Skip to main content

Advertisement

Log in

Burn injury induces elevated inflammatory traffic: the role of NF-κB

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

A burn insult generally sustains a hypovolemic shock due to a significant loss of plasma from the vessels. The burn injury triggers the release of various mediators, such as reactive oxygen species (ROS), cytokines, and inflammatory mediators. Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), stemming from foreign microbial discharge and damaged tissue or necrotic cells from the burn-injured site, enter the systemic circulation, activate toll-like receptors (TLRs), and trigger the excessive secretion of cytokines and inflammatory mediators. Inflammation plays a vital role in remodeling an injured tissue, detoxifying toxins, and helps in the healing process. A transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), contributes to a variety of physiological and pathological conditions, including immune response, cell death, cell survival, and inflammatory processes. During the pathogenesis of a burn wound, upregulation of various cytokines and growth factors lead to undesirable tissue inflammation. Thus, NF-κB, a dominant moderator of inflammation, needs to be altered to prove beneficial to the treatment of burns or other inflammation-associated diseases. This review addresses the relationship between NF-κB and elevated inflammation in a burn condition that could potentially be altered to induce an early wound-healing mechanism of burn wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielson CB, Duethman NC, Howard JM, Moncure M, Wood JG. Burns: pathophysiology of systemic complications and current management. J Burn Care Res. 2017;38:e469–81.

    Article  PubMed  Google Scholar 

  2. Gauglitz GG, Song J, Herndon DN, Finnerty CC, Boehning D, Barral JM, et al. Characterization of the inflammatory response during acute and post-acute phases after severe burn. Shock. 2008. https://doi.org/10.1097/SHK.0b013e31816e3373.

    Article  PubMed  Google Scholar 

  3. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002. https://doi.org/10.1152/physrev.00018.2001.

    Article  PubMed  Google Scholar 

  4. Miyazaki H, Kinoshita M, Ono S, Seki S, Saitoh D. Burn-evoked reactive oxygen species immediately after injury are crucial to restore the neutrophil function against postburn infection in mice. Shock. 2015. https://doi.org/10.1097/SHK.0000000000000404.

    Article  PubMed  Google Scholar 

  5. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, et al. Cell type specific roles of NF-κB linking inflamation and thrombosis. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.00085.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008. https://doi.org/10.1016/j.cell.2008.01.020.

    Article  PubMed  Google Scholar 

  7. Vallabhapurapu S, Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol. 2009. https://doi.org/10.1146/annurev.immunol.021908.132641.

    Article  PubMed  Google Scholar 

  8. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011. https://doi.org/10.1038/cr.2010.178.

    Article  PubMed  Google Scholar 

  9. Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004. https://doi.org/10.1016/j.it.2004.03.008.

    Article  PubMed  Google Scholar 

  10. Beinke S, Ley SC. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem J. 2004. https://doi.org/10.1042/BJ20040544.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mitchell S, Vargas J, Hoffmann A. Signaling via the NF-κB system. Wiley Interdiscip Rev Syst Biol Med. 2016. https://doi.org/10.1002/wsbm.1331.

    Article  PubMed  Google Scholar 

  12. Miyamoto S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 2011. https://doi.org/10.1038/cr.2010.179.

    Article  PubMed  Google Scholar 

  13. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li JW, et al. IKK-1 and IKK-2: Cytokine-activated IκB kinases essential for NF-κB activation. Science. 1997;278:860–6.

    Article  CAS  PubMed  Google Scholar 

  14. Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science. 2001;293:1495–9.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao G, Harhaj EW, Sun SC. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol Cell. 2001. https://doi.org/10.1016/S1097-2765(01)00187-3.

    Article  PubMed  Google Scholar 

  16. Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity. 2002. https://doi.org/10.1016/S1074-7613(02)00423-5.

    Article  PubMed  Google Scholar 

  17. Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-κB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem. 2004. https://doi.org/10.1074/jbc.M403286200.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol. 2008. https://doi.org/10.1038/ni.1676.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ocal K, Avlan D, Cinel I, Unlu A, Ozturk C, Yaylak F, et al. The effect of N-acetylcysteine on oxidative stress in intestine and bacterial translocation after thermal injury. Burns. 2004. https://doi.org/10.1016/j.burns.2004.05.006.

    Article  PubMed  Google Scholar 

  20. Deitch EA, Berg R. Bacterial translocation from the gut: a mechanism of infection. J Burn Care Rehabil. 1987. https://doi.org/10.1097/00004630-198708060-00005.

    Article  PubMed  Google Scholar 

  21. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190:255–66.

    Article  CAS  PubMed  Google Scholar 

  22. Cuzzocrea S, Zingarelli B, Costantino G, Szabó A, Salzman AL, Caputi AP, et al. Beneficial effects of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase in a rat model of splanchnic artery occlusion and reperfusion. Br J Pharmacol. 1997. https://doi.org/10.1038/sj.bjp.0701234.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012. https://doi.org/10.1097/WOX.0b013e3182439613.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Till GO, Hatherill JR, Tourtellotte WW, Lutz MJ, Ward PA. Lipid peroxidation and acute lung injury after thermal trauma to skin. Evidence of a role for hydroxyl radical. Am J Pathol. 1985;119:376.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012. https://doi.org/10.1093/eurheartj/ehr304.

    Article  PubMed  Google Scholar 

  27. Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164:213–23.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lindblom L, Cassuto J, Yregård L, Mattsson U, Tarnow P, Sinclair R. Importance of nitric oxide in the regulation of burn oedema, proteinuria and urine output. Burns. 2000. https://doi.org/10.1016/S0305-4179(99)00105-9.

    Article  PubMed  Google Scholar 

  29. Parihar A, Parihar MS, Milner S, Bhat S. Oxidative stress and anti-oxidative mobilization in burn injury. Burns. 2008;34:6–17.

    Article  PubMed  Google Scholar 

  30. Macdonald J, Galley HF, Webster NR. Oxidative stress and gene expression in sepsis. Br J Anaesth. 2003. https://doi.org/10.1093/bja/aeg034.

    Article  PubMed  Google Scholar 

  31. Duan X, Yarmush D, Leeder A, Yarmush ML, Mitchell RN. Burn-induced immunosuppression: attenuated T cell signaling independent of IFN-γ-and nitric oxide-mediated pathways. J Leukoc Biol. 2008;83:305–13.

    Article  CAS  PubMed  Google Scholar 

  32. Ho JQ, Asagiri M, Hoffmann A, Ghosh G. NF-κB potentiates caspase independent hydrogen peroxide induced cell death. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0016815.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xue Q, Yan Y, Zhang R, Xiong H. Regulation of iNOS on immune cells and its role in diseases. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19123805.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007. https://doi.org/10.1152/physrev.00029.2006.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bauer J, Ripperger A, Frantz S, Ergün S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol. 2014. https://doi.org/10.1111/bph.12677.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003. https://doi.org/10.1038/nri1184.

    Article  PubMed  Google Scholar 

  37. Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, et al. The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ. 2006. https://doi.org/10.1038/sj.cdd.4401865.

    Article  PubMed  Google Scholar 

  38. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017. https://doi.org/10.1155/2017/8416763.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Djavaheri-Mergny M, Javelaud D, Wietzerbin J, Besançon F. NF-κB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFα-treated Ewing sarcoma cells. FEBS Lett. 2004. https://doi.org/10.1016/j.febslet.2004.10.082.

    Article  PubMed  Google Scholar 

  40. Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016. https://doi.org/10.1016/j.tcb.2015.12.002.

    Article  PubMed  Google Scholar 

  41. Amanullah A, Azam N, Balliet A, Hollander C, Hoffman B, Fornace A, et al. Cell survival and a Gadd45-factor deficiency. Nature. 2003. https://doi.org/10.1038/424741b.

    Article  PubMed  Google Scholar 

  42. Kucharczak J, Simmons MJ, Fan Y, Gélinas C. To be, or not to be: NF-κB is the answer - Role of Rel/NF-κB in the regulation of apoptosis. Oncogene. 2003. https://doi.org/10.1038/sj.onc.1207230.

    Article  PubMed  Google Scholar 

  43. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, et al. Induction of gadd4β by NF-κB downregulates pro-apoptotic JNK signalling. Nature. 2001. https://doi.org/10.1038/35104560.

    Article  PubMed  Google Scholar 

  44. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, et al. NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003. https://doi.org/10.1093/emboj/cdg379.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kamata H, Honda SI, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005. https://doi.org/10.1016/j.cell.2004.12.041.

    Article  PubMed  Google Scholar 

  46. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005;7:395–403.

    Article  CAS  PubMed  Google Scholar 

  47. Sakurai A, Yuasa K, Shoji Y, Himeno S, Tsujimoto M, Kunimoto M, Imura N, Hara S. Overexpression of thioredoxin reductase 1 regulates NF-κB activation. J Cell Physiol. 2004;198:22–30.

    Article  CAS  PubMed  Google Scholar 

  48. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. Ap-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA. 1997. https://doi.org/10.1073/pnas.94.8.3633.

    Article  PubMed  Google Scholar 

  49. Häcker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006. https://doi.org/10.1126/stke.3572006re13.

    Article  PubMed  Google Scholar 

  50. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018;371:531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20:1126–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoşnuter M, Gürel A, Babucçu O, Armutcu F, Kargi E, Işikdemir A. The effect of CAPE on lipid peroxidation and nitric oxide levels in the plasma of rats following thermal injury. Burns. 2004. https://doi.org/10.1016/j.burns.2003.09.022.

    Article  PubMed  Google Scholar 

  53. Trombly R, Tappel A. Fractionation and analysis of fluorescent products of lipid peroxidation. Lipids. 1975. https://doi.org/10.1007/BF02532426.

    Article  PubMed  Google Scholar 

  54. Azzi A, Davies KJA, Kelly F. Free radical biology. Terminology and critical thinking. FEBS Lett. 2004. https://doi.org/10.1016/S0014-5793(03)01526-6.

    Article  PubMed  Google Scholar 

  55. Lyons J, Rauh-Pfeiffer A, Ming-Yu Y, Lu XM, Zurakowski D, Curley M, et al. Cysteine metabolism and whole blood glutathione synthesis in septic pediatric patients. Crit Care Med. 2001. https://doi.org/10.1097/00003246-200104000-00036.

    Article  PubMed  Google Scholar 

  56. Gonzales R, Auclair C, Voisin E, Gautero H, Dhermy D, Boivin P. Superoxide dismutase, catalase, and glutathione peroxidase in red blood cells from patients with malignant diseases. Cancer Res. 1984;44:4137–9.

    CAS  PubMed  Google Scholar 

  57. Makni-Maalej K, Marzaioli V, Boussetta T, Belambri SA, Gougerot-Pocidalo M-A, Hurtado-Nedelec M, et al. TLR8, but not TLR7, induces the priming of the NADPH oxidase activation in human neutrophils. J Leukoc Biol. 2015. https://doi.org/10.1189/jlb.2a1214-623r.

    Article  PubMed  Google Scholar 

  58. Marcato LG, Ferlini AP, Bonfim RCF, Ramos-Jorge ML, Ropert C, Afonso LFC, et al. The role of Toll-like receptors 2 and 4 on reactive oxygen species and nitric oxide production by macrophage cells stimulated with root canal pathogens. Oral Microbiol Immunol. 2008. https://doi.org/10.1111/j.1399-302X.2008.00432.x.

    Article  PubMed  Google Scholar 

  59. Lahiri A, Lahiri A, Das P, Vani J, Shaila MS, Chakravortty D. TLR 9 activation in dendritic cells enhances salmonella killing and antigen presentation via involvement of the reactive oxygen species. PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0013772.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jagannathan M, Hasturk H, Liang Y, Shin H, Hetzel JT, Kantarci A, et al. TLR cross-talk specifically regulates cytokine production by b cells from chronic inflammatory disease patients. J Immunol. 2009. https://doi.org/10.4049/jimmunol.0901517.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zanin-Zhorov A, Cohen IR. Signaling via TLR2 and TLR4 directly down-regulates T cell effector functions: the regulatory face of danger signals. Front Immunol. 2013. https://doi.org/10.3389/fimmu.2013.00211.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Becker CE, O’Neill LAJ. Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Semin Immunopathol. 2007. https://doi.org/10.1007/s00281-007-0081-4.

    Article  PubMed  Google Scholar 

  63. Basu S, Fenton MJ. Toll-like receptors: function and roles in lung disease. Am J Physiol. 2004. https://doi.org/10.1152/ajplung.00323.2003.

    Article  Google Scholar 

  64. Pouwels SD, Heijink IH, Ten Hacken NHT, Vandenabeele P, Krysko DV, Nawijn MC, et al. DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol. 2014. https://doi.org/10.1038/mi.2013.77.

    Article  PubMed  Google Scholar 

  65. Xiang M, Fan J, Fan J. Association of Toll-like receptor signaling and reactive oxygen species: a potential therapeutic target for posttrauma acute lung injury. Mediators Inflamm. 2010. https://doi.org/10.1155/2010/916425.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–3.

    Article  CAS  PubMed  Google Scholar 

  67. Cheng Z, Taylor B, Ourthiague DR, Hoffmann A. Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation. Sci Signal. 2015. https://doi.org/10.1126/scisignal.aaa5208.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, et al. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 1995. https://doi.org/10.1101/gad.9.13.1586.

    Article  PubMed  Google Scholar 

  69. Chen ZJ. Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol. 2005. https://doi.org/10.1038/ncb0805-758.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sun SC, Chang JH, Jin J. Regulation of nuclear factor-κB in autoimmunity. Trends Immunol. 2013. https://doi.org/10.1016/j.it.2013.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011. https://doi.org/10.1038/cr.2011.13.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol. 2017. https://doi.org/10.3389/fcimb.2017.00373.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage M1–M2 polarization balance. Front Immunol. 2014. https://doi.org/10.3389/fimmu.2014.00614.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012. https://doi.org/10.1172/JCI59643.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yu M, Zhou H, Zhao J, Xiao N, Roychowdhury S, Schmitt D, et al. MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. J Exp Med. 2014. https://doi.org/10.1084/jem.20131314.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Heng M. Phosphorylase kinase inhibition therapy in burns and scalds. Biodiscovery. 2017. https://doi.org/10.3897/biodiscovery.20.e11207.

    Article  Google Scholar 

  77. Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017. https://doi.org/10.1096/fj.201601222R.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rasmussen MK, Iversen L, Johansen C, Finnemann J, Olsen LS, Kragballe K, et al. IL-8 and p53 are inversely regulated through JNK, p38 and NF-κB p65 in HepG2 cells during an inflammatory response. Inflamm Res. 2008. https://doi.org/10.1007/s00011-007-7220-1.

    Article  PubMed  Google Scholar 

  79. André-Lévigne D, Modarressi A, Pepper MS, Pittet-Cuénod B. Reactive oxygen species and NOX enzymes are emerging as key players in cutaneous wound repair. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102149.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Korkmaz HI, Ulrich MMW, Çelik G, Van Wieringen WN, Van Zuijlen PPM, Krijnen PAJ, et al. NOX2 expression is increased in keratinocytes after burn injury. J Burn Care Res. 2020. https://doi.org/10.1093/jbcr/irz162.

    Article  PubMed  Google Scholar 

  81. Raja SK, Garcia MS, Isseroff RR. Wound re-epithelialization: Modulating keratinocyte migration in wound healing. Front Biosci. 2007;12:2849–68.

    Article  CAS  PubMed  Google Scholar 

  82. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014. https://doi.org/10.1089/wound.2013.0473.

    Article  Google Scholar 

  83. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, et al. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res. 2000. https://doi.org/10.1006/excr.1999.4692.

    Article  PubMed  Google Scholar 

  84. Jimbow K, Quevedo WC, Fitzpatrick TB, Szabo G. Some aspects of melanin biology: 1950–1975. J Invest Dermatol. 1976. https://doi.org/10.1111/1523-1747.ep12512500.

    Article  PubMed  Google Scholar 

  85. Lewis DA, Spandau DF. UVB activation of NF-κB in normal human keratinocytes occurs via a unique mechanism. Arch Dermatol. 2007;299:93–101.

    Article  CAS  Google Scholar 

  86. Körner A, Pawelek J. Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science. 1982;217:1163–5.

    Article  PubMed  Google Scholar 

  87. Ando H, Kondoh H, Ichihashi M, Hearing VJ. Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J Invest Dermatol. 2007;127:751–61.

    Article  CAS  PubMed  Google Scholar 

  88. Mitani H, Koshiishi I, Sumita T, Imanari T. Prevention of the photodamage in the hairless mouse dorsal skin by kojic acid as an iron chelator. Eur J Pharmacol. 2001. https://doi.org/10.1016/S0014-2999(00)00873-6.

    Article  PubMed  Google Scholar 

  89. Ahn KS, Moon KY, Lee J, Kim YS. Downregulation of NF-κB activation in human keratinocytes by melanogenic inhibitors. J Dermatol Sci. 2003. https://doi.org/10.1016/S0923-1811(03)00039-2.

    Article  PubMed  Google Scholar 

  90. Sun B, Ding R, Yu W, Wu Y, Wang B, Li Q. Advanced oxidative protein products induced human keratinocyte apoptosis through the NOX–MAPK pathway. Apoptosis. 2016. https://doi.org/10.1007/s10495-016-1245-2.

    Article  PubMed  Google Scholar 

  91. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev. 2007. https://doi.org/10.1152/physrev.00044.2005.

    Article  PubMed  Google Scholar 

  92. Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, Verkman AS. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun. 2015;6:1–4.

    Article  Google Scholar 

  93. Davis AE, Mejia P, Lu F. Biological activities of C1 inhibitor. Mol Immunol. 2008. https://doi.org/10.1016/j.molimm.2008.06.028.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Simone S, Rascio F, Castellano G, Divella C, Chieti A, Ditonno P, et al. Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury. Free Radic Biol Med. 2014. https://doi.org/10.1016/j.freeradbiomed.2014.07.003.

    Article  PubMed  Google Scholar 

  95. Görlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res. 2000. https://doi.org/10.1161/01.RES.87.1.26.

    Article  PubMed  Google Scholar 

  96. Meischl C, Krijnen PAJ, Sipkens JA, Cillessen SAGM, Muñoz IG, Okroj M, et al. Ischemia induces nuclear NOX2 expression in cardiomyocytes and subsequently activates apoptosis. Apoptosis. 2006. https://doi.org/10.1007/s10495-006-6304-7.

    Article  PubMed  Google Scholar 

  97. Corry NH, Klick B, Fauerbach JA. Posttraumatic stress disorder and pain impact functioning and disability after major burn injury. J Burn Care Res. 2010. https://doi.org/10.1097/BCR.0b013e3181cb8cc8.

    Article  PubMed  Google Scholar 

  98. Thalji SZ, Kothari AN, Kuo PC, Mosier MJ. Acute kidney injury in burn patients: clinically significant over the initial hospitalization and 1 year after injury: an original retrospective cohort study. Ann Surg. 2017;266:376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jeschke MG, Pinto R, Costford SR, Amini-Nik S. Threshold age and burn size associated with poor outcomes in the elderly after burn injury. Burns. 2016. https://doi.org/10.1016/j.burns.2015.12.008.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dreckmann SC, Amini-Nik S, Tompkins RG, Vojvodic M, Jeschke MG. Genome-wide comparisons of gene expression in adult versus elderly burn patients. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0226425.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tang G, Zhang T, Wang X, Song Z, Liu F, Zhang Q, et al. Analysis of differentially expressed genes in white blood cells isolated from patients with major burn injuries. Exp Ther Med. 2017. https://doi.org/10.3892/etm.2017.4899.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cárdenas-Navia LI, Cruz P, Lin JC, Rosenberg SA, Samuels Y. Novel somatic mutations in heterotrimeric G proteins in melanoma. Cancer Biol Ther. 2010. https://doi.org/10.4161/cbt.10.1.11949.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ross E. G Protein-coupled receptors: multi-turnover GDP/GTP exchange catalysis on heterotrimeric G proteins. Cell Logist. 2014. https://doi.org/10.4161/cl.29391.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gao Y, Xu C, Yu K, Li G, Wan F, Liu S, et al. Effect of tetramethylpyrazine on DRG neuron P2X3 receptor involved in transmitting pain after burn. Burns. 2010. https://doi.org/10.1016/j.burns.2009.04.032.

    Article  PubMed  Google Scholar 

  105. Wu LL, Yang SL, Yang RC, Hsu HK, Hsu C, Dong LW, et al. G protein and adenylate cyclase complex-mediated signal transduction in the rat heart during sepsis. Shock. 2003. https://doi.org/10.1097/01.shk.0000055816.40894.cd.

    Article  PubMed  Google Scholar 

  106. Oda Y, Kanahara N, Kimura H, Watanabe H, Hashimoto K, Iyo M. Genetic association between G protein-coupled receptor kinase 6/β-arrestin 2 and dopamine supersensitivity psychosis in schizophrenia. Neuropsychiatr Dis Treat. 2015;11:1845.

    PubMed  PubMed Central  Google Scholar 

  107. Bach-y-Rita P, Ilis LS. Spinal shock: possible role of receptor plasticity and non synaptic transmission. Spinal Cord. 1993;31:82–7.

    Article  CAS  Google Scholar 

  108. Kim S, Kim SJ, Yoon HE, Chung S, Choi BS, Park CW, et al. Fimasartan, a novel angiotensin-receptor blocker, protects against renal inflammation and fibrosis in mice with unilateral ureteral obstruction: the possible role of Nrf2. Int J Med Sci. 2015. https://doi.org/10.7150/ijms.13187.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lee DJ, Sieling PA, Ochoa MT, Krutzik SR, Guo B, Hernandez M, et al. LILRA2 activation inhibits dendritic cell differentiation and antigen presentation to t cells. J Immunol. 2007. https://doi.org/10.4049/jimmunol.179.12.8128.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lu HK, Mitchell A, Endoh Y, Hampartzoumian T, Huynh O, Borges L, et al. LILRA2 selectively modulates LPS-mediated cytokine production and inhibits phagocytosis by monocytes. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0033478.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Garré JM, Yang G. Contributions of monocytes to nervous system disorders. J Mol Med. 2018;96:873–83.

    Article  PubMed  Google Scholar 

  112. Schulz T, Schiffl H, Scheithe R, Hrboticky N, Lorenz R. Preserved antioxidative defense of lipoproteins in renal failure and during hemodialysis. Am J Kidney Dis. 1995. https://doi.org/10.1016/0272-6386(95)90124-8.

    Article  PubMed  Google Scholar 

  113. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002. https://doi.org/10.1038/nature01148.

    Article  PubMed  Google Scholar 

  114. Koh CG. Rho GTPases and their regulators in neuronal functions and development. Neurosignals. 2006;15:228–327.

    Article  CAS  PubMed  Google Scholar 

  115. Lachiewicz AM, Hauck CG, Weber DJ, Cairns BA, van Duin D. Bacterial infections after burn injuries: impact of multidrug resistance. Clin Infect Dis. 2017;65:2130–6.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mail R, Jones S, Pan Y, Zhou H, Jaspers I, Peden DB, et al. Association between early airway damage-associated molecular patterns and subsequent bacterial infection in patients with inhalational and burn injury. Am J Physiol. 2015. https://doi.org/10.1152/ajplung.00321.2014.

    Article  Google Scholar 

  117. Bertin-Maghit M, Goudable J, Dalmas E, Steghens JP, Bouchard C, Gueugniaud PY, et al. Time course of oxidative stress after major burns. Intensive Care Med. 2000. https://doi.org/10.1007/s001340051250.

    Article  PubMed  Google Scholar 

  118. Gökakın AK, Atabey M, Deveci K, Sancakdar E, Tuzcu M, Duger C, Topcu O. The effects of sildenafil in liver and kidney injury in a rat model of severe scald burn: a biochemical and histopathological study. Ulus Travma Acil Cerrahi Derg. 2014;20:319–27.

    Article  PubMed  Google Scholar 

  119. AbuBakr HO, Aljuaydi SH, Abou-Zeid SM, El-Bahrawy A. Burn-induced multiple organ injury and protective effect of lutein in rats. Inflammation. 2018. https://doi.org/10.1007/s10753-018-0730-x.

    Article  PubMed  Google Scholar 

  120. Agay D, Andriollo-Sanchez M, Claeyssen R, Touvard L, Denis J, Roussel AM, Chancerelle Y. Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissue in severely burned rats. Eur Cytokine Netw. 2008;19:1–7.

    CAS  PubMed  Google Scholar 

  121. Schneider CP, Schwacha MG, Chaudry IH. The role of interleukin-10 in the regulation of the systemic inflammatory response following trauma-hemorrhage. Biochim Biophys Acta. 2004. https://doi.org/10.1016/j.bbadis.2004.01.003.

    Article  PubMed  Google Scholar 

  122. Bekyarova G, Apostolova M, Kotzev I. Melatonin protection against burn-induced hepatic injury by down-regulation and nuclear factor kappa B activation. Int J Immunopathol Pharmacol. 2012;25:591–6.

    Article  CAS  PubMed  Google Scholar 

  123. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys. 2001. https://doi.org/10.1385/CBB:34:2:237.

    Article  PubMed  Google Scholar 

  124. Bekyarova G, Tancheva S, Hristova M. Protective effect of melatonin against oxidative hepatic injury after experimental thermal trauma. Methods Find Exp Clin Pharmacol. 2009. https://doi.org/10.1358/mf.2009.31.1.1338411.

    Article  PubMed  Google Scholar 

  125. Bekyarova G, Tzaneva M, Hristova M, Hristov K. Melatonin protection against burn-induced liver injury. A review. Cent Eur J Med. 2014. https://doi.org/10.2478/s11536-013-0253-7.

    Article  Google Scholar 

  126. Bekyarova G, Tancheva S, Hristova M. The effects of melatonin on burn-induced inflammatory responses and coagulation disorders in rats. Methods Find Exp Clin Pharmacol. 2010. https://doi.org/10.1358/mf.2010.32.5.1437717.

    Article  PubMed  Google Scholar 

  127. Horton JW. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology. 2003. https://doi.org/10.1016/S0300-483X(03)00154-9.

    Article  PubMed  Google Scholar 

  128. Inoue Y, Yu YM, Kurihara T, Vasilyev A, Ibrahim A, Oklu R, et al. Kidney and liver injuries after major burns in rats are prevented by resolvin D2. Crit Care Med. 2016. https://doi.org/10.1097/CCM.0000000000001397.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Animal House Facility, Khalsa College of Pharmacy, Amritsar, India, who opened their doors to us for a collaborative study with School of Biotechnology, National Institute of Technology Calicut, Kozhikode, India. Thanks to this collaboration, the therapeutic approach mentioned in this review has been carried out at a preclinical level for a hydrogel formulation to treat a second-degree partial burn wound model.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study authors. NB and BG framed the design of the study. Author BG managed the literature search and wrote the first draft of the manuscript. Authors NB and STV managed the reviewing of the idea, and editing and revising it critically for important intellectual content. All the authors contributed to the design of the study and read and approved the final manuscript. Furthermore, all the figures and tables are original and have not been previously published. The references are placed precisely, which justifies stated research for better understanding of the topic; also, the manuscript is not under consideration elsewhere.

Corresponding author

Correspondence to Nitish Bhatia.

Ethics declarations

Conflict of interest

All authors report no conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, B., Suchithra, T.V. & Bhatia, N. Burn injury induces elevated inflammatory traffic: the role of NF-κB. Inflamm. Res. 70, 51–65 (2021). https://doi.org/10.1007/s00011-020-01426-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01426-x

Keywords

Navigation