Skip to main content

Molecular adaptations in psychrophilic bacteria: Potential for biotechnological applications

  • Chapter
  • First Online:
Book cover Biotechnology of Extremophiles

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 61))

Abstract

Bacteria which live in cold conditions are known as psychrophiles. Since so much of our planet is generally cold, i.e. below 5°C, it is not surprising that they are very common amongst a wide variety of habitats. To enable them to survive and grow in cold environments, psychrophilic bacteria have evolved a complex range of adaptations to all of their cellular components, including their membranes, energy-generating systems, protein synthesis machinery, biodegradative enzymes and the components responsible for nutrient uptake. Whilst such a systems approach to the topic has its advantages, all of the changes can be described in terms of adaptive alterations in the proteins and lipids of the bacterial cell. The present review adopts the latter approach and, following a brief consideration of the definition of psychrophiles and description of their habitats, focusses on those adaptive changes in proteins and lipids, especially those which are either currently being explored for their biotechnological potential or might be so in the future. Such applications for proteins range from the use of cold-active enzymes in the detergent and food industries, in specific biotransformations and environmental bioremediations, to specialised uses in contact lens cleaning fluids and reducing the lactose content of milk; ice-nucleating proteins have potential uses in the manufacture of ice cream or artificial snow; for lipids, the uses include dietary supplements in the form of polyunsaturated fatty acids from some Antarctic marine psychrophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hochachka PW, Somero GN (1984) Biotechmical adaptations, Princeton University Press, Princeton

    Google Scholar 

  2. Ingraham JL (1958) J Bacteriol 76:75

    CAS  Google Scholar 

  3. Ingram M (1965) Ann Inst Pasteur Paris 16:111

    CAS  Google Scholar 

  4. Morita RY (1975) Bacteriol Rev 29:144

    Google Scholar 

  5. Innis WE (1975) Annu Rev Microbiol 29:445

    Article  Google Scholar 

  6. Herbert RA (1986) The ecology and physiology of psychrophilic micro-organisms. In: Herbert RA, Codd GA (eds) Microbes in extreme environments, Academic Press (for Society of General Microbiology, UK), London, p 1

    Google Scholar 

  7. Russell NJ (1990) Phil Trans Roy Soc London Series B 329:595

    Article  Google Scholar 

  8. Russell NJ (1992) Physiology and molecular biology of psychrophilic micro-organisms. In Herbert RA, Sharp RJ (eds) Molecular biology and biotechnology of extremophiles. Blackie, Glasgow & London, p 203

    Google Scholar 

  9. Russell NJ (1997) Comp Biochem Physiol: In press

    Google Scholar 

  10. Gounot A-M (1991) J Appl Bacteriol 71:386

    CAS  Google Scholar 

  11. Vincent WF (1988) Microbial systems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  12. Friedmann EI (ed) (1993) Antarctic microbiology, Wiley-Liss, New York

    Google Scholar 

  13. Schlatter D, Driech O, Suter F, Zuber H (1987) Biol Chem Hoppe-Seyler 368:1435

    CAS  Google Scholar 

  14. Rentier-Delrue F, Mande SC, Moyens S, Terpstra P, Mainfroid V, Goraj K, Lion M, Hol WGJ, Martial JA (1993) J Mol Biol 229:85

    Article  CAS  Google Scholar 

  15. Arpigny JL, Feller G, Davail S, Narinx E, Zekhnini Z, Gerday C (1994) Adv Comp Environ Physiol 20:270

    Google Scholar 

  16. Aghajari N, Feller G, Gerday C, Haser R (1996) Prot Sci (1996) 5:2128

    CAS  Google Scholar 

  17. Margesin R, Schinner F (1994) J Biotechnol 33:1

    Article  CAS  Google Scholar 

  18. Russell NJ (1993) Biochemical differences between psychrophilic and psychrotolerant microorganisms. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology, Spanish Society for Microbiology, Madrid, p 29

    Google Scholar 

  19. Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) FEMS Microbiol Lett 18:189

    CAS  Google Scholar 

  20. Davail S, Feller G, Narinx E, Gerday C (1992) Gene 119:143

    Article  CAS  Google Scholar 

  21. Gugi B, Organge N, Hellio F, Burini JR, Hukllou C, Leriche F, Guespin-Michel JF (1991) J Bacteriol 173:3814

    CAS  Google Scholar 

  22. Guillou C, Merieau A, Trebert B, Guespin-Michel JF (1995) Biotechnol Lett 17:377

    Article  CAS  Google Scholar 

  23. Guillou C, Guespin-Michel JR (1996) Appl Environ Microbiol 62:3319

    CAS  Google Scholar 

  24. Austin B (1988) Marine microbiology, Cambridge University Press, Cambridge

    Google Scholar 

  25. Morita RY (1980) Can J Microbiool 26:1375

    CAS  Google Scholar 

  26. Yayanos AA, Diez AS, Van Boxtel R (1981) Proc Natl Acad Sci USA 78:5212

    Article  CAS  Google Scholar 

  27. Yayanos AA, DeLong EF (1987) Deep-sea bacterial fitness to environmental temperatures and pressures. In: Jannasch HW, Marquis RE, Zimmerman AM (eds) Current perspectives in high pressure biology, Academic Press, London, p 17

    Google Scholar 

  28. Jannasch HW, Wirsen CO, Taylor CD (1982) Science 216:1315

    Article  CAS  Google Scholar 

  29. Hamamoto T, Russell NJ (1998) Psychrophiles. In: Horikoshi K, Grant WD (eds) Extremophiles, Wiley, New York: In press

    Google Scholar 

  30. Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Nature 371:410

    Article  Google Scholar 

  31. Wynn-Williams DW (1990) Adv Microbial Ecol 11:71

    Google Scholar 

  32. Vishniac HS (1993) The microbiology of Antarctic soils. In: Friedman EI (ed) Antarctic microbiology, Wiley-Liss, New York, p 297

    Google Scholar 

  33. Palmissano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedman EI (ed) Antarctic microbiology, Wiley-Liss, New York, p 167

    Google Scholar 

  34. Gounot A-M (1976) Can J Microbiol 22:839

    CAS  Google Scholar 

  35. Nichols DS, Nichols PD, McMeekin TA (1995) Sci Progr Oxf 78:311

    Google Scholar 

  36. Franzmann PD, Springer N, Ludwig W, De Macario EC, Rohdes M (1992) System Appl Microbiol 15:573

    Google Scholar 

  37. Kotsyurbenko OR, Nozhevnikova AN, Soloviova TI, Zavarzin GA (1996) Ant van Leeuw Int J Gen Molec Microbiol 69:75

    Article  CAS  Google Scholar 

  38. DeLong EF, Wu KY, Prézelin BB, Jovine RVM (1994) Nature 371:695

    Article  CAS  Google Scholar 

  39. Walker SJ, Stringer MF (1990) Microbiology of chilled foods. In: Gormley TR (ed) Chilled foods, the state of the art. Elsevier, London, p 269

    Google Scholar 

  40. Russell NJ, Gould GW (1991) Factors affecting growth and survival. In: Russell NJ, Gould GW (eds) Food preservatives, Blackie, Glasgow, Chap 2

    Google Scholar 

  41. Gould GW, Russell NJ (1991) Major food-poisoning and food-spoilage micro-organisms. In: Russell NJ, Gould GW (eds) Food preservatives, Blackie, Glasgow, Chap 1

    Google Scholar 

  42. Bognar A, Bohling H, Fort H (1990) Nutrient retention in chilled foods. In: Gormley TR (ed) Chilled foods, the state of the art, Elsevier, London, p 305

    Google Scholar 

  43. Mitchell P, Yen HC, Mathemeier PF (1985) Appl Environ Microbiol 49:1332

    CAS  Google Scholar 

  44. Potier P, Drevet P, Gounot A-M, Hipkiss AR (1990) J Gen Microbiol 136:283

    CAS  Google Scholar 

  45. Malcolm NL (1969) Nature 221:1031

    Article  CAS  Google Scholar 

  46. Zuber H (1988) Biophys Chem 29:171

    Article  CAS  Google Scholar 

  47. Jaenicke R (1991) Eur J Biochem 202:715

    Article  CAS  Google Scholar 

  48. Vckovski V, Schlatter D, Zuber H (1990) Biol Chem Hoppe-Seyler 371:103

    CAS  Google Scholar 

  49. Narinx E, Davail S, Feller G, Gerday C (1992) Biochim Biophys Acta 1131:111

    CAS  Google Scholar 

  50. Feller G, Thiry M, Gerday C (1991) DNA Cell Biol 10:381

    Article  CAS  Google Scholar 

  51. Arpigny JL, Feller G, Gerday C (1993) Biochim Biophys Acta 1171:331

    CAS  Google Scholar 

  52. Feller G, Lonhienne T, Deroanne C, Libiouille C, Van Beeumen J, Gerday C (1992) J Biol Chem 267:5217

    CAS  Google Scholar 

  53. Trimbur DE, Gutshall KR, Prema P, Brenchley JE (1994) Appl Environ Microbiol 60: 4544

    CAS  Google Scholar 

  54. Gutshall KR, Trimbur DE, Kasmir JJ, Brenchley JE (1995) J Bacteriol 177:1981

    CAS  Google Scholar 

  55. Ishii A, Susuki M, Sahara T, Takada Y, Sasaki S, Fukunaga N (1993) J Bacteriol 175:6873

    CAS  Google Scholar 

  56. Gerike U, Russell NJ, Hough D, Danson MJ (1997) Eur J Biochem 248:49

    Article  CAS  Google Scholar 

  57. McKay DB, Jennings MP, Godfrey EA, MacRae IC, Rogers PJ, Beacham IR (1992) J Gen Microbiol 138:701

    CAS  Google Scholar 

  58. Zuber (1990) p 610 of Discussion in Russell (1990)

    Google Scholar 

  59. Davail S, Feller G, Narinx E, Gerday C (1994) J Biol Chem 269:17–448

    Google Scholar 

  60. Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Eur J Biochem: In press

    Google Scholar 

  61. Feller G, Pazan F, Theys F, Qian M, Haser R, Gerday C (1994) Eur J Biochem 222:441

    Article  CAS  Google Scholar 

  62. Siezen RJ, De Vos WM, Leunissen JAM, Dijkstra BW (1991) Prot Eng 4:719

    CAS  Google Scholar 

  63. Stryer L (1981) Biochemistry, 2nd edn. Freeman, San Francisco, Chap 8

    Google Scholar 

  64. Wigley DB, Clarke AR, Dunn CR, Barstow DA, Atkinson T, Chia WN, Muirhead H, Holbrook JJ (1987) Biochim Biophys Acta 916:145

    CAS  Google Scholar 

  65. Ochiai T, Fukunaga N, Sasaki S (1979) J Biochem 86:377

    CAS  Google Scholar 

  66. Ochiai T, Fukunaga N, Sasaka S (1984) J Gen Appl Microbiol 30:479

    CAS  Google Scholar 

  67. Susuki M, Sahara T, Tsuruha J-I, Takada Y, Fukunaga N (1995) J Bacteriol 177:2138

    Google Scholar 

  68. Ray MK, Kumar GS, Shivaji S (1994) Microbiology 140:3217

    CAS  Google Scholar 

  69. Singer SJ, Nicolson GL (1972) Science 175:720

    Article  CAS  Google Scholar 

  70. Russell NJ (1984) Trends Biochem Sci 9:108

    Article  CAS  Google Scholar 

  71. Russell NJ (1989) Functions of lipids: structural roles and membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic Press, London, p 279

    Google Scholar 

  72. Harwood JL, Russell NJ (1984) Lipids in plants and microbes. George Allen & Unwin, London

    Google Scholar 

  73. Ratledge C, Wilkinson SG (1988) Microbial lipids, vol. 1, Academic Press, London

    Google Scholar 

  74. Macdonald PM, McDonough B, Sykes BD, McElhaney RN (1983) Biochem 22:5103

    Article  CAS  Google Scholar 

  75. Macdonald PM, Sykes BD, McElhaney RN (1985) Biochem 24:2412

    Article  CAS  Google Scholar 

  76. McGibbon L, Russell NJ (1983) Curr Microbiol 9:241

    Article  CAS  Google Scholar 

  77. Ring E, Sinclair PD, Birkbeck H, Barbour A (1992) Appl Environ Microbiol 58:3777

    Google Scholar 

  78. Nichols DS, Nichols PD, McMeekin TA (1993) Antarct Sci 5:149

    Google Scholar 

  79. Hamamoto T, Takata N, Kudo T, Horikoshi K (1994) FEMS Microbiol Lett 119:77

    Article  CAS  Google Scholar 

  80. Nichols DS, Nichols PD, Russell NJ, McMeekin TA (1997) Biochim Biophys Acta 1347:16

    Google Scholar 

  81. Nichols DS, Russell NJ (1996) Microbiology 142:747

    Article  CAS  Google Scholar 

  82. Keweloh H, Heipieper HJ (1996) Lipids 31:129

    Article  CAS  Google Scholar 

  83. Okuyama H, Okajima N, Sasaki S, Higashi S, Murata N (1991) Biochim Biophys Acta 1084:13

    CAS  Google Scholar 

  84. Henderson RJ, Millar RM, Sargent JR, Jostensen J-P (1993) Lipids 28:389

    Article  CAS  Google Scholar 

  85. de Mendoza D, Cronan JE Jr (1983) Trends Biochem Sci 8:49

    Article  Google Scholar 

  86. Magnuson K, Jackowski S, Rock CO, Cronan JE Jr (1993) Microbiol Rev 57:522

    CAS  Google Scholar 

  87. Wada H, Gombos Z, Murata N (1990) Nature 347:200

    Article  CAS  Google Scholar 

  88. Wada H, Gombos Z, Murata N (1994) Proc Natl Acad Sci USA 91:4273

    Article  CAS  Google Scholar 

  89. Sharp RJ, Munster KN (1986) Biotechnological implications for microorganisms from extreme environments. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, p 215

    Google Scholar 

  90. Schlegel, HG (1993) General microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  91. Reichardt W (1988) Microb Ecol 15:311

    Article  Google Scholar 

  92. Klecka GM, Carpenter CL, Landenberger BD (1993) Ecotox Environ Safety 25:280

    Article  CAS  Google Scholar 

  93. Meher KK, Murthy MVS, Goakota KG (1994) Bioresour Technol 50:103

    Article  CAS  Google Scholar 

  94. Saffley LM Jr, Westerman (1992) Bioresour Technol 41:167

    Article  Google Scholar 

  95. Singh L, Sai Ram M, Alam SI, Maurya MS (1995) Bull Environ Contam Toxicol 54:472

    Article  CAS  Google Scholar 

  96. Halmø G, Eimhjelen K (1981) Water Res 15:989

    Article  Google Scholar 

  97. Li J, Lee T-C (1995) Trends Food Sci Technol 6:259

    Article  CAS  Google Scholar 

  98. Wolber PK (1993) Adv Microb Physiol 34:203

    Article  CAS  Google Scholar 

  99. Wolber P, Warren G (1989) Trends Biochem Sci 14:179

    Article  CAS  Google Scholar 

  100. Kajava A, Lindow SE (1993) J Mol Biol 232:709

    Article  CAS  Google Scholar 

  101. Gurian-Sherman D, Lindow SE (1993) FASEB J 7:1338

    CAS  Google Scholar 

  102. Allmeida MJ, Pais C (1996) Appl Environ Microbiol 62:4401

    Google Scholar 

  103. Sode K, Nakasono S, Tanaka M, Matsunuga T (1993) Biotechnol Bioeng 42:251

    Article  CAS  Google Scholar 

  104. Hikuma M, Matsuoka H, Tanaka M, Tonooka Y (1993) Anal Lett 26:209

    CAS  Google Scholar 

  105. Krajewska E, Szer W (1967) Eur J Biochem 2:250

    Article  CAS  Google Scholar 

  106. Jones PG, Inouye M (1994) Molec Microbiol 11:811

    Article  CAS  Google Scholar 

  107. Jones PG, Krah R, Tafuri SR, Wolffe AP (1992) J Bacteriol 174:5798

    CAS  Google Scholar 

  108. Schindelin H, Marahiel MA, Heinemann U (1993) Nature 364:164

    Article  CAS  Google Scholar 

  109. Lee SJ, Xie A, Jiang W, Etchegaray J-P, Jones PG, Inouye M (1994) Molec Microbiol 11:833

    Article  CAS  Google Scholar 

  110. Willemsky G, Bang H, Fischer G, Marahiel MA (1992) J Bacteriol 174:6326

    Google Scholar 

  111. Graumann P, Marahill MA (1994) FEBS Lett 74:157

    Article  Google Scholar 

  112. Ray MK, Sitaramamma T, Ghandi S, Shivaji S (1994) FEMDS Microbiol Lett 116:55

    Article  CAS  Google Scholar 

  113. Jones PG, Cashel M, Glaser G, Neidhardt FC (1992) J Bacteriol 174:3903

    CAS  Google Scholar 

  114. Dammel CS, Noller HR (1995) Genes Dev 9:626

    CAS  Google Scholar 

  115. Jones PG, Inouye M (1996) Molec Microbiol 21:1207

    Article  CAS  Google Scholar 

  116. Qoronfleh MW, Debouck C, Keller J (1992) J Bacteriol 174:7902

    CAS  Google Scholar 

  117. Whyte LG, Innis WE (1992) Can J Microbiol 38:1281

    Article  CAS  Google Scholar 

  118. Roberts ME, Inniss WE (1992) Curr Microbiol 25:275

    Article  CAS  Google Scholar 

  119. Forster J (1887) Zentr Bakteriol Parasitenk Infekt Hyg 2:337

    Google Scholar 

  120. Hooker JD (1847) The botany of the Antarctic voyage of H.M. Discovery ships Erebus and Terror in the years 1839–1843, vol. 1, flora of antarctica. Cramer, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Antranikian (Professor Dr.)

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Russell, N.J. (1998). Molecular adaptations in psychrophilic bacteria: Potential for biotechnological applications. In: Antranikian, G. (eds) Biotechnology of Extremophiles. Advances in Biochemical Engineering/Biotechnology, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102287

Download citation

  • DOI: https://doi.org/10.1007/BFb0102287

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63817-9

  • Online ISBN: 978-3-540-69652-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics