Skip to main content
Log in

Design of drugs through a consideration of drug metabolism and pharmacokinetics

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Drug metabolism input to the discovery process has been to date largely on an empirical case by case basis. Considerable advances have been made, such that basic rules can be applied to the behaviour of a compound in man based on physico-chemistry and structure. This is particularly true in the area of the cytochrome P-450 enzymes, the principal enzymes involved in the primary clearance of drugs. The major human forms, CYP2D6, CYP2C9 and CYP3A4 all have distinct substrate preferences which are being catalogued and rationalised. Such understandings will not only impact on existing drugs. Since the enzymes and systems will remain the same, these understandings can be applied to the design of molecules for the targets of the future, whilst the structure activity relationships of those targets are being researched and revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prentis, R.A., Lis, Y. and Walker, S.R. (1988): Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). British Journal of Clinical Pharmacology, 25, 387–396.

    PubMed  CAS  Google Scholar 

  2. Humphrey M.J. and Smith D.A. (1992): Role of metabolism and pharmacokinetic studies in the discovery of new drugs-present and future perspectives. Xenobiotica, 22, 743–755.

    Article  PubMed  CAS  Google Scholar 

  3. Chiu S,-H.L. (1993): The use of in vitro metabolism studies in the understanding of new drugs. Journal of Pharmacological and Toxicological Methods, 29, 77–83.

    Article  PubMed  CAS  Google Scholar 

  4. Manners, C.N., Payling D.W. and Smith D.A. (1988): Distribution coefficient, a convenient term for the relation of predictable physico-chemical properties to metabolic processes, Xenobiotica. 18, 331–350.

    Article  PubMed  CAS  Google Scholar 

  5. Smith D.A., Humphrey M.J. and Charuel, C. (1990): Design of toxicokinetic studies. Xenobiotica, 20, 1187–1199.

    Article  PubMed  CAS  Google Scholar 

  6. Karls, M.S., Rush, B.D., Wilkinson, K.F., Vidmar, T.J., Burton, P.S. and Ruwart, M.J. (1991): Desolvation Energy: A major determinant of absorption, but not clearance, of peptides in rats. Pharmaceutical Research 8, 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  7. Rosenberg, S.H., Spina, K.P. Woods, K.W., Polakowski, J., Martin, D.L., Yao, Z., Stein, H.H., Cohen, J., Barlow, J.L., Egan, D.A., Tricarico, K.A., Baker, W.R. and Kleinert, H.D. (1993): Studies directed towards the design of orally active renin inhibitors. 1. Some factors influencing the absorption of small peptides. Journal of Medicinal chemistry, 36, 449–459.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, D.A. and Jones B.C. (1992): Speculations on the substrate structure-activity relationship (SSAR) of Cytochrome P-450 enzymes, Biochemical Pharmacology, 44, 2089–2098.

    Article  PubMed  CAS  Google Scholar 

  9. Guengerich, F.P. and Macdonald, T.L. (1990): Mechanisms of Cytochrome P-450 catalysis, FASEB Journal, 4, 2453–2459.

    PubMed  CAS  Google Scholar 

  10. Korzekwa, K.R., and Jones, J.P. (1993): Predicting the Cytochrome P-450 mediated metabolism of xenobiotics, Pharmacogenetics, 3, 1–18.

    Article  PubMed  CAS  Google Scholar 

  11. Strobl, G.R., S von Kruedener, Stickigt, J. Guengerich, P.P. and Wolff, T. (1993): Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modelling and inhibition studies, Journal of Medicinal Chemistry, 36, 1136–1145.

    Article  PubMed  CAS  Google Scholar 

  12. Jones, B.C., Hawksworth, G., Horne, V., Newlands, A., Tute, M., and Smith, D.A. (1993): Putative active site model for CYP2C9 (tolbutamide hydroxylase), British Journal of Clinical Pharmacology, 36, 143P-144P.

    Google Scholar 

  13. Stjemlof, P., Gullme, M., Elebring, T., Andersson, B., Wikstrom, H., Lagerquist, S., Svensson, K., Ekman, A., Carlsson, A., and Sundell, S. (1993): (S) and (R)-8-(Di-n-propylamino)-6,7,8,9-tetrahydro-3H-benz(e)indole-1-carba ldehyde: a new class of orally active 5-HT1A-receptor agonists. Journal of Medicinal Chemistry, 36, 2059–2065.

    Article  Google Scholar 

  14. Smith, D.A., Beaumont, K., Cussans, N.J., Humphrey, M.J., Jezequel, S.G., Rance, D.J., Stopher, D.A., Walker, D.K. (1992): Bioanalytical data in decision making: discovery and development. Xenobiotica, 22, 1195–1205.

    Article  PubMed  CAS  Google Scholar 

  15. Hanzlik, R.P. and Ling, K.H.J. (1990) Active site dynamics of toluene hydroxylation by cytochrome P-450. Journal of Organic Chemistry, 55, 3992–3997.

    Article  CAS  Google Scholar 

  16. Manoury, P.M. Binet, J.L. Rousseau, J. Leferre-Borg, F.M. and Cavero, I.G. (1987): Synthesis of a series of compounds related to betaxolol, a new** adrenoceptor antagonist with pharmacological and pharmacokinetic profile optimized for the treatment of chronic cardiovascular diseases, Journal of Medicinal Chemistry. 30, 1003–1011.

    Article  PubMed  CAS  Google Scholar 

  17. Marchetti, P and Navalesci, R. (1989): Pharmacokineticpharmacodynamic relationships of oral hypoglaecemic agents. 16, 100–128.

    CAS  Google Scholar 

  18. Newlands, A.J. Smith, D.A. Jones, B.C., and Hawksworth, G.M. (1992). Metabolism of non-steroidal anti-inflammatory drugs by cytochrome P-4502C. British Journal of Clinical Pharmacology, 34, 152P.

    Google Scholar 

  19. Verbeck, R.K., Blackburn, J.L. and Loewen G.R. (1983): Clinical pharmacokinetics of non-steroidal anti-inflammatory drugs, Clinical Pharmacokinetics. 8, 297–331.

    Article  Google Scholar 

  20. Pichard, L., Gillet, G., Fabre, I., Dalet-Beluche, I, Bonfils, C., Thenot, J-P, and Maurel, P. (1990): Identification of the rabbit and human cytochromes P-450111A as the major enzymes involved in the N-demethylation of diltiazem, Drug Metabolism and Disposition. 18, 711–719.

    PubMed  CAS  Google Scholar 

  21. Floyd, D.M., Dimball, S.D., Krapcho, J., Das, J., Turk, C.F., Moquin, R.V., Lago, M.W., Duff, K.J., Lee, V.G., White, R.E., Ridgewell, R.E., Moreland, S., Brittain, R.J. Normandin, D.E., Hedberg, S.A. and Cucinotta, G.C. (1992): Structure activity and drug metabolism studies leading to potent antihypertensive agents. Comparison with benzothiazepinones, Journal of Medicinal Chemistry. 35, 756–772.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.A. Design of drugs through a consideration of drug metabolism and pharmacokinetics. Eur. J. Drug Metab. Pharmacokinet. 19, 193–199 (1994). https://doi.org/10.1007/BF03188921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03188921

Keywords

Navigation