Skip to main content
Log in

Biocompatibility considerations at stimulating electrode interfaces

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The choice of biocompatible stimulating electrodes for various biomedical applications varies with the type of electrode-tissue interface, biomolecules present, electrolyte background, preparation of electrode, interfacial potential, current density, electrode material, porosity, geometry, and inflammatory response. Illustrative examples are given to demonstrate the importance of these parameters. Topics discussed are: A) DC electrodes applied to partially keratinized epithelial membranes; B) Variation of the electrical impedance and biocompatibility of stimulating electrodes with electrode potential and surrounding pH; C) Influence of electrode geometry, porosity and pore size on biocompatibility; D) Body defense mechanisms at the sites of implantable stimulating electrodes; E) Thrombus formation at stimulating electrode interfaces and F) Sterilization of electrodes to ensure biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrade, J.D., ed. Surface and interfacial aspects of biomedical polymers. Vol. 2: Protein adsorption. New York: Plenum Press; 1985.

    Google Scholar 

  2. Bard, A.J.; Faulkner, L.R. Electrochemical methods. New York: John Wiley and Sons; 1980.

    Google Scholar 

  3. Bates, J.B.; Chu, Y.T. Electrode-electrolyte interface impedance: Experiments and model. Ann. Biomed. Eng. 20:349–362; 1992.

    CAS  PubMed  Google Scholar 

  4. Beard, R.B.; Hasan, S.; Scoles, K.J.; Onaral, B. U. S. Pat. 4,854,865.

  5. Bernarde, M.A. Disinfection. New York: Marcel Dekker, Inc.; 1970.

    Google Scholar 

  6. Brownstein, M. Linear A. C. polarization impedance measurements on Pt and Pd electrodes under potential pH control. M.S. Thesis. Philadelphia: Drexel University; 1978.

    Google Scholar 

  7. Brownstein, M. Small and large amplitude cyclic voltammetric studies on porous cardiac pacemaker stimulating electrodes. Ph.D. Dissertation. Philadelphia: Drexel University; 1979.

    Google Scholar 

  8. Buck, R.P. Impedances of thin and layered systems: Cells with even and odd numbers of interfaces. Ann. Biomed. Eng. 20:363–383; 1992.

    CAS  PubMed  Google Scholar 

  9. deLevie, R. The influence of surface roughness of solid electrodes on electrochemical measurements. Electrochemica Acta. 10:113; 1965.

    CAS  Google Scholar 

  10. deLevie, R. The admittance of the interface between a metal electrode an an aqueous electrolyte solution: Some problems and pitfalls. Ann. Biomed. Eng. 20:337–347; 1992.

    CAS  Google Scholar 

  11. Della Vecchia, M.A. A dielectric study of polymorphonuclear leukocytes and its application to phagocytes. Dissertation. Philadelphia: Drexel University; 1984.

    Google Scholar 

  12. DeRosa, J.; Beard, R.B. Personal Communication. 1973.

  13. De Rosa, J.F.; Beard, R.B. Linear A.C. electrode polarization impedance at smooth noble metal interfaces. IEEE Trans. Biomed. Eng. 24:260–268; 1977.

    Google Scholar 

  14. Dymond, A.M. Characteristics of the metal-tissue interface of stimulation electrodes. IEEE Trans. BME. 23 (4): 1976.

  15. Feng, D.In vitro migration study of polymorphonuclear and mononuclear leukocytes under electromagnetic fields for normal human subjects and diabetic patients. Ph.D. Dissertation. Philadelphia: Drexel University; 1991.

    Google Scholar 

  16. Geddes, L.A.; Baker, L.E. Principles applied biomedical instrumentation. 3rd ed. New York: John Wiley; 1989.

    Google Scholar 

  17. Gould, M.R. Chemotactic and electric field migration of polymorphonuclear leukocytes with and without casein and zinc under an agarose tissue culture medium. M.S. Thesis. Philadelphia: Drexel University; 1982.

    Google Scholar 

  18. Greene, N.D.; Moebus, G.A.; Boldwin, M.H. The mini potentiostat: A versatile power source for electrochemical studies. Corrosion 29 (6); 1973.

  19. Ham, A.W. Histology. 5th ed. Philadelphia: J.B. Lippincott Co.; 1965.

    Google Scholar 

  20. Hench, L.L.; Ethridge, E.C. Advances in biomedical engineering. Vol. 5. In: Brown, J.H.V.; Dickson, James F., III, eds. New York: Academic Press; 1975.

    Google Scholar 

  21. Hirshorn, M.S.; Holley, L.K.; Holes, J.R.S.; Money, D.K.; Young, F.A.; Spector, M.; Wickham, G.G. Screening of solid and porous materials for pacemaker electrodes. Pace. 4:380–390; 1981.

    CAS  PubMed  Google Scholar 

  22. Hoare, J.P. The oxygen electrode on noble metals. In: Delahay, P. ed. Advances in electrochemistry and electrochemical engineering. Vol. 6. Electrochemistry. New York: Interscience Publisher Division; 1967.

    Google Scholar 

  23. Hoare, J.P. The electrochemistry of oxygen. New York: Intersciences; 1968.

    Google Scholar 

  24. Huang, M.Y. A study of transient behavior in a pore electrode. Ph.D. Dissertation. Philadelphia: University of Pennsylvania; 1977.

    Google Scholar 

  25. Hulbert, S.F.; Mirrison, S.J.; Klawitter, J.J. Tissue reaction to three ceramics of porous and non porous structures. J. Biomed. Material Res. 6:347–374; 1972.

    CAS  Google Scholar 

  26. Hung, B.N. Characterization and biocompatibility of porous cardiac pacemaker stimulating electrodes. M.S. Thesis. Philadelphia: Drexel University; 1975.

    Google Scholar 

  27. Hung, B.N.In vivo andin vitro electrode polarization impedance studies on porous cardiac pacemaker stimulating electrodes. Ph.D. Dissertation. Philadelphia: Drexel University; 1979.

    Google Scholar 

  28. Hung, B.N.; Beard, R.B.; Brownstein, M.; Dubin, S.E.; Niazy, N.; Miller, A. Correlation of linear A.C. polarization electrodes. In: Brightor, C.T.; Black, J.; Pollack, S., eds. Electrical properties of bone and cartilage. New York: Grune and Stratton; 1979: pp. 249–266.

    Google Scholar 

  29. Lawrence, C.A.; Block, S.S. Disinfection, sterilization, and preservation. Philadelphia: Lea and Febinger; 1968.

    Google Scholar 

  30. Leites, S.Sh.; Luk'yanycheva, V.I.; Bagotskii, V.S.; Yuyhannina, A.V.; Konanykina, V.F. Influence of the pH of the solution on the cathodic reduction of molecular oxygen on a smooth platinum electrode. Translated from Elektrokhimiya. 9(5):620–623; May 1973.

    CAS  Google Scholar 

  31. Male, Detral. Advanced immunology. Philadelphia: J.B. Lippincott Co.; 1988.

    Google Scholar 

  32. Margulies, N. Migration of PMN's under a magnetic field using filter and agarose methods. M.S. Thesis. Philadelphia: Drexel University; 1986.

    Google Scholar 

  33. McAdams, E.T.; Jossinet, J. A physical interpretation of Schwan's limit current of linearity. Ann. Biomed. Eng. 20:307–319.

  34. McCreery, D.B.; Agnew, W.F.; McHardy, J. Electrical characteristics of chronically implanted platinum-iridium electrodes. IEEE Trans. BME. 34(9):664; 1987.

    CAS  Google Scholar 

  35. Moussaui, M. Personal communications; 1991.

  36. Mund, M.; Richter, E.; Weidlich, E.; David, E. Development of a non-polarizable stimulating electrode for implantable cardiac pacemakers. Siemens Forsch-U. Entwiciki-Ber Nd. 8Nr 4:3–10; Springer-Verlag; 1979.

    Google Scholar 

  37. Neuman, M.R. Biopotential electrodes. In: Webster, J.G., ed. Medical instrumentation. Boston: Houghton Miflin; 1978.

    Google Scholar 

  38. Onaral, B. Linear and nonlinear properties of platinum electrode polarization: Frequency dependency at very low frequencies. Ph.D. Dissertation. Philadelphia: University of Pennsylvania; 1978.

    Google Scholar 

  39. Onaral, B.; Schwan, H.P. Linear and nonlinear properties of platinum electrode polarization. Part 1. Frequency dependency at very low frequencies. Med. Biol. Eng. & Comp. 20:299–306; 1982.

    CAS  Google Scholar 

  40. Plonsey, R.; Ban, R.C. Bioelectricity: A quantitative approach. New York: Plenum Press; 1988.

    Google Scholar 

  41. Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions. 2nd English ed. Houston: CE-BELCOR, NACE; 1974.

    Google Scholar 

  42. Randles, J.E.B. Kinetics of rapid electrode reactions. Disc. Faraday Soc. 1:11; 1947.

    Google Scholar 

  43. Reinmuth, W.H. Anal. Chem. 34:1446; 1962.

    CAS  Google Scholar 

  44. Sawyer, P.N.; Srinivasan, S.; Stancyewski, B.; Ramasamy, N.; Ramsey, W.J. Electrochemical aspects of thrombogenesis bioelectrochemistry old and new. J. Electrochem. Soc. 221c; July 1974.

  45. Schmukler, R.E. Characterization studies for an optimal hybrid fuel cell cathode. M.S. Thesis. Philadelphia: Drexel University; 1976.

    Google Scholar 

  46. Schwan, H.P. Determination of biological impedances. In: Nastuk, W.L., ed. Physical techniques in biological research. Vol. VI, Part B. New York: Academic Press; 1963.

    Google Scholar 

  47. Scoles, K.T.; Beard, R.B.; Feng, D.; Vanarsdall, R.; Colby, G.T. ISHM '89 Proceedings; 1989.

  48. Simpson, R.W. Nonlinear electrode polarization impedance. Ph.D. Dissertation. Philadelphia: University of Pennsylvania; 1976.

    Google Scholar 

  49. Sluyters, J.H. On impedance of galvanic cells I. Recueil. 29:1092; 1960.

    Google Scholar 

  50. Sturm, L.J. Fabrication and evaluation of cardiac pacemaker stimulating electrodes. M.S. Thesis. Philadelphia: Drexel University; 1974.

    Google Scholar 

  51. Sun, H.H.; Onaral, B. A unified approach to represent metal electrode polarization. Trans. Biomed. Eng. 30 (7): 1983.

  52. Tunimer, B.; Sluyters-Rehbach, M.; Sluyters, J.H. On the impedance of galvanic cells, XXII electrode reactions with specific adsorption of the electroactive species. J. Electroanal. Chem. 18:93–106; 1968.

    Google Scholar 

  53. Wilkinson, P.G. Surface and cell membrane activities of leukocyte chemotactic factors. Nature. 252:58; 1974.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an implied or actual endorsement of such products by the Department of Health and Human Services.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beard, R.B., Hung, B.N. & Schmukler, R. Biocompatibility considerations at stimulating electrode interfaces. Ann Biomed Eng 20, 395–410 (1992). https://doi.org/10.1007/BF02368539

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368539

Keywords

Navigation