Skip to main content
Log in

MnTMPyP, a superoxide dismutase/catalase mimetic, decreases inflammatory indices in ischemic acute kidney injury

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

This study investigates the effect of a superoxide dismutase mimetic, MnTMPyP, on pro- and anti-inflammatory cytokines in acute renal ischemia–reperfusion (IR).

Materials and treatment

Male Sprague–Dawley rats underwent bilateral clamping of the renal arteries for 45 min followed by 1, 4, or 24 h of reperfusion. A subset of animals was treated with MnTMPyP (5 mg/kg, i.p.) or saline. Porcine proximal tubular epithelial cells were ATP-depleted for 4 h followed by recovery for 2 h.

Methods

Cytokines were analyzed by ELISA, and ED1+ macrophages and CD8+ T lymphocytes by immunohistochemistry. Statistical analysis was performed using ANOVA.

Results

MnTMPyP attenuated the IR-mediated increase in serum creatinine and circulating levels of interleukin (IL)-2 following 24 h of reperfusion. Furthermore, treatment attenuated increases in tissue levels of tumor necrosis factor (TNF)-α, IL-2, IL-4, and IL-13. MnTMPyP partially prevented the IR-induced infiltration of ED1+ macrophages and CD8+ T lymphocytes in the kidney. ATP depletion–recovery of porcine proximal tubular epithelial cells resulted in decreased IL-6 and IL-10 levels, and MnTMPyP partially restored these cytokines.

Conclusions

These results show that MnTMPyP is partially effective in reducing inflammation associated with renal IR and that reactive oxygen species play a role in modulating both pro- and anti-inflammatory pathways in acute kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chatterjee PK, Todorovic Z, Sivarajah A, Mota-Filipe H, Brown PA, Stewart KN, et al. Differential effects of caspase inhibitors on the renal dysfunction and injury caused by ischemia–reperfusion of the rat kidney. Eur J Pharmacol. 2004;503:173–83.

    Article  CAS  PubMed  Google Scholar 

  2. Dagher PC. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int. 2004;66:506–9.

    Article  CAS  PubMed  Google Scholar 

  3. Djamali A, Vidyasagar A, Adulla M, Hullett D, Reese S. Nox-2 is a modulator of fibrogenesis in kidney allografts. Am J Transplant. 2009;9:74–82.

    Article  CAS  PubMed  Google Scholar 

  4. Lameire N. The pathophysiology of acute renal failure. Crit Care Clin. 2005;21:197–210.

    Article  PubMed  Google Scholar 

  5. Lieberthal W, Koh JS, Levine JS. Necrosis and apoptosis in acute renal failure. Semin Nephrol. 1998;18:505–18.

    CAS  PubMed  Google Scholar 

  6. Lieberthal W, Levine JS. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol. 1996;271:F477–88.

    CAS  PubMed  Google Scholar 

  7. Avunduk MC, Yurdakul T, Erdemli E, Yavuz A. Prevention of renal damage by alpha tocopherol in ischemia and reperfusion models of rats. Urol Res. 2003;31:280–5.

    Article  CAS  PubMed  Google Scholar 

  8. Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev. 1999;31:971–97.

    Article  CAS  PubMed  Google Scholar 

  9. Barnard ML, Snyder SJ, Engerson TD, Turrens JF. Antioxidant enzyme status of ischemic and postischemic liver and ischemic kidney in rats. Free Radic Biol Med. 1993;15:227–32.

    Article  CAS  PubMed  Google Scholar 

  10. Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H, et al. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int. 2000;58:658–73.

    Article  CAS  PubMed  Google Scholar 

  11. Chatterjee PK, Patel NS, Kvale EO, Brown PA, Stewart KN, Mota-Filipe H, et al. EUK-134 reduces renal dysfunction and injury caused by oxidative and nitrosative stress of the kidney. Am J Nephrol. 2004;24:165–77.

    Article  CAS  PubMed  Google Scholar 

  12. Nilakantan V, Liang H, Maenpaa CJ, Johnson CP. Differential patterns of peroxynitrite mediated apoptosis in proximal tubular epithelial cells following ATP depletion recovery. Apoptosis. 2008;13:621–33.

    Article  CAS  PubMed  Google Scholar 

  13. Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol. 2003;170:1517–23.

    CAS  PubMed  Google Scholar 

  14. Donnahoo KK, Meldrum DR, Shenkar R, Chung CS, Abraham E, Harken AH. Early renal ischemia, with or without reperfusion, activates NFkappaB and increases TNF-alpha bioactivity in the kidney. J Urol. 2000;163:1328–32.

    Article  CAS  PubMed  Google Scholar 

  15. Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia–reperfusion. Am J Physiol. 1999;277:R922–9.

    CAS  PubMed  Google Scholar 

  16. Donnahoo KK, Shames BD, Harken AH, Meldrum DR. Review article: the role of tumor necrosis factor in renal ischemia–reperfusion injury. J Urol. 1999;162:196–203.

    Article  CAS  PubMed  Google Scholar 

  17. Choi DE, Jeong JY, Lim BJ, Na KR, Shin YT, Lee KW. Pretreatment with the tumor nerosis factor-alpha blocker etanercept attenuated ischemia–reperfusion renal injury. Transplant Proc. 2009;41:3590–6.

    Article  CAS  PubMed  Google Scholar 

  18. Jo SK, Sung SA, Cho WY, Go KJ, Kim HK. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant. 2006;21:1231–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sung SA, Jo SK, Cho WY, Won NH, Kim HK. Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats. Nephron Exp Nephrol. 2007;105:e1–9.

    Article  PubMed  Google Scholar 

  20. Liang HL, Hilton G, Mortensen J, Regner K, Johnson CP, Nilakantan V. MnTMPyP, a cell-permeant SOD mimetic, reduces oxidative stress and apoptosis following renal ischemia–reperfusion. Am J Physiol Renal Physiol. 2009;296:F266–76.

    Article  CAS  PubMed  Google Scholar 

  21. Maenpaa CJ, Shames BD, Van Why SK, Johnson CP, Nilakantan V. Oxidant-mediated apoptosis in proximal tubular epithelial cells following ATP depletion and recovery. Free Radic Biol Med. 2008;44:518–26.

    Article  CAS  PubMed  Google Scholar 

  22. Wang T, Liu B, Qin L, Wilson B, Hong JS. Protective effect of the SOD/catalase mimetic MnTMPyP on inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuronal-glial cultures. J Neuroimmunol. 2004;147:68–72.

    Article  CAS  PubMed  Google Scholar 

  23. Nilakantan V, Zhou X, Hilton G, Shi Y, Baker JE, Khanna AK, et al. Antagonizing reactive oxygen by treatment with a manganese (III) metalloporphyrin-based superoxide dismutase mimetic in cardiac transplants. J Thorac Cardiovasc Surg. 2006;131:898–906.

    Article  CAS  PubMed  Google Scholar 

  24. Liang HL, Arsenault J, Mortensen J, Park F, Johnson CP, Nilakantan V. Partial attenuation of cytotoxicity and apoptosis by SOD1 in ischemic renal epithelial cells. Apoptosis. 2009;14:1176–89.

    Article  CAS  PubMed  Google Scholar 

  25. Jo SK, Cha DR, Cho WY, Kim HK, Chang KH, Yun SY, et al. Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells. Nephron. 2002;91:406–15.

    Article  CAS  PubMed  Google Scholar 

  26. Kaminska D, Tyran B, Mazanowska O, Rabczynski J, Szyber P, Patrzalek D, et al. Cytokine gene expression in kidney allograft biopsies after donor brain death and ischemia–reperfusion injury using in situ reverse-transcription polymerase chain reaction analysis. Transplantation. 2007;84:1118–24.

    Article  CAS  PubMed  Google Scholar 

  27. Nair MP, Nampoory MR, Johny KV, Costandi JN, Abdulhalim M, El-Reshaid W, et al. Induction immunosuppression with interleukin-2 receptor antibodies (basiliximab and daclizumab) in renal transplant recipients. Transplant Proc. 2001;33:2767–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wu H, Zhu B, Shimoishi Y, Murata Y, Nakamura Y. (-)-Epigallocatechin-3-gallate induces up-regulation of Th1 and Th2 cytokine genes in Jurkat T cells. Arch Biochem Biophys. 2009;483:99–105.

    Article  CAS  PubMed  Google Scholar 

  29. Shen XD, Ke B, Zhai Y, Gao F, Tsuchihashi S, Lassman CR, et al. Absence of toll-like receptor 4 (TLR4) signaling in the donor organ reduces ischemia and reperfusion injury in a murine liver transplantation model. Liver Transpl. 2007;13:1435–43.

    Article  PubMed  Google Scholar 

  30. Vannier E, Miller LC, Dinarello CA. Coordinated antiinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA. 1992;89:4076–80.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma P, Chakraborty R, Wang L, Min B, Tremblay ML, Kawahara T, et al. Redox regulation of interleukin-4 signaling. Immunity. 2008;29:551–64.

    Article  CAS  PubMed  Google Scholar 

  32. Koken T, Serteser M, Kahraman A, Akbulut G, Dilek ON. Which is more effective in the prevention of renal ischemia–reperfusion-induced oxidative injury in the early period in mice: interleukin (IL)-10 or anti-IL-12? Clin Biochem. 2004;37:50–5.

    Article  PubMed  Google Scholar 

  33. Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001;60:2118–28.

    Article  CAS  PubMed  Google Scholar 

  34. Nandi D, Mishra MK, Basu A, Bishayi B. Protective effects of interleukin-6 in lipopolysaccharide (LPS)-induced experimental endotoxemia are linked to alteration in hepatic anti-oxidant enzymes and endogenous cytokines. Immunobiology. 2009;215:443–51.

    Article  PubMed  Google Scholar 

  35. Yu SJ, Oh DJ, Yu SH. The investigation of macrophage infiltration in the early phase of ischemic acute renal failure in mice. Korean J Intern Med. 2008;23:64–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Huanling Liang for technical assistance with this project. This study was partially supported by an AHA grant to Dr. Vani Nilakantan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vani Nilakantan.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, J., Shames, B., Johnson, C.P. et al. MnTMPyP, a superoxide dismutase/catalase mimetic, decreases inflammatory indices in ischemic acute kidney injury. Inflamm. Res. 60, 299–307 (2011). https://doi.org/10.1007/s00011-010-0268-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0268-3

Keywords

Navigation