Skip to main content
Log in

The kinetics of molten iron desulfurization using magnesium vapor

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Magnesium vapor was injected into 60 kg heats of carbon-saturated iron at 1523 K. The magnesium dissolution and desulfurization rates as well as magnesium bubble size were monitored over sulfur contents ranging from 0.0002 to 0.2 pct S. The magnesium dissolution mass transfer coefficient was found to be 0.046 ± 0.034 mm · s−1 (for 30 mm diam bubbles). Further analysis indicated that most of the desulfurization took place at magnesium sulfide inclusions present in the bath; there was good agreement between the experimental precipitation rate constant and that predicted for diffusion to the number of inclusions observed by chemical analysis and inclusion counts. The seed magnesium sulfide inclusions were probably stripped from the ascending magnesium bubbles. These particles were quickly eliminated from the melt by bubble and induction stirring, resulting in a steady-state number of inclusions. This allowed a pseudosteady-state model to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. M. Smillie:Blast Furnace Ironmaking, W. K. Lu, ed., ch. 19 McMaster University, Hamilton, Canada, 1980.

    Google Scholar 

  2. P. K. Trojan and R. A. Flinn:Trans. Am. Soc. Met., 1961, vol. 54, pp. 549–66.

    CAS  Google Scholar 

  3. V. E. Scheil and H. L. Lukas:Giesserei Tech. Wiss. Beih., 1965, vol. 17, no. 2, pp. 61–4.

    CAS  Google Scholar 

  4. R. Moser:Giessereiforschung in English, 1969, vol. 21, no. 3, pp. 130–39.

    Google Scholar 

  5. M. C. Speer and N. A. D. Parlee:AFS Cast Met. Res. J., (Sept.) 1972, pp. 122–28.

  6. E. T. Engh. H. Midtgaard, J. C. Borke, and T. Rosenqvist:Scand. J. Metall., 1979, vol. 8, pp. 195–98.

    CAS  Google Scholar 

  7. G. A. Irons: PhD. Thesis, McGill University, Canada, 1978.

    Google Scholar 

  8. G. A. Irons and R. I. L. Guthrie:Can. Metall. Q., 1976, vol. 15, no. 4, pp. 325–32.

    CAS  Google Scholar 

  9. K. Nakanishi, A. Ejima, T. Suzuki, and F. Sudo:Tetsu To Hagane, 1978, vol. 64, no. 9, pp. 1323–32.

    CAS  Google Scholar 

  10. G. A. Irons and R. I. L. Guthrie:Metall. Trans. B, 1978, vol. 9B, pp. 101–10.

    CAS  Google Scholar 

  11. J. Kawa:Jpn. Inst. Met., 1956, vol. 20, p. 514.

    Google Scholar 

  12. R. E. Grace and G. Derge:Trans. TMS-AIME, 1958, vol. 212, p. 331.

    CAS  Google Scholar 

  13. G. A. Irons: M. Sc. Thesis, McGill University, Canada, 1975.

    Google Scholar 

  14. O. Kubaschewski, E. L. Evans, and C. B. Alcock:Metallurgical Thermochemistry, Fourth Edition, Permagon Press, Oxford, 1967.

    Google Scholar 

  15. W. E. Ranz and W. R. Marshall:Chem. Eng. Prog., 1952, vol. 48, pp. 141–46, 173–80.

    CAS  Google Scholar 

  16. J. Szekely:Fluid Flow Phenomena in Metals Processing, pp. 140–41, Academic Press, New York, 1979.

    Google Scholar 

  17. D. R. Topham:Spill Technology Newsletter, vol. 2, no. 4, p. 23, Environmenal Emergency Branch, E.P.A., Ottawa, 1977.

    Google Scholar 

  18. E. T. Turkdogan:J. Iron Steel Inst., 1972, vol. 210, pp. 21–36.

    CAS  Google Scholar 

  19. U. Lindborg and K. Torssell:Trans. TMSAIME, 1968, vol. 242, pp. 94–102.

    CAS  Google Scholar 

  20. C. Wert and C. Zener:J. Appl. Phys., 1950, vol. 21, pp. 5–8.

    Article  CAS  Google Scholar 

  21. E. T. Turkdogan:J. Iron Steel Inst., 1966, vol. 204, pp. 914–19.

    CAS  Google Scholar 

  22. G. A. Irons and R. I. L. Guthrie:Ironmaking Sleelmaking, 1981, no. 3, pp. 114–21.

  23. J. R. Grace:Trans. Inst. Chem. Eng., 1973, vol. 51, pp. 116–20.

    CAS  Google Scholar 

  24. M. H. I. Baird and J. F. Davidson:Chem. Eng. Sci., 1962, vol. 17, pp. 87–93.

    Article  CAS  Google Scholar 

  25. A. C. Lochiel and P. H. Calderbank:Chem. Eng. Sci., 1964, vol. 19, pp. 471–84.

    Article  CAS  Google Scholar 

  26. M. E. Weber:Chem. Eng. Sci., 1975, vol. 20, pp. 1507–10.

    Article  Google Scholar 

  27. R. I. L. Guthrie and A. V. Bradshaw:Chem. Eng. Sci., 1973, vol. 28, pp. 191–203.

    Article  CAS  Google Scholar 

  28. G. R. Belton:Metall. Trans. B, 1976, vol. 7B, 35–412.

    Article  CAS  Google Scholar 

  29. T. Deb Roy, N. H. El-Kaddah, and D. G. C. Robertson:Metall. Trans. B, 1977, vol. 8B, pp. 271–77.

    CAS  Google Scholar 

  30. A. V. Bradshaw and F. D. Richardson:Chemical Engineering in the Iron and Steel Industry, p. 130. Institution of Chemical Engineers, 1970.

  31. E. S. Macklin:Trans. TMS-AIME, 1960, vol. 218, pp. 314–26.

    Google Scholar 

  32. G. A. Irons, C. W. Chang, R. I. L. Guthrie, and J. Szekely:Metall. Trans. B, 1978, vol. 9B, pp. 151–54.

    CAS  Google Scholar 

  33. J. P. Hartnett and E. R. G. Eckert:Trans. ASME, 1957, vol. 79, p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irons, G.A., Guthrie, R.I.L. The kinetics of molten iron desulfurization using magnesium vapor. Metall Trans B 12, 755–767 (1981). https://doi.org/10.1007/BF02654145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654145

Keywords

Navigation