Skip to main content
Log in

The effects of Mg2+, Mn2+, Zn2+, and Al3+ on the nickel deposit during electrowinning from sulfate bath

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The presence of impurities like Mg2+, Mn2+, Zn2+, and Al3+ during electrowinning of nickel shows several effects. The effects include current efficiency, deposit quality, purity, crystallographic orientation, surface morphology, and polarization behavior. Addition of the impurities did not change the current efficiency significantly but did change the quality and purity of the electrodeposited nickel. Based on the quality of the deposits obtained, the tolerance limits of these impurities in nickel bath were obtained. Although no deviation of nickel structure from fee was observed, the peak height values for different orientations changed with all of the impurities and the values varied with impurity concentration. The surface morphologies of electrodeposited nickel in the presence of impurities also showed changes. The potentiodynamic scan curves for nickel deposition showed deviations in the presence of all the impurities studied. Based on the results, an attempt was made to correlate the various effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.A. Esin and E. Alfimova:Trans. Electrochem. Soc, 1935, vol. 68, 8 pp. (preprint).

  2. O.A. Esin and M. Laskarev:J. Phys. Chem., USSR, 1939, vol. 13, pp. 186–93.

    CAS  Google Scholar 

  3. V. A. Yuza and L. D. Kopyl:J. Phys. Chem., USSR, 1940, vol. 14, pp. 1074–84.

    CAS  Google Scholar 

  4. F. Sait:Disc. Faraday Soc, 1947, no. 1, pp. 169–81.

    Google Scholar 

  5. G.E. Gardam:Disc. Faraday Soc, 1947, no. 1, pp. 182–90.

    Google Scholar 

  6. A. T. Vagramyan and Z. A. Soloveva:Dok. Akad. Nauk. USSR, 1950, vol. 77, pp. 629–31.

    Google Scholar 

  7. H.J. Reiser and H. Fischer:Z. Elektrochem., 1954, vol. 58, pp. 668–72.

    CAS  Google Scholar 

  8. S.V. Gorbachev and Yu. N. Yurkevich:J. Chem. Phys. USSR, 1954, vol. 28, pp. 1120–28.

    CAS  Google Scholar 

  9. H. Fischer, M. Seipt, and G. Marlock:Z. Elektrochem., 1955, vol. 59, pp. 440–48.

    CAS  Google Scholar 

  10. L. Yang:J. Electrochem. Soc, 1950, vol. 97(8), pp. 241–44.

    Article  CAS  Google Scholar 

  11. J. Yeager, J. P. Cels, E. Yeager, and F. Hovorka:J. Electrochem. Soc, 1959, vol. 106(4), pp. 328–36.

    Article  CAS  Google Scholar 

  12. H. Jr. Leidheiser and A.T. Gwathmey:J. Electrochem. Soc, 1951, vol. 98, pp. 225–30.

    Article  CAS  Google Scholar 

  13. M.R.J. Wyllie:J. Chem. Phys., 1948, vol. 16, pp. 52–64.

    Article  CAS  Google Scholar 

  14. A. Brenner, V. Zentner, and C. W. Jennings:Plating, 1952, vol. 39, pp. 865–927.

    CAS  Google Scholar 

  15. D. J. Evans:Trans. Faraday Soc, 1958, vol. 54, pp. 1086–91.

    Article  CAS  Google Scholar 

  16. D. R. Cliffe and J. P. G. Farr:J. Electrochem. Soc, 1964, vol. Ill, pp. 299–306.

    Article  Google Scholar 

  17. N. A. Pangarov:Electrochim. Acta, 1964, vol. 9, pp. 721–26.

    Article  CAS  Google Scholar 

  18. I. Epelboin, M. Froment, and G. Maurin:Plating, 1969, vol. 56, pp. 1356–62.

    CAS  Google Scholar 

  19. A.D.NReddy:J. Electroanal. Chem., 1973, vol. 6, pp. 141, 153, 159.

    Article  Google Scholar 

  20. M.A. Zhamagortsyan, Z. N. Pilikyan, A.A. Yavich, and A.T. Vagramyan:Electrokhimiya, 1975, vol. 11(3), pp. 437–40.

    Google Scholar 

  21. J. Amblard: Thesis, Paris, CNRS A.O. 12387, 1976.

  22. J. Amblard, M. Froment, and N. Spyrellis:Surf. Technol., 1977, vol. 5, pp. 205–34.

    Article  CAS  Google Scholar 

  23. J. Amblard, I. Epelboin, M. Froment, and G. Maurin:J. Appl. Electrochem., 1979, vol. 9, pp. 233–42.

    Article  CAS  Google Scholar 

  24. S. Nakahara and E. C. Felder:J. Electrochem. Soc, 1982, vol. 129(1), pp. 45–49.

    Article  CAS  Google Scholar 

  25. A. Vertes, I. Czako. Nagy, and L. Lakatos-Varasenyl:J. Electrochem. Soc, 1984, vol. 131(7), pp. 1526–31.

    Article  CAS  Google Scholar 

  26. D.J. MacNaughtan and A.W. Hothersall:Trans. Faraday Soc, 1935, vol. 31, p. 1168.

    Article  CAS  Google Scholar 

  27. E. Liebreich:Trans. Faraday Soc, 1935, vol. 31, p. 213.

    Article  Google Scholar 

  28. W.A. Wood:Trans. Faraday Soc, 1935, vol. 31, pp. 1248–53.

    Article  CAS  Google Scholar 

  29. L. S. Palatnik:Trans. Faraday Soc, 1936, vol. 32, p. 939.

    Article  CAS  Google Scholar 

  30. A.W. Hothersall and G. E. Gardam:J. Electrodepositor’s Tech. Soc, 1939, vol. 15, pp. 127–40.

    CAS  Google Scholar 

  31. H. Fischer and H. Barmann:Z. Metallkunde, 1940, vol. 32, pp. 376–83.

    CAS  Google Scholar 

  32. W. Hume-Rothery and M.R.J. Wyllie:Proc. Roy. Soc. London, 1943, vol. A181, pp. 331–44.

    Google Scholar 

  33. W. Smith, J.H. Keeler, and H.J. Read:Plating, 1949, vol. 36, pp. 355–61.

    CAS  Google Scholar 

  34. G.L. Clark and S.H. Simonsen:J. Electrochem. Soc, 1951, vol. 98, pp. 110–15.

    Article  CAS  Google Scholar 

  35. R. Well and R. Paquin:J. Electrochem. Soc, 1960, vol. 107(2), pp. 87–91.

    Article  Google Scholar 

  36. M. R. Thomson:Trans. Am. Electrochem. Soc, 1922, vol. 42, p. 79.

    Google Scholar 

  37. M.R. Thomson and C.T. Thomas:Trans. Am. Electrochem. Soc, 1922, vol. 42, preprint, CA. 1922, vol. 16, p. 4144.

  38. M.R. Thomson:Trans. Am. Electrochem. Soc, 1923, vol. 43, p. 359.

    Google Scholar 

  39. L. M. Evalannikov and D.S. Neiman:Trans. Leningrad Ind. Inst., 1939, No. 1, Sect. Met. No. 1, pp. 3–23.

  40. M. B. Diggin:Monthly Rev. Am. Electroplateds Soc, 1946, vol. 33, pp. 513–24.

    CAS  Google Scholar 

  41. C. Quattrone:Galvanotecnica, 1952, vol. 3, pp. 105–14.

    CAS  Google Scholar 

  42. D.T. Ewing, A.A. Brouwer, and J.K. Werner:Plating, 1952, vol. 39, pp. 1343–49.

    CAS  Google Scholar 

  43. B.C. Banerjee and A. Goswami:J. Electrochem. Soc, 1959, vol. 106(1), pp. 590–92.

    Article  CAS  Google Scholar 

  44. A. Ganeidy, W. A. Kochler, and W. Machu:J. Electrochem. Soc, 1959, vol. 106, pp. 394–403.

    Article  Google Scholar 

  45. J. K. Dennis and J. J. Fuggles:Trans. Inst. Met. Fin., 1968, vol. 46, pp. 185–93.

    CAS  Google Scholar 

  46. Modern Electroplating, F. A. Lowenheim, ed., Wiley-Interscience Pub., New York, NY, pp. 39, 325.

  47. L. C. Singh, V. B. Singh, and P. K. Tikoo:J. Electrochem. Soc, Ind., 1979, vol. 28, pp. 87–88.

    CAS  Google Scholar 

  48. W. G. Sherwood, P. B. Queneau, C. Nikolic, and D.R. Hodges:Metall. Trans. B, 1979, vol. 10B, pp. 659–66.

    Article  CAS  Google Scholar 

  49. D. J. Mackinnon, J. M. Brannen, and R. M. Manison: 1982, vol. 12, pp. 39–53.

  50. D.J. Mackinnon and J.M. Brannen:J. Appl. Electrochem., 1977, vol. 7(5), pp. 451–59.

    Article  CAS  Google Scholar 

  51. D.J. Mackinnon and J.M. Brannen:J. Appl. Electrochem., 1979, vol. 9, p. 71.

    Article  CAS  Google Scholar 

  52. B.K. Thomas and D.J. Fray:J. Appl. Electrochem., 1981, vol. 11(6), pp. 677–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogia, S.K., Das, S.C. The effects of Mg2+, Mn2+, Zn2+, and Al3+ on the nickel deposit during electrowinning from sulfate bath. Metall Trans B 19, 823–830 (1988). https://doi.org/10.1007/BF02651406

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651406

Keywords

Navigation