Skip to main content

Generalized equations and their solutions, part II: Applications to nonlinear programming

  • Chapter
  • First Online:
Optimality and Stability in Mathematical Programming

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 19))

Abstract

We prove that if the second-order sufficient condition and constraint regularity hold at a local minimizer of a nonlinear programming problem, then for sufficiently smooth perturbations of the constraints and objective function the set of local stationary points is nonempty and continuous; further, if certain polyhedrality assumptions hold (as is usually the case in applications), then the local minimizers, the stationary points and the multipliers all obey a type of Lipschitz condition.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the National Science Foundation under Grant No. MCS-7901066. Parts of the research for this paper were carried out at the Département de Mathématiques de la Décision, Université Paris-IX Dauphine, with financial support from the Centre National de la Recherche Scientifique, and at the Departamento de Matemáticas y Ciencias de la Computación, Universidad Simón Bolívar, Caracas, Venezuela, with support from the United Nations Educational, Scientific and Cultural Organization under Proyecto UNESCO VEN-77-002. The author greatly appreciates the hospitality and support extended by the institutions cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berge, Topological spaces (Macmillan, New York, 1963).

    MATH  Google Scholar 

  2. J.W. Daniel, “Stability of the solution of definite quadratic programs”, Mathematical Programming 5 (1973) 41–53.

    Article  MATH  MathSciNet  Google Scholar 

  3. A.V. Fiacco and G.P. McCormick, Nonlinear programming: Sequential unconstrained minimization techniques (Wiley, New York, 1968).

    MATH  Google Scholar 

  4. A.V. Fiacco, “Sensitivity analysis for nonlinear programming using penalty methods”, Mathematical Programming 10 (1976) 287–311.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Gauvin, “A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming”, Mathematical Programming 12 (1977) 136–138.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Guignard, “Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space”, SIAM Journal on Control 7 (1969) 232–241.

    Article  MATH  MathSciNet  Google Scholar 

  7. S.-P. Han and O.L. Mangasarian, “Exact penalty functions in nonlinear programming”, Mathematical Programming 17 (1979) 251–269.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.R. Hestenes, Optimization theory: The finite-dimensional case (Wiley, New York, 1975).

    MATH  Google Scholar 

  9. N.H. Josephy, “Newton’s method for generalized equations”, Technical Summary Report No. 1965, Mathematics Research Center, University of Wisconsin, Madison, WI (June 1979).

    Google Scholar 

  10. M. Kojima, “Strongly stable stationary solutions in nonlinear programs”, in: S.M. Robinson, ed., Analysis and computation of fixed points (Academic Press, New York, 1980) pp. 93–138.

    Google Scholar 

  11. E.S. Levitin, “On the local perturbation theory of a problem of mathematical programming in a Banach space”, Soviet Mathematics Doklady 16 (1975) 1354–1358.

    MATH  Google Scholar 

  12. O.L. Mangasarian and S. Fromovitz, “The Fritz John necessary optimality conditions in the presence of equality and inequality constraints”, Journal of Mathematical Analysis and Applications 17 (1967) 37–47.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Maurer and J. Zowe, “First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems”, Mathematical Programming 16 (1979) 98–110.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Maurer, “First and second-order sufficient optimality conditions in mathematical programming and optimal control”, Schriftenreihe des Rechenzentrums der Universität Münster Nr. 38 (August 1979).

    Google Scholar 

  15. S.M. Robinson, “Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms”, Mathematical Programming 7 (1974) 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  16. S.M. Robinson, “Stability theory for systems of inequalities, Part I: Linear systems”, SIAM Journal on Numerical Analysis 12 (1975) 754–769.

    Article  MATH  MathSciNet  Google Scholar 

  17. S.M. Robinson, “First order conditions for general nonlinear optimization”, SIAM Journal on Applied Mathematics 30 (1976) 597–607.

    Article  MATH  MathSciNet  Google Scholar 

  18. S.M. Robinson, “Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems”, SIAM Journal on Numerical Analysis 13 (1976) 497–513.

    Article  MATH  MathSciNet  Google Scholar 

  19. S.M. Robinson, “Generalized equations and their solutions, Part I: Basic theory”, Mathematical Programming Study 10 (1979) 128–141.

    MATH  Google Scholar 

  20. S.M. Robinson, “Strongly regular generalized equations”, Mathematics of Operations Research 5 (1980) 43–62.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.M. Robinson, “Some continuity properties of polyhedral multifunctions”, Mathematical Programming Study 14 (1981) 206–214.

    MATH  Google Scholar 

  22. R.T. Rockafellar, Convex analysis (Princeton University Press, Princeton, NJ, 1970).

    MATH  Google Scholar 

  23. R.W.H. Sargent, “On the parametric variation of constraint sets and solutions of minimization problems”, Department of Chemical Engineering and Chemical Technology, Imperial College, London (July 1979).

    Google Scholar 

  24. J. Spingarn, “Generic conditions for optimality in constrained minimization problems”, Dissertation, Department of Mathematics, University of Washington, Seattle, WA (August 1977).

    Google Scholar 

  25. J. Telgen, “Minimal representation of convex polyhedral sets”, Working Paper No. 88, College of Business Administration, University of Tennessee, Knoxville, TN (February 1980).

    Google Scholar 

  26. R.B. Wilson, “A simplicial algorithm for concave programming”, Dissertation, Graduate School of Business Administration, Harvard University, Boston, MA (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Monique Guignard

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Robinson, S.M. (1982). Generalized equations and their solutions, part II: Applications to nonlinear programming. In: Guignard, M. (eds) Optimality and Stability in Mathematical Programming. Mathematical Programming Studies, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120989

Download citation

  • DOI: https://doi.org/10.1007/BFb0120989

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00849-8

  • Online ISBN: 978-3-642-00850-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics