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PREFACE

These notes are mainly based on a course of lectures given by the
first named author at the Research and Training School of the Indian
Statistical Institute, Calcutta during May 1971. A first and slightly
shorter version of these notes has appeared under the same title as
publication No. M71-1 of the Research and Training School of the
Indian Statistical Institute. Some of the results were obtained when
the authors were at the Statistical Laboratory, Mathematics Depart-
ment, University of Manchester, in 1970.

The notion of a continuous tensor product of Hilbert spamces and group
representations appears in the work of H. Arakif?], H. Araki and

E.Jd. Woods[?]and R.F. Streater(}91. Their analysis leads to a connec-
tion between continuous tensor products and the theory of infinitely
divisible distributions of Probability theory. The present work
contains a systematic study of these notions in terms of positive
definite kernels with invariance properties under a group action.
Such analysis also leads to a unified approach to the central limit
problems of Probability theory, the theory of stochastic processes
with stationary increments and construction of free fields in Quantum
Mechanics.

The contents of these notes are divided into three parts. In part

1 the notion of a projectively invariant positive definite kernel on
an abstract G-space is introduced and obtained as expectation value

of a projective unitary representation of the group G. Affine in-
variant conditionally positive definite kernels are investigated and

a representation of such kernels in terms of unitary representations
and first order cocycles is obtained. Using these ideas and the theory
of multiplicative measures, continuous tensor products of Hilbert
spaces and representations are constructed. The Fock-Cook construction
of the Bose-Einstein field in Quantum Mechanics [4] ’ [58] arises as

a natural consequence of this theory. Much of the inspiration for this
approach was derived from the work of H. Araki [2] .
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Part 2 analysis limits of products of uniformly infinitesimal families
of positive definite kernels. This leads in particular to the limit
laws in the theory of sums of independent random variables.

The third part contains results about first order cocycles for various
classes of representations and on some special groups. In particular

it is shown that first order cocycles of induced representations arise
from the cocycles of the inducing representation. As corollary to

this, cocycles of irreducible representations of nilpotent Lie groups
are described. Cocycles of representations of semisimple Lie groups
which are induced by characters of maximal solvable subgroups are al-
so obtained.

A short list of references including most of the major contributions
to these problems is included.

The first named author would like to thank the Research and Training
School of the Indian Statistical Institute and the University of

Bombay for providing him facilities for writing these notes. For the
same reason the second author would like to express his gratitude to
the Department of Mathematics, Bedford College, University of London.

K.R. Parthasarathy
K. Schmidt
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