Skip to main content
Log in

Modeling of solute redistribution in the mushy zone during solidification of aluminum-copper alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A mathematical model has been established to predict the formation of macrosegregation for a unidirectional solidification of aluminum-copper alloys cooled from the bottom. The model, based on the continuum formulation, allows the calculation of transient distributions of temperature, velocity, and species in the solidifying alloy caused by thermosolutal convection and shrinkage-induced fluid flow. Positive segregation in the casting near the bottom (inverse segregation) is found, which is accompanied by a moving negative-segregated mushy zone. The effects of shrinkage-induced fluid flow and solute diffusion on the formation of macrosegregation are examined. It is found that the redistribution of solute in the solidifying alloy is caused by the flow of solute-rich liquid in the mushy zone due to solidification shrinkage. A higher heat-extraction rate at the bottom increases the solidification rate, decreasing the size of the mushy zone, reducing the flow of solute-rich liquid in the mushy zone and, as a result, lessening the severity of inverse segregation. Comparisons between the theoretical predictions from the present study and previous modeling results and available experimental data are made, and good agreements are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

c :

specific heat

C :

coefficient, defined in Eq. [9]

c l :

permeability coefficient, defined in Eq. [8]

d :

dendrite arm spacing

D :

mass-diffusion coefficient

f :

mass fraction

g :

volume fraction or gravitational acceleration

h :

enthalpy

H :

latent heat

k :

thermal conductivity

k p :

equilibrium partition ratio

K :

permeability

p :

pressure

t :

time

T :

temperature

T m :

fusion temperature at zero solute concentration

u :

velocity in thex-direction

v :

velocity in they-direction V velocity vector Vr relative velocity vector (Vl — Vs)

x, y :

Cartesian coordinates

β S :

solutal expansion coefficient

β T :

thermal expansion coefficient

ε:

rate of temperature change

μ:

dynamic viscosity

ρ:

density

0:

initial value

c :

chill

e :

eutectic

l :

liquid phase

m :

fusion

r :

relative to solid velocity

s :

vsolid phase

α :

constituent of alloy

References

  1. M.C. Flemings:Solidification Processing, McGraw-Hill, Inc., New York, NY, 1974, pp. 214–58.

    Google Scholar 

  2. K.M. Fisher:PCH, PhysicoChem. Hydrodyn., 1981, vol. 2, pp. 311–26.

    CAS  Google Scholar 

  3. E. Scheil:Metallforschung, 1947, vol. 2, pp. 69–75.

    CAS  Google Scholar 

  4. J.S. Kirkaldy and W.V. Youdelis:Trans. TMS-AIME, 1958, vol. 212, pp. 833–40.

    CAS  Google Scholar 

  5. M.C. Flemings and G.E. Nereo:Trans. TMS-AIME, 1967, vol. 239, pp. 1449–61.

    CAS  Google Scholar 

  6. M.C. Flemings, R. Mehrabian, and G.E. Nereo:Trans. TMS-AIME, 1968, vol. 242, pp. 41–49.

    CAS  Google Scholar 

  7. M.C. Flemings and G.E. Nereo:Trans. TMS-AIME, 1968, vol. 242, pp. 50–55.

    CAS  Google Scholar 

  8. H. Kato and J.R. Cahoon:Metall. Trans. A, 1985, vol. 16A, pp. 579–87.

    CAS  Google Scholar 

  9. I. Ohnaka and M. Matsumoto:Tetsu-to-Hagané (J. Iron Steel Inst. Jpn.), 1987, vol. 73, pp. 1698–1705.

    CAS  Google Scholar 

  10. I. Ohnaka and M. Matsumoto:Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 781–89.

    CAS  Google Scholar 

  11. W.D. Bennon and F.P. Incropera:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  CAS  Google Scholar 

  12. W.D. Bennon and F.P. Incropera:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2171–87.

    Article  CAS  Google Scholar 

  13. C. Beckermann and R. Viskanta:PCH, PhysicoChem. Hydrodyn., 1988, vol. 10, pp. 195–213.

    CAS  Google Scholar 

  14. D.G. Neilson and F.P. Incropera:Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 1717–32.

    Article  CAS  Google Scholar 

  15. K.C. Chiang and H.L. Tsai:Int. J. Heat Mass Transfer, 1992, vol. 35, pp. 1763–70.

    Article  CAS  Google Scholar 

  16. K.C. Chiang and H.L. Tsai:Int. J. Heat Mass Transfer, 1992, vol. 35, pp. 1771–78.

    Article  CAS  Google Scholar 

  17. P.C. Carman:Trans. Inst. Chem. Eng., 1937, vol. 15, pp. 150–66.

    CAS  Google Scholar 

  18. K. Kubo and R.D. Pehlke:Metall. Trans. B, 1985, vol. 16B, pp. 359–66.

    CAS  Google Scholar 

  19. G.S. Beavers and E.M. Sparrow:J. Appl. Mech., 1969, vol. 36, pp. 711–14.

    Google Scholar 

  20. J. Ni and C. Beckermann:Transport Phenomena in Material Processing, M. Charmichi, M.K. Chyu, Y. Joshi, and S.M. Walsh, eds., ASME HTD, Fairfield, NJ, 1990, vol. 32, pp. 45–56.

    Google Scholar 

  21. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, Hemisphere. New York, NY, 1980, pp. 96–102.

    Google Scholar 

  22. K.C. Chiang: Ph.D. Thesis, University of Missouri-Rolla, Rolla, MO, 1990.

  23. R.D. Pehlke, A. Jeyarajan, and H. Wada:Summary of Thermal Properties for Casting Alloys and Mold Materials, Report No. PB83-211003, National Technical Information Service, Washington, DC, 1983, pp. 81-93.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, Q.Z., Tsai, H.L. Modeling of solute redistribution in the mushy zone during solidification of aluminum-copper alloys. Metall Trans A 24, 963–973 (1993). https://doi.org/10.1007/BF02656518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656518

Keywords

Navigation