgE or by stem cell factor (SCF) [2]. IgE-
mediated mast cell activation induces immediate mast cell
degranulation that constitutes the primary mechanism that
drives the allergic responses in terms of type I hypersensi-
tivity response. During this activation, mast cells release pre-
formed and newly synthesized pro-inflammatory mediators
including histamine, heparin, proteases, prostaglandin D,,
leukotriene C,, and cytokines. In addition, murine mast cells
challenged in an IgE-dependent manner or with other stimuli
can produce multiple chemokines, including CCL3 (MIP-
la), CCL4 (MIP-1p) and CCL2 (MCP-1) that can initiate
and perpetuate an inflammatory cascade [3].

CC chemokines are chemotactic cytokines that can in-
duce mediator secretion and chemotaxis of leukocytes [4].
The secretion of chemokines has been detected in a wide
variety of cells, including macrophages, endothelial cells,
epithelial cells, smooth muscle cells, fibroblasts, lympho-
cytes, neutrophils, eosinophils and mast cells [5, 6]. High
levels of chemokines have been detected during in vivo
inflammatory reactions, such as bacterial sepsis [7], auto-
immune reaction [8], and bronchial asthma allergic disorders
[9—11]. However, the specific mast cell-derived chemokines
that function in these different inflammatory processes have
not been completely elucidated.

Stem Cell Factor (SCF) or c-kit receptor ligand has been
identified as a primary cytokine involved in mast cell diffe-
rentiation and activation [12—15]. SCF binds to its surface
receptor, c-kit, which is a member of the receptor tyrosine
kinase family and SCF has a role in mast cell survival, as
mast cells cultured without SCF undergo apoptosis [16].
Furthermore, SCF enhances IgE-dependent human mast cell
mediator release, including the generation and release of
cytokines [17—19]. Thus, the prolonged activation of mast
cell populations by SCF, after initial IgE-mediated events or
by itself, may play a significant role in late phase asthma re-
sponses.

In the present study we investigated the role of both SCF
and IgE-dependent mechanisms for histamine release and
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chemokine and TNF-a production by bone marrow-derived
murine mast cells. In addition, we evaluated the ability of
SCF and/or IgE-mediated mast cell activities to increase
the expression of specific chemokine receptors. Our data
demonstrated that SCF is a potent mast cell activator, which
can stimulate the expression of both CC chemokine and che-
mokine receptors, TNF-a and induce the release a mast cell
mediator histamine.

Materials and methods

Isolation and expansion of bone marrow-derived mast cells

Primary mast cell lines were derived from femoral bone marrow of
pathogen-free CBA/J mice (Jackson Laboratory, Bar Harbor, ME) [20].
The cells were incubated with Dulbecco’s modified Eagle’s medium
(DMEM - Bio Whittaker, Walkersville, MA) supplemented with 1 mM
L-glutamine, 10 mM N-2-hydroxiethylpiperazine-NI-2-ethanesulfonic
acid (HEPES), antibiotics, and 15% fetal calf serum (FCS) combine
with 10% T-stimulated rat splenocyte culture supplement medium with
IL-3 (15 ng/ml) and SCF (15 ng/ml). Without addition of exogenous
SCF there was poor mast cells growth. The media was changed every
three days. By the end of 2—3 weeks, a nonadherent population of large
granular cells was observed. These isolated cells appeared homog-
eneous in cytospin preparations stained by Diff Quik (Baxter, Mac-
Graw Park, IL) with typical mast cell granular appearance. The homog-
eneity of these cell lines was determined by flow cytometric analysis
of surface markers, by histamine release assays, and by electron micros-
copy. In particular, these cells were c-kit positive (SCF receptor) but
were negative for CD3, CD4, CDS8, CD23, B220, and F480 by flow
cytometric. The purity of BMMC was >98%. These cell lines were
routinely expanded, as described above, for 3 to 6 weeks. Before each
experiment, BMMC were washed and new medium was added without
SCE.

Stimulation of BMMC with murine recombinant SCF
and/or IgE plus dinitrophenyl (DNP)

Bone marrow-derived mast cells (2.5 x 10° cells/well), were incubated
in complete DMEM with 15% FCS in the presence or absence of either
SCF in different concentrations (0.1, 1, 10, 100 and 200 ng/ml), IgE
(2 g/ml) plus DNP (100 ng/ml) or a combination of SCF (100 ng/ml)
and IgE plus DNP at 37 °C in 5% CO, for 6 and 18 h. After stimulation,
cells were centrifuged and the cell-free supernatant recovered to
measure CC chemokines, TNF-a and histamine release.

Quantification of CC chemokines and TNF-«

Extracellular immunoreactive murine CC chemokines (MCP-1, MDC,
TARC) and TNF-a were quantified using a modified double ligand
procedure of enzyme-linked immunosorbent assay (ELISA) [21]. This
ELISA method consistently detected CC chemokine or TNF-a levels
over 20 pg and did not cross-react with other cytokines. 96-well-flat-
bottomed microtiter plates were coated with 50 pl/well of either rabbit
anti-CC chemokine antibodies or anti-TNF-a (1 g/ml in 0.6 M NacCl,
0.26 M H;BO,, and 0.08 N NaOH, pH 9.6) for 16 h at 4°C, and the
washed (PBS, pH 7.5, 0.05% Tween 20). Blocking of nonspecific bind-
ing sites was accomplished by incubating plates with PBS containing
2% BSA for 90 min at 37 °C. Plates were rinsed thoroughly with wash
buffer and aqueous samples were added. Following a 1-hours incubation
at 37°C, plates were washed and biotinylated rabbit either anti-CC
chemokine or anti-TNF-a Ab was added and incubated for 30 min at
37°C. Plates were then washed and chromogen substrate added, and
they were subsequently read at 490 nm.
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Histamine release assays.

Histamine ELISA kits (Immunotech, Westbrook, ME) were used to
determined histamine levels in supernatants from stimulated mast cells.
As positive controls, mast cells were exposed to compound 48/80
(Sigma), a mast cell degranulator, and cells were sonicated to determine
total intracellular histamine levels.

Reverse transcription (RT)-PCR analysis

Total cellular RNA was extracted from 2,5 x 10¢ BMMC using TRIzol
reagent (Life Techonologies). Synthesis of first-strand cDNA was
performed in 20 pl of reaction mixture containing 2 pg RNA, 1 pl ANTP
100 mM, 5 pl oligo (dT),, s primer 0.5mg/ml, 5 pl Rnase inhibitor
40 U/ml, 5 pl reverse transcriptase 25 U/l (Boehringer Mannheim,
Mannheim, Germany) incubated at 650 C for 7 min, and then incubated
at 37°C for 1 h. The AMV reverse transcriptase was denatured by 90 °C
for 5 min and then placed on ice. Sequences of the primers for the
amplification were CCR1 (sense 5’-gaccagcatctacctgttca-3"; and anti-
sense, 5”-gcagaaacaaatacactcag-3"), CCR2 (sense 5’-cacgaagtatccaa-
gage-3; and antisense 5’-catgctcttcagetttttac-3”), CCR3 (sense 5'-tggg-
caacatgatggttgtg-3”; and antisense 5’-gctgtcttgagactcatgga-3’), CCR4
(sense 5’-cctgectectetetacteet-37; and antisense 5'- acgtgtggttgtgctetgtg-
3%), CCRS (sense 5’-gctgaagagegtgactgata-3’; and antisense 5'-gaggact-
gcatgtataatga-3”). Reverse transcriptase reaction mixture was used in
the polymerase chain reaction (PCR) in 20 pl final volume, 0.5 pl of
each dNTP 100 mM, 2 pl of each primer 300 ng/l and 1.5 pl of Tag DNA
polymerase 5 U/ml (Boehringer Mannheim). The mixture was incubat-
ed in a thermocycler using the following temperature profile: denatur-
ation step at 94 °C for 4 minutes, followed by 35 cycles (CCR1, CCR4
and CCRSY) and 30 cycles (CCR2 and CCR3) of denaturation at 94 °C
for 45 seconds, annealing at 55°C for 45 seconds, and extension at
72°C for 45 seconds. The final extension step was 72 °C for 10 min.
PCR samples were run on a 2% agarose gel stained with 10-mg/ml
ethidium bromide, and the PCR products were visualized with UV light
and photographed.

Mast cell chemotaxis

Mast cell migration was quantitated by a modification of a Boyden
chamber technique described previously [29]. Mast cells were sus-
pended at 3 x 10° cells/ml in DPBS plus 0.5% BSA and were placed in
the top wells of the microchemotaxis chamber. Bottom wells were filled
with CC chemokines in the final concentration of 50 ng/ml or assay
medium as negative control. An 8-m-pore-size polycarbonate filter
separated the upper wells containing the cells from the control and
chemokines samples in the bottom wells. The polycarbonate filters used
in these experiments were coated with fibronectin (10 g/ml) at room
temperature overnight and were then air-dried. The chambers were in-
cubated for 2 h at 37°C in a 5% CO, moist atmosphere, and the filters
were then carefully scraped of nonmigrating cells, fixed with methanol
and stained with Diff-Quik. Mast cell migration was quantitated by
counting the number of mast cells migrating completely through the
matrix-coated filter in 10 high-powered fields (hpf) in triplicate sam-
ples. The data are expressed as the average number of countable ad-
herent cells per hpf (= SEM).

Statistical analysis.

Statistical significance was determined by ANOVA, and significance
was determined with p values < 0.05.
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Table 1. Release of TNF-a and histamine from bone-marrow murine mast cell stimulated with SCE, IgE or a combination of IgE plus SCF.

Stimulus TNF-a (ng/ml) Histamine (nM)

1h 6h 18 h 1h 6h 18 h
Control <0.1 <0.1 <0.1 9720+ 0.4 1389+ 8.4 118+10.3
SCF 0.05 +0.001 0.38 +0.08* 0.26 +0.1* 491 +71.5% 626 +26.7* 262 +24.4%
IgE 2.65+0.1 4.11+£2.1* 5.80+0.1% 753 +15.5% 3552 +£2.8% 884 +37.1*
IgE + SCF 3.30+0.1 14.53 + 1.3%* 10.39 £ 0.2%** 13989 +173.6%* 1475.8 £ 154.3%* 1589 + 156.3**

BMMC were stimulated with SCF (200 ng/ml), IgE (2 pg/ml) plus DNP (100 ng/ml) or a combination of SCF, IgE plus DNP for 6 hor 18 h at 37°C
in DMEM. After incubation, cells were centrifuged and the cell-free supernatants recovered. TNF-a and histamine levels were measured by ELISA.
The results represent the mean SEM of duplicate culture from one typical experiment. Similar data were obtained in two other experiments.
*p <0.0001, when compared with control. **p < 0.01, when compared with IgE group. “p < 0.005, when compared with control.

Results

Detection of TNF-a and histamine in the SCF
and/or IgE-stimulated BMMC

Mast cells are important cellular sources of different multi-
functional cytokines [23] and have been identified as the only
resident cell capable of storing TNF-« in cytoplasmic granu-
les. Several studies demonstrate that mast cell-derived TNF-
a serve as a central component of host defense against bac-
terial infection and is crucial for establishing cytokine net-
works that lead to the recruitment of leukocytes [24, 25]. Our
initial investigation demonstrated that although SCF (200
ng/ml) was able to induce release of mast cell-derived TNF-
a, a significantly higher release of TNF-a was observed in
mast cell culture supernatant after IgE stimulation (Table I).
As previously reported, SCF (200 ng/ml) was able to further
up-regulate TNF-a production at both 6 and 18 h post IgE
stimulation (Table I). These results suggest that mast cells
have differential TNF-a production dependent on the
stimulus and that both IgE and SCF induce de novo pro-
duction of TNF in addition to that released immediately upon
stimulation.

Histamine release by mast cells has an important function
during an immediate reaction, as it can induce vascular per-
meability causing vasodilatation and edema [26]. In mast cell
cultures increased histamine levels were present by 1 h after
SCF stimulation and remained elevated for the next 6 h. After
18 h, histamine levels in the cell culture were diminished.
During IgE stimulation, histamine levels were also present by
1 h; continued to increase at 6 h and by 18 h even higher
levels of histamine could be observed. SCF (200 ng/ml) had
a synergistic effect on histamine release when combined with
IgE stimulation (Table I). These results indicate that SCF has
a similar propensity as IgE to induce release of histamine.

Production of CC chemokines by bone marrow-derived
mast cells (BMMC)

In order to investigate the role of SCF and/or IgE stimulation
for chemokine production by murine mast cells (BMMC),
SCF, IgE, or a combination of SCF and IgE were used. We
observed that SCF (200 ng/ml)-stimulated BMMC release
MDC, TARC and MCP-1, (Fig. 1) into the culture superna-

tants. Lower doses of SCF (0.1-100 ng/ml) showed no
significant differences when compared to control (data not
shown). The levels of MCP-1 were further augmented at 6 h
when IgE and SCF (100 ng/ml) were added concomitantly
(Figure 1E). Interestingly, both SCF and IgE induced CCL22
(MDC) production at very high levels, while TARC produc-
tion was much more modest. However, the level of
CCL17 (TARC) was increase ~4-fold when IgE and SCF
(100 ng/ml) were added concomitantly (Fig. 1 D). The levels
of MDC subsequently increase ~5-fold when both SCF and
IgE were added together to the cultured BMMC (Fig. 1B).
Overall, these data suggest that mast cells stimulated by
SCF and/or IgE are an important source of CC chemokine
production, CCL22 (MDC), CCL17 (TARC) and CCL2
(MCP-1).

SCF and IgE-induced CC chemokine receptor expression
and BMMC chemotaxis

Previous data indicated that chemokines have a role in mast
cell activation and degranulation. To determine whether SCF
and/or IgE could induce the up-regulation of CC chemokine
receptors in BMMC, RT-PCR analysis was used. As shown in
Fig. 2 both SCF and IgE stimulation were able to signifi-

Table 2. Mast cell chemotaxis activity in absence of SCE.

Stimulus Mast cells/10 HPF
Absence of SCF

Control 7.5+5.5

MIP-1a 2325+ 12.5%

MCP-1 367 +31*

Eotaxin 171 +69*

MDC 15 £5

MIP-18 198 +18.5%

BMMC were obtained from primary bone marrow cultured for 3 weeks
in DMEM supplemented with 15% FCS, IL-3 and SCF as described in
Materials and Methods. After 3 weeks, cells were washed and sus-
pended in DMEM in absence of SCE. Cells were loaded in the upper
chamber and chemotaxis to CC chemokines (50 ng/ml) were observed
after 2 h at 37°C. The results represent the mean SEM of duplicate
culture from one typical experiment. Similar data were obtained in two
other experiments. *p < 0.001 when compared with control.
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Fig. 1. Incubation of normal mast cells with SCF (200 ng/ml) and/or IgE (2 pg/ml) + DNP induces MDC (A, B), TARC (C, D), MCP-1 (E, F) pro-
duction by 6 h and 18 h respectively. The results represent the means + SEM of triplicate cultures from one typical experiment. Similar data were
obtained in two other experiments. *p<0.001. No significant increase in the chemokines was observed at 1 h time points.

cantly up-regulate CCR1, CCR2, CCR3 and CCR5 mRNA
expression in BMMC, while co-activation with both stimuli
did not further upregulate the receptors.

In order to ascertain whether these receptors were func-
tionally expressed on mast cells we utilized mast cell chemo-
taxis assays. The data in Table II indicates that mast cells

grown in the presence of SCF have the ability to migrate to
CC chemokine ligands that are specific for the various
chemokine receptors. The migration patterns match the RT-
PCR expression patterns described in Fig. 3. That is that
ligands for CCR1 (MIP-1a), CCR2 (MCP-1), CCR3 (eotax-
in), and CCRS5 (MIP-1p), but not MDC and TARC (CCR4),
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Fig. 2. Incubation of bone marrow-derived mast cells with SCF (200
ng/ml), IgE (2 pg/ml) + DNP, or a combination of SCF (100 ng/ml) plus
IgE up-regulate CCR1, CCR2, CCR3 and CCRS expression by 6 h. 2 pg
of total mRNA purified from bone marrow-derived mast cell was used
in RT-PCR analysis. Similar results were obtained from 2 repeat ex-
periments.

induced the migration of BMMC:s in chemotactic assays. No
further increase in chemotaxis could be detected when the
BMMC were stimulated overnight with SCF or IgE (data not
shown). In additional studies, we also determined that
neither MDC (CCL22) nor TARC (CCL17) had any effect on
BMMC degranulation (data not shown).

Discussion

The participation of SCF in allergic inflammation can induce
airway hyperreactivity via direct mast cell activation as well
as having a role in eosinophil accumulation [27, 28]. Pre-
vious work has demonstrated that SCF and IgE were able to
stimulate BMMC to release TNF-a, an important pro-in-
flammatory mediator involved in the allergic inflammatory
response [29]. In the present studies, although SCF was able
to produce similar levels of histamine to be released from
long-term cultures of mast cells, IgE stimulation induced a
ten-fold greater increase in TNF. There is evidence for in-
creased TNF-a expression in asthmatic airway [30] and after
IgE-mediated activation in sensitized lungs [29, 31]. TNF-«
may have an important amplifying effect in allergic asthma-
tic inflammation [22, 32], with functions that occur in com-
bination with other cytokines as part of cytokine networks
[33]. The fact that SCF and IgE stimulation in combination
induce 2—-3 fold more TNF demonstrates how these activat-
ing stimuli synergize during allergic responses. Subsequent-
ly, TNF-a would further contribute to the inflammatory re-
sponse by stimulating airway epithelial cells to produce cyto-
kines and chemokines, including RANTES (CCLS), IL-8
(CXCL8) and GM-CSF [34—36]. This is an issue that may
need to be revisited given the described role of SCF for TNF
production during bacterial septic response [37]. Inter-
estingly, histamine release was similar between SCF and IgE
stimulation.

IgE mediated chemokine release was potentiated by SCF
in the same manner as histamine and TNFE. Other authors [38,
39] have observed a relationship between histamine and CC
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chemokines. Treatment of mice with eotaxin (CCL11) [40]
produced a time-dependent accumulation of eosinophils that
was significantly reduced if the animals were pre-treated
with histamine H1 antagonist. Thus, the effect of mediators
from mast cells on other cell populations has not been fully
appreciated. The fact that SCF also appears to be an im-
portant mast cell activator to induce CC chemokine produc-
tion along with histamine and TNF suggests a generalized
upregulation of inflammatory recruitment responses by
activated mast cells. The coordination and intensity of the
inflammatory response may, in part, be induced by the mast
cells during allergic responses. This latter hypothesis is sup-
ported by recent investigations of SCF-deficient allergic
mice that demonstrated significantly less inflammation and
airway hyperreactivity upon allergen challenge [27]. The
data in the present studies are consistent with previous in-
vestigations demonstrating the ability of SCF to augment
MCP-1 production as well as studies demonstrating chemo-
kine production from mast cells during allergic responses
[42—48]. SCF up regulating IgE-induced MCP-1 (CCL2)
production by stimulated mast cells may be an important
mechanism mediating MCP-1 production in allergic inflam-
matory response. However, the most highly activated chemo-
kine during the mast cell treatment was monocyte-derived
chemokine (MDC) (CCL22). MDC was significantly upreg-
ulated by both SCF and IgE and was further enhanced five
fold higher when mast cells were activated with both SCF
and IgE. MDC (CCL22) may have an important role during
allergic responses via its ability to induce dendritic cell
movement and preferentially recruit Th2 type cells via CCR4
[49]. A recent study has indicated that MDC plays an im-
portant role in inflammation and airway hyperreactivity in
mouse models of allergic asthma [50]. Thus, this chemokine
may be a key mediator produced by stimulated mast cells
during allergic responses and contribute to the maintenance
of the late phase via the perpetuation of the Th2 type re-
sponses. TARC (CCL17) was significantly produced by IgE
but not SCF alone; however; it was further upregulated when
mast cells are activated with both SCF and IgE. Previous
studies have shown TARC (CCL17) production by murine
keratinocytic cell line and during the atopic dermatitis-like
lesions, a characteristic mast cell degranulated lesions that
have high level of IgE [51]. Thus, TARC may contribute to
maintenance of the inflammatory process mediated by mast
cells and IgE in presence of SCF.

The up regulation of chemokine receptors by SCF and
IgE on the BMMC:s indicate that during allergic responses
the mast cells become more susceptible to chemokines
stimulation. This is a significant issue. One aspect of chemo-
kine biology is the ability of several chemokines to cause
mast cell activation [52, 53]. In fact, recent studies indicate
that activation of mast cells with MCP-1 (via CCR2) can
induce mediator release, including histamine and leukotriene
release, further exacerbating airway hyperreactivity [54].
Although the functional assay that was performed in the pre-
sent studies was mast cell chemotaxis, it may be the case that
a primary role for chemokines in mast cell biology is activa-
tion not migration. This may especially be the issue in fixed
tissue mast cells in the upper airways where movement is not
necessary. The overall impact of multiple chemokine recep-
tors on cells is presently unclear [55], but future investiga-
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tions will likely demonstrate a diverse array of chemokine-
mediated functions.

Overall, these studies indicate that SCF can upregulate
the expression of chemokines and chemokine receptors on
mast cells and along with IgE, SCF may play a significant
role in the activation and inflammation during allergic re-
sponses. Future studies will examine the significance of
expressing multiple chemokine receptors on the mast cells
and whether there are differences in function when the dif-
ferent receptors are ligated.
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