Skip to main content
Log in

Human developing enamel proteins exhibit a sex-linked dimorphism

  • Rapid Communications
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The amelogenin protein of developing dental enamel is generally accepted to mediate the regulation of the form and size of the hydroxyapatite crystallites during enamel biomineralization (1). A genetic disorder of enamel development (amelogenesis imperfecta) has been linked to theamelogenin geneAMEL (2–3), and loci regulating enamel thickness and tooth size have been mapped to the human sex chromosomes (4). In the human genome there are twoAMEL loci with one copy of the gene on each of the sex chromosomes (AMELX andAMELY), whereas in the mouse only anAMELX locus is present (5). It is presently unknown if humanAMELY is transcriptionally active. These observations prompted us to examine specimens of human developing enamel for sexual dimorphism at the protein level. We report here, for the first time, a diagnosis of differences in human enamel proteins which permits the distinction of specimens according to the sex of the individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Eastoe JE (1979) Enamel protein chemistry—past, present and future. J Dent Res 58(B):753–764

    PubMed  CAS  Google Scholar 

  2. Witkop CJ, Sauk JJ (1976) Heritable defects of enamel. In: Stewart FE, Prescott J (eds) Oral Facial Genetics. Mosby, St. Louis, pp 151–226

    Google Scholar 

  3. Lagerstrom M, Dahl N, Iselius L, Backman B, Pettersson U (1989) Linkage analysis of X-linked amelogenesis imperfecta. Cytogenet Cell Genet 51:1028 (Abs)

    Google Scholar 

  4. Alvesalo L, De la Chapelle A (1981) Tooth sizes in two males with deletions in the long arm of the Y-chromosome. Ann Hum Genet 45:49–54

    PubMed  CAS  Google Scholar 

  5. Lau EC, Mohandas TK, Shapiro LJ, Slavkin HC, Snead ML (1989) Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4:162–168

    Article  PubMed  CAS  Google Scholar 

  6. Jodiaken A, Traub W, Weiner S (1986) Protein conformation in rat tooth enamel. Arch Oral Biol 31:685–689

    Article  Google Scholar 

  7. Aoba T, Tanabe T, Moreno EC (1987) Function of amelogenins in porcine enamel mineralization during the secretory stage of amelogenesis. Adv Dent Res 1:252–260

    PubMed  CAS  Google Scholar 

  8. Deutsch D (1989) Structure and function of enamel gene products. Anat Rec 224:189–210

    Article  PubMed  CAS  Google Scholar 

  9. Fincham AG, Belcourt AB, Termine JD (1983) Experimental approaches to the study of enamel matrix. In: Lazzari E (ed.) CRC Handbook of Experimental Aspects of Oral Biology, CRC Press, Boca Raton, Florida. pp 143–157

    Google Scholar 

  10. Fincham AG, Burkland GA, Shapiro IM (1972) Lipophilia of enamel matrix; a chemical investigation of the neutral lipids and lipophilic proteins of bovine foetal enamel matrix. Calcif Tissue Res 9:247–259

    Article  PubMed  CAS  Google Scholar 

  11. Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977) Peptide mapping by limited proteolysis in SDS and analysis by gel electrophoresis. J Biol Chem 252:1102–1106

    PubMed  CAS  Google Scholar 

  12. Limeback H, Sakarya H, Chu W, MacKinnon M (1989) Serum albumin and its acid hydrolysis peptides dominate preparations of mineral-bound enamel proteins. J Bone Mineral Res 4:235–241.

    Article  CAS  Google Scholar 

  13. Termine JD, Belcourt AB, Christner PJ, Conn KM, Nylen MU (1980) Properties of dissociatively extracted fetal tooth matrix proteins. Principal molecular species in developing bovine enamel. J Biol Chem 255:9760–9768

    PubMed  CAS  Google Scholar 

  14. Fincham AG, Hu Y, Pavlova Z, Slavkin HC, Snead ML (1989) Human amelogenins: Sequences of “TRAP” molecules. Calcif Tissue Intl 45:243–250

    Article  CAS  Google Scholar 

  15. Fincham AG, (1979) The amelogenin problem; a comparison of purified enamel matrix proteins. Calcif Tissue Intl 26:65–73

    Article  Google Scholar 

  16. Fincham AG, Belcourt AB (1985) Amelogenin Biochemistry; current concepts. In: Butler WT (ed) The Chemistry and Biology of Mineralized Tissues. Ebsco Media Inc, Birmingham, Ala. pp 240–247

    Google Scholar 

  17. Snead ML, Lau EC, Zeichner-David M, Fincham AG, Wood SL, Slavkin HC (1985) DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for enamel-specific protein. Biochem Biophys Res Comm 129:812–818

    Article  PubMed  CAS  Google Scholar 

  18. Snead ML, Bessem C, Lau EC, Zeichner-David M, Vides J, Fincham AG, Slavkin HC (1987) Amelogenin protein epitopes defined by antipeptide antibodies. J Dent Res 66:117 (Abstract)

    Google Scholar 

  19. Nakahori Y, Nakagome Y (1989) Xp-Yq homologous region which encodes open reading frames corresponding to “amelogenin”, Cytogenetics & Cell Genet 51:1050 (Abstract)

    Google Scholar 

  20. Simmler MC, Rouyer F, Vergnaud G, Nystrom-Lahti M, Yen Ngo K, De la Chapelle A, Weissenbach J (1985) Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature 317:692–687

    Article  PubMed  CAS  Google Scholar 

  21. Cooke HJ, Brown RA, Rappold GA (1985) Hyper-variable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317:687692

    Article  Google Scholar 

  22. Yen PH, Allen E, Marsh B, Mohandas T, Wang N, Taggart RT, Shapiro LJ (1987) Cloning and expression of steroid sulfatase cDNA and the frequent occurance of deletions in STS deficiency: Implications of X-Y interchange. Cell 49:443–454

    Article  PubMed  CAS  Google Scholar 

  23. Alvesalo L, Tammisalo E (1981) Enamel thickness in 45,X females' permanent teeth. Americ J Human Genet 33:464–469

    CAS  Google Scholar 

  24. Varrela J, Townsend G, Alvesalo L (1988) Tooth crown size in human females with 45,X/46XX chromosomes. Arch oral Biol 33:291–294

    Article  PubMed  CAS  Google Scholar 

  25. Ohno S (1967) Sex Chromosomes and Sex-linked Genes, Springer-Verlag, Berlin.

    Google Scholar 

  26. Fincham AG, Belcourt AB, Termine JD (1982) Changing patterns of enamel matrix proteins in the developing bovine tooth. Caries Res 16:64–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fincham, A.G., Bessem, C.C., Lau, E.C. et al. Human developing enamel proteins exhibit a sex-linked dimorphism. Calcif Tissue Int 48, 288–290 (1991). https://doi.org/10.1007/BF02556382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556382

Keywords

Navigation