Skip to main content
Log in

Effects of global climatic warming on the boreal forest

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

On the basis of the predictions of the global climatic warming induced by anthropogenic activities, as provided by climatologists, current state of knowledge regarding possible ecological consequences of the warming on the boreal biome was discussed. A 600 to 700 km northward advance of the biome along with the warming was predicted. Such a shift could take place for half a century or so, which would be an unprecedentedly fast rate of progression. This might cause a serious disorder in species composition of the biome, particularly in the boundary regions. As to the carbon sink or source issues, considerable uncertainties and knowledge gaps existed. Elevated temperature and CO2 levels would stimulate photosynthesis to result in an increase of CO2 uptake, while the temperature increase would promote decomposition of organic matter especially that stored in the soils to release CO2 to the atmosphere. Behaviors of northern peat bogs, whereca. 700 Gt of organic matter was thought to be accumulated, would seriously affect the balance. However, overall ecosystematic carbon balance was yet to be fully studied. It was realized that multifunctional approaches needed to be developed so as to integrate pieces of various information into a holistic picture. Need for international collaboration research efforts was also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apps, M.J. andKurz, W.A. 1991. Assessing the role of Canadian forests and forest activities in the global carbon balance. World Resource Review.3: 333–344.

    Google Scholar 

  • Auclair, A.N.D. 1987. The climate change theory of forest decline. Atm. Env. Serv., Env. Canada, Downsview.

    Google Scholar 

  • Billings, W.D., Luken, J.O., Mortensen, D.A. andPeterson, K.M. 1992. Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia53: 7–11.

    Google Scholar 

  • Billings, W.D., Luken, J.O., Mortensen, D.A. andPeterson, K.M. 1983. Increasing atmospheric carbon dioxide: possible effects on arctic tundra. Oecologia58: 286–289.

    Article  Google Scholar 

  • Bolin, B. 1991. Man-induced global change of climate: the IPCC findings and continuing uncertainty regarding preventive action. Env. Conserv.18: 297–303.

    CAS  Google Scholar 

  • Bolin, B., Jager, J. andDoos, B.R. 1986. The greenhouse effect, climatic change, and ecosystems.In Bolin, B., Bo R. Doos, J. Jager, and R.A. Warrick, ed., The greenhouse effect, climatic change, and ecosystems. SCOPE 29. John Wiley & Sons. New York. pp. 1–32.

    Google Scholar 

  • Bonan, G.B. andShugart, H.H. 1989. Environmental factors and ecological processes in boreal forest. Annu. Rev. Ecol. Syst.20: 1–28.

    Article  Google Scholar 

  • Bonan, G.B., Shugart, H.H. andUrban, D.L. 1990. the sensitivity of some high-latitude boreal forests to climatic parameters. Climatic Change16: 9–29.

    Article  Google Scholar 

  • Bradbury, I.K. andGrace, J. 1983. Primary production in wetlands.In A.J.P. Gore, ed., Mires: swamp, bog, fen and moor-Ecosystems of the world 4A. Elsevier Scientific Publishing Co. Amsterdam. pp. 285–310.

    Google Scholar 

  • Davis, M.B. 1981. Quaternary history and the stability of deciduous forests.In D.C. West, H.H. Shugart and D.B. Botkin, ed., Forest succession. Springer-Verlag. New York. pp. 132–177.

    Google Scholar 

  • Dickinson, R.E. 1986. How will climate change?In B. Bolin, Bo R. Doos, J. Jager, and R.A. Warrick, ed., The greenhouse effect, climatic change, and ecosystems. SCOPE 29. John Wiley & Sons. New York. pp. 260–270.

    Google Scholar 

  • Dickinson, R.E. andCicerone, R.J. 1986. Future global warming from atmospheric trace gases. Nature319: 109–115.

    CAS  Google Scholar 

  • Duinker, P., Antonovsky, M. andSolomon, A.M. 1988. Impact of changes in climate and atmospheric chemistry on northern forest ecosystems and their boundaries: research directions. Int. Inst. Applied Syst. Analysis. Laxenburg.

    Google Scholar 

  • Elliott, D.L. 1979. The current regenerative capacity of the northern Canadian trees, Keewatin, N.W.T., Canada: some preliminary observations. Arc. Alp. Res.11: 243–251.

    Google Scholar 

  • Gore, A.J.P. eds. 1983. Mires: swamp, bog, fen and moor-Ecosystems of the world. Elsevier Scientific Publishing Company. 4A, 4B.

  • Gorham, E. 1988. Canada's peatlands: their importance for the global carbon cycle and possible effects of “greenhouse” climatic warming. Trans. Roy. Soc. Canada. Vol. III, Ser.V: 21–23.

    Google Scholar 

  • Grulke, N.E., Riechers, G.H., Oechel, W.C., Hjelm, U. andJaeger, C. 1990. Carbon balance in tussock tundra under ambient and elevated atmosphere CO2. Oecologia83: 485–494.

    Article  Google Scholar 

  • Hansen, J., Johnson, G., Lacis, A., Lebedeff, S., Lee, C., Rind, D. andRussell, G. 1983. Climatic effects of atmospheric carbon dioxide. Science220: 874–875.

    CAS  Google Scholar 

  • Hilbert, D.W., Prudhomme, T.I. andOechel, W.C. 1987. Response of tussock tundra to elevated carbon dioxide regime: analysis of ecosystem CO2 flux through nonlinear modeling. Oecologia72: 466–472.

    Article  Google Scholar 

  • Holdridge, L.R. 1947. Determination of world plant formations from simple climatic data. Science105: 367–368.

    Google Scholar 

  • Holten, J.I. 1990. Predicted floristic change and shift of vegetation zones in a coast-inland transect in Central Norway.In Holten, J.I. ed., Effects of climate change on terrestrial ecosystems. NINA Notat 4. Trondheim. 61–77.

  • Hom, J., Van Cleve, K. and Oechel, W.C. 1990. The effect of elevated soil temperature on the growth, nutrient content and photosynthetic response of black spruce (Picea marianana (Mill) B.S.P.) found on permafrost dominated soils in central Alaska. Paper presented at International Symposium on Effects of Climatic Change on Boreal Forests. Arkhangelsk.

  • Houghton, J.T., Jenkins, G.E. andEphraums, J.J. ed., 1990. Climatic change-the IPCC scientific assessment. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Huntley, B. and Birks, H.J.B. 1983. An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge Univ. Press.

  • Kauppi, K. andPosch, M. 1985. Sensitivity of boreal forests to possible climatic warming. Climatic Change7: 45–54.

    Article  Google Scholar 

  • Köppen, W. 1936. Das geographische System der Klimate. Vol. I, Pt. C. In Köppen, W. and Geiger, R. ed., Handbuch der Klimatologie. Gebr. Borntraeglen, Berlin.

    Google Scholar 

  • Larsen, J.A. 1980. The boreal ecosystem. Academic Press, New York.

    Google Scholar 

  • Larsen, J.A. 1982. Ecology of the northern lowland bogs and conifer forests. Academic Press, New York.

    Google Scholar 

  • Lieth, H. 1975. Primary production of the major vegetation units of the world.In Lieth, H. and Whittaker, R.H. ed., Primary productivity of the biosphere. Ecol. Stud. 14. Springer-Verlag, New York. 203–235.

    Google Scholar 

  • Manabe, S. 1983. Carbon dioxide and climatic change. Adv. Geophysic.25: 39–82.

    Google Scholar 

  • Manabe, S. andStouffer, R.J. 1980. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophysic. Res.85: 5529–5554.

    Google Scholar 

  • Manabe, S. andWetherald, R.T. 1987. Large-scale changes of soil wetness induced by an increase in atmospheric carbon dioxide. J. Atm. Sci.44: 1211–1235.

    Google Scholar 

  • Mitchell, J.F.B. 1983. The seasonal response of a general circulation model to changes in CO2 and sea temperatures. Quart. J. Royal Meteorol. Soc.109: 113–152.

    Article  CAS  Google Scholar 

  • Mooney, H.A., Drake, B.G., Luxmoore, R.L., Oechel, W.C. andPetelka, L.F. 1991. Predicting ecosystem responses to elevated CO2 concentrations. BioScience41: 96–104.

    Google Scholar 

  • Moore, T.R. andKnowles, R. 1989. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci.69: 33–38.

    CAS  Google Scholar 

  • Nichols, H. 1976. Historical aspects of the northern Canadian treeline. Arctic29: 38–47.

    Google Scholar 

  • Nichols, H. 1976. Stability of the boreal forest-tundra ecotone: a test for the greenhouse effect. Paper presented at the International Symposium on effects of climatic warming on boreal forest. Arkhangelsk.

  • Oberbauer, S.F., Sionit, N., Hastings, S.J. andOechel, W.C. 1986a. Effects of CO2 enrichment and nutrition on growth, photosynthesis, and nutrient concentration of Alaskan tundra plant species. Can. J. Bot.64: 2993–2998.

    CAS  Google Scholar 

  • Oberbauer, S.F., Oechel, W.C. andRiechers, G.H. 1986b. Soil respiration of Alaskan tundra at elevated atmospheric carbon dioxide concentrations. Plant & Soil96: 145–146.

    Google Scholar 

  • Oechel, W.C. andBillings, W.D. 1992. Effects of global change on the carbon balance of arctic plants and ecosystems.In Chapin, III, F.S., Jefferies, R.L., Reynolds, J.F., Shaver, G.R. and Svoboda, J.S. ed., Arctic ecosystems in a changing climate. Academic Press, New York. pp. 139–168.

    Google Scholar 

  • Pastor, J. andPost, W.M. 1988. Response of northern forests to CO2-induced climate change. Nature334: 55–58.

    Article  Google Scholar 

  • Plass, G.N. 1959. Carbon dioxide and climate. Sci. Amer.201: 41–47.

    CAS  PubMed  Google Scholar 

  • Pollard, D. 1989. Climate change and its effects on forests. Can. For. Ind.109: 56–61.

    Google Scholar 

  • Prest, V.K. 1969. Retreat of Wisconsin and recent ice in North America (a map in scale 1∶5 million). Map 1257A, Geol. Surv. Can., Ottawa.

    Google Scholar 

  • Roberts, L. 1989. How fast can trees migrate? Science243: 735–737.

    Google Scholar 

  • Sargent, N.E. 1988. Redistribution of the Canadain boreal forest under a warmed climate. Clim. Bull.22: 23–34.

    Google Scholar 

  • Schell, D. 1988. Peat carbon in arctic Alaska: accumulating or ablating? Eos69: 1127.

    Google Scholar 

  • Schlesinger, M.E. andMitchell, J.F.B. 1987. Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Rev. Geophys.24: 760–798.

    Google Scholar 

  • Shugart, H.H., Leemans, R. andBonan, G.B. 1992. A systems analysis of the global boreal forest. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Singh, T. 1988. Potential impacts of climatic change on forestry. CCELC Newsletter17: 4–5.

    Google Scholar 

  • Solomon, A.M. 1986. Transient response of forests to CO2-induced climatic change: simulation modeling experiments in eastern North America. Oecologia68: 567–579.

    Article  Google Scholar 

  • Solomon, A.M. 1990. The taiga-tundra border in first detection of biospheric response to global environmental change. Paper presented at the International Symposium of Effects of Climatic Change on Boreal Forest. Arkhangelsk.

  • Solomon, A.M. 1992. The nature and distribution of past, present and future boreal forests: lessons for a research and modeling agenda.In Shugart, H.H., Leemans, R. and Bonan, G.B. ed., A systems analysis of the global boreal forest. Cambridge Univ. Press, Cambridge. 291–307.

    Google Scholar 

  • Stewart, J.M. 1977. Canadian muskeg and their agricultural utilization. In Radforth, N.W. and C.O. Brawner ed., Muskeg and the northern environment in Canada. Univ. Toronto Press, Toronto. pp. 208–220.

    Google Scholar 

  • Tallis, J.H. 1983. Changes in wetland communities. In Gore, A.J.P. ed., Mires: swamp, bog, fen and moor-Ecosystems of the world 4A. Elsevier Scientific Publishing Co. Amsterdam. pp. 311–347.

    Google Scholar 

  • Thornthwaite, C.W. 1948. An approch toward a rational classification of climate. Geogr. Rev.38: 55–94.

    Google Scholar 

  • Tissue, D.T. andOechel, W.C. 1987. Response ofEriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology68: 401–410.

    Google Scholar 

  • Tuhkanen, S. 1984. A circumboreal system of climatic-phytogeographical regions. Acta Bot. Fenn.127: 1–50, + maps and diagrams.

    Google Scholar 

  • Van Cleve, K., Chapin III, F.S., Flanagan, P.W., Viereck, L.A. andDyrness, C.T. ed., 1986. Forest Ecosystems in the Alaskan Taiga. Ecol. Stud. 57. Springer Verlag, New York.

    Google Scholar 

  • Van Cleve, K., Oechel, W.C. andHom, J.L. 1990. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Can. J. For. Res.20: 1530–1535.

    Google Scholar 

  • Van Kooten, G.C. andArthur, L.M. 1989. Assessing economic benefits of climate change on Canada's boreal forest. Can. J. For. Res.19: 463–470.

    Google Scholar 

  • Washington, W.M. andMeehl, G.A. 1983. General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentration. J. Geophys. Res.88 (C11): 6600–6610.

    CAS  Google Scholar 

  • Washington, W.M. andMeehl, G.A. 1984. Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. J. Geophys. Res.89: D6:9475–9503.

    CAS  Google Scholar 

  • Wigley, T.M.L., Jones, P.D. andKelly, P.M. 1980. Scenario for a warm, high-CO2 world. Nature283: 17–21.

    Article  CAS  Google Scholar 

  • Williams, G.D.V. 1985. Estimated bioresource sensitivity to climatic change in Alberta, Canada. Climatic Change7: 55–69.

    Article  Google Scholar 

  • Zoltai, S.C. 1988. Ecoclimatic provinces of Canada and man-induced climatic change. CCELC Newsletter17: 12–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, S. Effects of global climatic warming on the boreal forest. J. Plant Res. 107, 91–97 (1994). https://doi.org/10.1007/BF02344535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344535

Key words

Navigation