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Abstract. For an infinite dynamical quantum system idealized as a C*-algebra acted
upon by time-translations automorphisms in an asymptotically abelian way, we propose
to characterize equilibrium states by the three properties of stationarity, stability for local
perturbations of the dynamics, and relative purity. We show that a state with these
properties either gives rise to a one-sided energy spectrum or is a KMS- (i.e. essentially
a limit Gibbs-) state.

I. Introduction

The problem of characterizing equilibrium states in statistical
mechanics is traditionally treated in the following steps:

1) One argues that the equilibrium value of an observable (in an
isolated system of finite size) corresponds to the average value in a
microcanonical ensemble of such systems.

2) One considers the thermodynamic limit, increasing the size
of the system to infinity. It is in this limit that the fluctuations within
the microcanonical ensemble become zero for intensive quantities
and the thermodynamic laws become true for the individual system.
Moreover, in this limit various ensembles (such as the microcanonical,
the canonical, the uniform ensemble) become equivalent in the sense
that they all give the same expectation value for local observables.

Let us call the expectation functional over the local observables
which is obtained in the thermodynamic limit from any of the above
mentioned ensembles a "limit Gibbs' state". The limit Gibbs states of
a quantum system have an interesting property, first pointed out by
Kubo [1] and by Martin and Schwinger [2] which may serve to compute
these states without considering finite systems and limiting proce-
dures. The Kubo-Martin-Schwinger (KMS)-condition, formulated alge-
braically in [3], has been the subject of much study in recent years by
physicists and mathematicians.

From the point of view of physics, this work has strengthened
the belief that the KMS-condition gives indeed an adequate charac-
terization of equilibrium states in an infinite quantum system. On
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the other hand, it was realized that this condition is intimately related
to the mathematical theory of modular automorphisms of operator
algebras developed by Tomita and Takesaki (compare e.g. [4-7]).

Of course, a basic concept like that of an equilibrium state should
ultimately be defined in simple physical terms. We propose to do that
here for an infinite quantum system. Specifically we shall consider the
following as the three defining properties of an equilibrium state:

(i) Stationarity.
(ii) Stability under local perturbations of the dynamics.

(iii) Relative purity.
Starting from these requirements and some natural assumptions

about the dynamical system, we give a simple and direct derivation
of the KMS-condition*.

We shall do this on two levels. A mathematically precise presentation
of the argument will be given in Sections II to IV. For the benefit of
physicists who do not like theorems and lemmas we shall use the
remainder of this introduction for some remarks and, ultimately, a
brief sketch of the main line of the argument in a less sophisticated
language, disregarding all technical details and questions of rigour2.

Of the three requirements the first needs no comment, the third
is more or less standard and it is needed to insure that the intensive
quantities have sharp values (zero fluctuations).

The second requirement (stability) needs some elaboration. It is made
to eliminate the assumption of ergodicity of the system. The connection
may be seen in the following way. The intuitive arguments given by
Willard Gibbs to justify the first of the above mentioned steps in the
traditional approach have led to the development of ergodic theory.
Roughly speaking, a system may be called ergodic if, apart from the
known general conservation laws (linear and angular momentum,
energy, particle numbers) there are no other relevant constants of
motion3. Here the difficulties in the classical and quantum mechanical
cases appear at quite different stages. The case of a finite quantum system

1 In the derivation of the KMS-condition we shall use instead of the requirement iii)
the stronger assumption that correlations between local quantities at different times
vanish sufficiently fast as the time differences go to infinity.

2 Pure mathematicians rebuked by physical considerations may read Sections II
through IV as a logically self-consistent paper.

3 The term "ergodic" has been used in several different senses. What we mean here is
"ergodicity of the system" which is a property of the dynamical law alone in contradistinction
to "ergodicity of a state" which in standard mathematical terminology is synonymous
with the requirements i) and iii) above. Every system has ergodic states, but for the purposes
of statistical mechanics the role of ergodic theory is to show that specific states (in the
case of classical finite systems the microcanonical ensembles, in infinite quantum systems
the limit Gibbs states) are ergodic. In other words, the system may be called ergodic if
our requirement ii) is redundant in the definition of equilibrium states.
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is essentially trivial in this respect. The energy spectrum is discrete and
will ordinarily not have any accidental degeneracy. The difficulty
appears there only in the thermodynamic limit due to the increasing
level density (almost degeneracy). Let us nevertheless, by way of analogy,
consider a finite quantum system with a spectrum which does have an
accidental degeneracy (corresponding to nonergodicity)4. Suppose that
the Hamiltonian H is changed by a small perturbation to H' = H + λ V.
Schrodinger's perturbation theory tells us that only certain vectors in the
degeneracy space will join smoothly to the eigen-vectors of the perturbed
Hamiltonian. The selection of those specific eigen-vectors of H which
go over continuously into eigen-vectors of H' depends on the perturbation
K If we want a stationary state oϊH to energy E which changes continuous-
ly under any small perturbation (or, as we might say, a stationary state
which is stable under any small perturbation), then we cannot take a
pure state (eigenvector), but have to use a density matrix which is the
(normalized) unit matrix in the degeneracy space of the eigenvalue £.
In other words, no matter whether or not there exist any constant
of motion, a stationary state stable under arbitrary small perturbations
is always given by a density matrix which is a function of H.

On the other hand, as mentioned at the very beginning, it is not
important to specify precisely the functions of the Hamiltonian which
we take as density matrices for the finite system. The set of relatively
pure states arising in the thermodynamic limit will be unaffected
(coalescence of different ensembles to one limit Gibbs state). These
two facts taken together make it understandable why limit Gibbs states
are singled out by the requirements (i)—(iii).

An illustrative example is a system of non interacting particles.
The limit Gibbs states of this system describe an ideal gas. The system
is highly non ergodic. There are many constants of motion and, corre-
spondingly, many relatively pure, stationary states which are not limit
Gibbs states5. In text-books of statistical mechanics, this fact is well
recognized and it is pointed out that one should imagine the addition
of a little dust to provide a mechanism for transforming the momentum
distribution of the particles into the stable one. The precise implementa-
tion of this idea in the case of an infinite system of non interacting
Fermions is described in the appendix. For more details see [8].

We come now to the sketch of the general case. We may consider
a (uniformly closed) algebra 91 of bounded operators acting on a Hubert
space Jf7. The self adjoint elements of 9ί represent (bounded) quasilocal

4 For simplicity we shall suppress the universal constants of motion and speak in the
following of degeneracy instead of accidental degeneracy.

5 E.g. all translationally invariant states with vanishing interparticle correlations but
arbitrary single-particle momentum distribution.
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observables in the infinitely extended medium. The equilibrium state ω
in which we are interested will be represented by a state vector Ω e 3C .
Note that we take a vector and not a density matrix. This is always
possible; the price one pays if ω is not pure is the reducibility of 91
(i.e. there will exist in that case non trivial operators on ffl which commute
with all operators from 91). Still we can approximate every vector in 2tf
arbitrarily well by applying an operator from 9ί to Ω. Therefore all
vectors in jΊf represent states which may be regarded as quasilocal
excitations of the state ω.

Acting in 3f we have a Hamiltonian operator H with the Heisenberg
equations of motion for observables

dA
[_H,A] (1.1)_ ,

and the relation
HΩ = 0 (1.2)

expressing the fact that ω is stationary and that we have (arbitrarily)
assigned to Ω the zero point in the H-spectrum. Of course, H is a global
(extensive) quantity, in general not affiliated with the algebra 21 of
quasilocal observables. It would also be slightly misleading to call H
the energy operator since the physical energy (the space integral of the
local energy density) has infinite fluctuations which are subtracted out
in the construction of H (see e.g. [3]).

We denote the expectation value of A e 91 in the equilibrium state ω
by ω(A) and the time translate of A, arising from the integration of (1,1)
by At (in subsequent sections the notation at(A) will be used instead):

ω(A) = (Ω,AΩ)9 (1.3)

At = eimAe~im . (1.4)

Our first assumption concerns the "correlation functions" < >τ

or "truncated expectation values" defined in the well known manner

<AtlBt2yτ = ω(AtlBt2] - ω(A) ω(B) etc. (1.5)

We assume that these functions die out when the time differences
become large. This is essentially a consequence of the physical property
that any two local observables measured at different times become
more and more compatible when the time difference goes to infinity
(asymptotic Abelianness in time) and of the requirement of relative
purity for ω (see e.g. [9]). This assumption has several important con-
sequences. First, for any A e 21, At converges weakly to a multiple of the
unit operator as ί -» ± oo :

lim (ψ9Atφ) = ω(A)(\p9φ)9 ip.φe^f. (1.6)
ί-> ± oo
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Secondly, H has only one proper eigenvector namely the vector £2,
belonging to the eigenvalue zero. The rest of the spectrum of H is con-
tinuous. Thirdly, the spectrum of H is either one-sided (positive or
negative semidefinite) or it is the whole real line (see Proposition 3).
If the spectrum is one-sided the state ω is pure [10] and this corresponds
to the zero temperature situation with which we shall not be concerned
in this paper. Thus, in the case to be considered here, the f/-spectrum is a
continuum extending from — oo to +00 plus one discrete point, the zero.

Consider now the effect of a local perturbation of the dynamics,

i.e. replace H by H™ = H + λh (1.7)

where h is a local, bounded observable and λ a coupling constant. Let
us compute the new stationary state ω(λh) by first order perturbation
theory. Because of the reducibility of 21, it is better to apply the perturba-
tion theory not to the state vectors, but to expectation functionals.
Writing ^

we get for ωf} the conditions

ω?>([fl,Λ]) = ω([Λ,,4]), (1.8)

ω?°(/) = 0. (1.9)

(1.9) resulting from the normalization of ω(λh\ Due to (1.6) the unique
solution is 0

ωf\A)= lim i f dt ω\h,At~\ at . (1.10)
Γ-> ±00 j.

The two alternative expressions (Γ-+ + oo) show that the unperturbed
state ω has to satisfy the consistency condition

f dίω([Mr]) = 0. (1.11)
— oo

This condition is the analogue of the secular equation of the Schrodinger
perturbation theory in the degenerate spectrum for our situation in which
the discrete eigenvalue zero is "degenerate" with an overlapping con-
tinuous spectrum. Physically this condition results from the requirement
that a small local perturbation should produce only a small, local change
in the stationary state.

Let us consider now for A, B e 21 the two functions

(1.12)

GΛB(t) = ω(AtB)-ω(B)ω(A) (1.13)

and denote their Fourier transforms by FΛB(E), GAB(E). The KMS-
condition for the state ω can be expressed as the statement that there
exists a real parameter β such that (see e.g. [11])

FAB(E) = eβEGAB(E) for all A,B. (1.14)
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The consistency condition (1.11) is precisely this statement for B = h
and the special value E = Q. If we require stability for all quasilocal
perturbations the full condition (1.14) may be derived from (1.11) by
the following trick assuming a sufficiently rapid decrease of the correlation
functions. Replacing A in (1.11) by A(l}A(

τ

2} and h by h(1}h(2} and taking
the limit τ -» oo we obtain with F(i} = FAa)ha), i = 1, 2

(1.15)

Using the freedom to vary A(^\ A(2\ h(1\ h(2} independently, one con-
cludes that FAB(E) = φ(E) GAB(E\ where φ(E) is a universal function,
independent of the choice of A and B. Repetition of the step leading
from (1.11) to (1.15) and the use of reality and symmetry properties of the
functions F, G leads then to the result that φ(E) must be a real-multipli-
cative function, i.e. an exponential: that is the KMS-condition (1.14).

Finally we note that the KMS-condition is not only necessary but
also sufficient for the stability of the state under local perturbations
of the dynamics. This property of KMS-states has been proven by
Arakiin [12].

II. Stability for Local Perturbations of the Dynamics

Definition 1. We will call dynamical system {21, α} the pair of a
C*-algebra 91 together with a strongly continuous group ίe!R->αt of
automorphisms of 91. Strong continuity of α is defined as the fact that
the map t-*at(A) is continuous in norm for all A e 9I6.

A stationary state ω of the dynamical system {91, α} is a state of 91
such that ω ° αf = ω for all ί e R

Our terminology is motivated by the fact that in our case the physical
system is an infinitely extended medium, the quasi-local observables
of which are represented by the self adjoint elements ,4e9I, whilst
the automorphism αf corresponds to the time-translation by t.

The next proposition borrowed from Araki [13], describes the
concept of quasi-local (or "inner") perturbations of the dynamics.
(see also [15])7.

6 This is equivalent to the continuity of all numerical functions t ̂  φ(ctt(A)\ A e 3X,
φ any state of 21; see for instance Chapter IX in [14].

7 Robinson defines the perturbed automorphism by the formula:

)=
71=0

0<ί, <•••£„< ί.



Stability and Equilibrium States 179

Proposition 1. Let {21, α} be a dynamical system and consider a
self adjoint element h of 21. The differential equation

/ίfc)αί(Λ) (2.1)

(where the derivative is in the norm-sense) together with the initial condition

defines uniquely a continuous function ίelR— »Γί

(/ί)e2I with the following
properties

(i) Γt

(h] is given by the norm- convergent expansion
00

Γ<">= Σ W (2.3)
n = 0

where

C = (-0" f dt,J <*«„_! . . . I dί! α(l(Λ)α»2(Ό-«..,(Λ) (2.4)
0 0 o

(ii) Γf

(Λ) is unitary for all te R with

(2.5)

(iii) Γί

(/ί) fulfills the "cocycle property"

mt = Γ^as(Γt

w). (2.6)

(iv) Consequently t^(^\ given by

t,eR,AeVί

is a strongly continuous one-parameter group of automorphisms of 21.
We say that a(h} is obtained by "perturbing α = α(0) with the inner per-
turbation h. The latter is a perturbation of the Hamiltonian in the following
sense :

(v) The element A of 21 is (norm-) differ entiable for α if and only if
it is norm-differ entiable for a(h} and the two derivatives are related by

d

~Ίt

_d
~di

(2.8)
ί = 0

where we use the customary notation for a commutator

[h,A] = hA-Ah.

Definition 2. Let ω be a stationary state of the dynamical system
{21, α} and denote as above by a(h} the one-parameter group of auto-
morphisms of 21 obtained by perturbing α with the inner perturbation
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h = /ι* e 91. We say that ω is stable for the inner perturbation h whenever
there is a map λ-^ω(λh} from some neighbourhood of zero in 1R to the
state space of 91 such that

(i) ω(λh} is a stationary state of the perturbed dynamical system
{91, αw}.

(ii) The map λ ^ω(λh} is weakly differentiable for λ = 0

with derivative -
dλ

denoted ωf

If we have in addition that
(iii) the derivative ωf} lies in the normal folium of ω (i.e. is a normal

form of the representation of 91 generated by ω) we say that ω is folium-
stable for the inner perturbation h. Finally if ω is (folium-) stable for all
perturbations h — h* e 91 we say that ω is (folium-) stable for inner
perturbations.

This definition formulates the physical requirement that persistent
quasi-local perturbations of the dynamics do not essentially modify
the equilibrium states of infinite systems. They merely cause gentle
displacements of the equilibrium.

We note as an immediate consequence of its definition that the
derivative ωf} vanishes on multiples of the unit.

The next proposition is a first step towards computing ωf} in terms
of ω and h.

Proposition 2. Let ω be a stationary state of the dynamical system
{9ί, α} stable for the inner perturbation h = h* e 91, with ω(^ as in the
definition above. We have, for A e 9ί and S9 TelR

(2.9)

where the integral in the right-hand side is a Bochner integral and [ ]
denotes a commutator.

The proof is immediate from the two following lemmas.

Lemma 1. With ω as in the Proposition above we have for each A e 91
norm-differ'entiable for α

<x.t(A)\ + ω(hA-Ah) = Q. (2.10)
ί = 0

8 This notation is motivated by the fact that ωf* is the first term of an expansion
in powers of A [15].
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Proof. Using (2.8) [see (v) of Proposition 1 above] and the fact
that ω(λh] is invariant for α(λA) we have that, for each norm-differentiable

A
'Έ ί = 0

d_
"dt t=0

+ λω(hA -Ah)+ {ω(λh} -ω}\ί
at ί = 0

where the first term on the right hand side vanishes by the invariance
of ω for α. Hence

,, ,(W — f,i I A
ω(hA-Ah)+~—^-\i Q

. I V , Wf \ -t .»- / I r*\l V* Λ. A Λ. I V I I λj

yielding (2.10) in the limit λ-+Q.

Lemma 2. With {31, α} a dynamical system and A any element of
the Bochner integral

S,TelR (2.11)

defines an element ATE 21 norm differentiate for α with derivative

dt
(2.12)

ί = 0

Proof. By the translation invariance of the Lebesgue measure

s e l R .

Thus

1

Proof o/ Proposition 2. replace A by ^4j in (2.10)? using (2.11) and
(2.12).

III. Asymptotic Abelianness and Relative Purity

In addition to dynamical stability as discussed in the last section
we now want to impose in essence the asymptotic abelianness of our
dynamical system {91, α} and the relative purity of the stationary state ω.
Relative purity in its least specialised version is extremal invariance
defined as the fact that ω cannot be split into a convex combination
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of two different stationary states. If the system {21, α} is asymptotically
abelian this property is known [16-18] to be equivalent to weak
clustering defined as the vanishing, in mean, of the second order "truncated
expectation value" i.e.

lim —— J {ω(Aί<xt(A2))-ω(Aι)ω(A2)}dt = Q. (3.1)
1 ~ oo 2* 1 _ y

In this work we shall need a technical condition which strengthens
(3.1) in that it requires a certain rate of decrease in time, for truncated
expectation values up to order 6. Let us recall that the hierarchy of
truncated expectation values ω%, n = 1, 2,..., is defined recursively in the
following way:

0 = ωf0)

A ) = o)T (A A ) -f coτ (A } o)T (A )

(3.:
u<>(π '

J l / \ ..-}. — Λ

^
-<)( Π/α/

\α/ s =1 /

where the last sum is extended to all partitions

of the index set {1, 2, ... n} such that αj < α^ < < α" α^ < o4 < < α£k,
fe=l,2, ...s: and π 1 + n 2 H ----- hn s = n. We are now able to formulate
the "purity condition" which we need.

Definitions. Let ω be a stationary state of the dynamical system
(ϊt, α}. We say that ω has L1 -deer ease of correlation in time whenever
the following prevails: there is a norm dense and self-adjoint subset ̂
of 2Ϊ such that, to any collection Aί9 A2, ... An of elements of ̂  with n^β
there are positive constants C and δ with9

The next lemma shows that we could have assumed without loss
of generality that ^ is stable for the operation of smearing out with
functions of fast decrease (we will need this fact in the sequel).

9 The phrase "5^ is self adjoint" means that A* e ̂  whenever A e y. It could seem
more natural to require a condition of the form (3.3) for all integers n. But we need it only
for n 5$ 6.
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Lemma 3. Let £f £ 91 be such that (3.3) holds with some positive C
and δ for all sets Aί9 A2,... An of elements of £f. The same holds for the
set y of all af(A\ where A runs through £f and f through the C°° functions
of rapid decrease (af(A) denotes the Bochner integral §at(A) f(t) dt).

Proof. We want to infer from inequality (3.3) an inequality of the
same type for the expression obtained by replacing there the At by the
ttf^Ai), where the f{ are arbitrary C°°-functions with fast decrease.
Since these replacements can be performed step by step it is enough
that we consider

>),..,αίn(Λ))

= fωj;)(α ί ιμ1),...,α ί |e+tμk),...,α ίn(,

which we want to majorize for each pair of indices i φ j by an expression
of the form cst •/{! -f \tt — tj\}1+δ. According to (3.3) the truncated
expectation value appearing in the above integral is majorized by
C/{i + \ti-tj\}1+d

9 ί φ f c j φ f c ; as well as by C/{1+ |if-ik-ί|}14"δ, i Φ f c .
The first majorization, for the case ίφ/c, jφ/c, yields for the above
integral the majorization C\\f\\ί/{i + \ti — tj\}ί+δ of the desired form.
The second yields for j= feΦ i the majorization

I/WI dί
•'{l + lί.-ί -ίl}1+δ '

Assuming u = tί — tj > 0 we split the integration domain into the intervals
tφ [0,2w], 0^ t^u and u^t^2u. The corresponding integrals are
respectively majorized by

1(4 i \+ + \\\+ δ f ζ

/{1 + |ί'"^l} > Cl {i+u-t}">
and

2u |/(ί)| dt
i 1+5

the first expression being already of the desired type, whilst the two
others are easily shown to be majorized by an expression of the type
cst•/{! +u}1+δ using an appropriate majorization o f / . The case
u < 0 is treated analogously.

As is to be expected, Definition 3 implies strong clustering of ω.
Specifically

Lemma 4. // the stationary state of the dynamical system {9ί, α}
has (^-decrease of correlations in time the functions FA2Aί, GAίA2, and
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HA,A2A,, AΪ9 A29 A3 e9ϊ, defined by

F A 2 A ί ( t ) = ω(AiθLt(A2)) - ω(A1) ω(A2)

GAίA2(t) = ωfaμj A2) - ω(AJ ω(A2) (3.4)

HA1A2A3(t) = ω(Aίcct(A2) A3) - ω(A1A3) ω(A2)

all belong to ^(R) for Aί9A2,A3e^. These functions vanish at oo if
Aί,A2,A3e

(Ά. As a consequence πω(at(A)) tends σ-weakly towards
ω(A) I for all A e 91 (πω is the representation of 91 generated by ω).

Proof. The first part of the lemma follows from (3.3) noticing that

HAlA2A3(t) = ω^}(A^(A2) A3) + ω(A3)

The rest follows using sequences {A"}, [A2}9 {A3} in ̂  converging
in norm respectively towards Aί9 A29 A3 e 91.

We now prove a technical result for use in the proof of Section 4.
This result is included in the present section because it depends merely
on Definition 3 above10.

Lemma 5. Assume that the stationary state ω of the dynamical system
{91, α} has U-decrease of correlation in time; let Al9 A2, A3, hl9 h29 h3 be
elements of £f and consider the functions

Φu(t) = ω(lh1«u(h2),at(Alxu(A2)) ])

-FAlkl(t)FA2h2(t) + GAlhl(t)GA2h2(t)
and

ΨuW = ω([ft1αtt(ft2) α2ll(Λ3), ai(^1au(^2)a2u(A3))]) ^ ̂

-FA^) FA2h2(t) FA3h3(t) + GAίhί(t) GA2h2(t)GA2h3(t)

where u is a real parameter. One has φu = φ(^ + φ^ and ψu = ψ(^ + ψ(*}

where
(i) φ(

u

ΐ} and ψ(

u

ί} are majorized in module by an L1- function independent
of u and tend point wise to zero for u-+ oo,

(ii) φ(u} is a linear combination of functions of the type FAh — GAh

with A,he^,
(iiϊ) t/^2) is a linear combination of functions of the type considered

in (ii) and functions of the type FAhFA,h, — GAhGA,h,, A, A', h9 h e ί^11.
10 The reader might prefer to skip the end of this section and return to it as the results

are needed in the proof of the Section IV.
1 1 In (ii) and (iii) the coefficients of the linear combinations, as well as the elements

A, A', h, h' are allowed to depend upon the parameter u.
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Proof. The proof consists in a straightforward if somewhat cumber-
some verification: one expands according to (3.2) the first terms of the
r.h.s. of (3.5) and (3.6) in terms of truncated expectation values. Exami-
nation of the latter then yields the result, taking account of the majori-
zations (3.3). We first note that in these majorizations the time differences
\tι - tj\ which appear are \u\9 |ί|, \t + u\9 \t - u\, \t + 2w|, \t - 2u\. Whenever at
least two of the latter are present, say a and b, we have due to (3.3) for
the corresponding term a majorization of the type Cste/(i + α)α (1 + b)β,
where α and β are any positive constants with α -f β ̂  1 -f δ. From this
it follows immediately that for all choices of a and b amongst the time-
differences listed above, we obtain a majorization of the type
f(u)/(i + |ί|)1+ε, with ε>0 and / continuous bounded tending to zero
pointwise for u-+co: therefore the corresponding term then yields a
contribution to φ(

u

i} or ιp(

u

i} as described under (i) in the lemma.
With this in mind let us now examine the expansion (3.2) for the

first r.h.s. term in (3.5), going through the different partitions of the set
{hih2AlA2}. Amongst these only the ones containing "heterogeneous
subsets" (i.e. subsets containing at last one A and one h) will yield non
vanishing contributions, since the others give expressions cancelling
out for the two terms of the commutator. Thus the partitions to be
considered, classified by the cardinals of their subsets, fall into the
four types: (4); (3)(1); (2)(1)(1); (2) (2) with the restriction that at least
one of their subsets has to be heterogeneous. Now the two first types
will necessarily give rise to at least two of the time differences considered
above, and therefore yield contributions to φ(

u

l\ The third type on the
other hand yields contributions to φ(

u

2\ Finally there are two partitions
of the type (2) (2): (hίA2)(h2A1) which gives rise to two of the above
time-differences and thus contributes a term to φ(^\ and (h1A1)(h2A2)
which yields the second term in the r.h.s. of (3.5).

For ψu the proof goes along similar lines. All partitions containing
a subset of at least three elements gives rise to at least two time-differences,
thus yielding a contribution to ψ^. The remaining partitions fall into
the three types (2) (1) (!)(!)(!); (2)(2)(1)(1); or (2) (2) (2). The first type
yields terms of the form FAh — GAh: the second, terms of this type or
of the type FAhFA>h, — GAhGAh> according to wether it contains one or
two heterogeneous subsets); the last type finally either contains only one
heterogeneous subset, in which case it gives rise to terms in φ^: or is the
partition (hlAl}(h2A2)(h?>A^ which contributes the second term in
the r.h.s. of (3.6).

We end this section with a discussion of the implications of asymptotic
abelianness and relative purity on the spectrum of the energy. We do not
claim originality for the proposition to follow, which is merely a reminder
of a situation known to physicists since a long time (see, e.g., [19,10]),
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and which appears in several variants and in a modernized form in the
recent mathematical literature [21]- [24]. Let us first recall a few
definitions relating to a dynamical system {9Ϊ, α} or to a continuous
unitary representation U of the reals on a Hubert space 3C. With
/e LHlR), A e 31 and ψ e ̂ f, we write

(the integrals are in the Bochner sense). We then define the subsets
Sp(α), Sp(C7), Spα(^) and Sp^φ) of the dual real line 1R by the following
equivalences

0 for all /eL^lR) with 0^ = 0

0 for all /el/OR) with 17̂  = 0

E G Spa(A)of(E) = 0 for all / e L1 (R) with α/Λ) = 0

EeSpu(\p)of(E) = Q for all /eL^lR) with 17̂  = 0

where / denotes the Fourier transform of /. We recall the following
properties [23]: these four subsets defined by (3.7) are closed;
Spβ(αt(A)) = Spβμ) for all ίeR; Spα(^2)S Sp^J + Sp^) for all
A^A2εW: Spa(af(B})gSpa(B)n support / for all B e 21 and feL^R);
finally if Pv denotes the spectral measure of the representation U we have
that Pϋ(Δ)Jίf={ψ€J^\Spu(ψ)gΔ} for each closed subset Δ of R.
We can now state.

Proposition 3. Let (π, U) be the covariant representation of the
dynamical system {31, α} generated by the stationary state ω and assume ω
to be such that the function HAίA2A3 defined in Lemma 4 vanishes for
t — oo for all Aί9 A2, A3 e 91. The spectrum of U is then additive. Further-
more this spectrum is either one-sided, or covers the whole real line (i.e.
either Sp(U)gR + , or Sp(U)ζR~, or Sp(l7) = Λ).

For the proof we need the following12.

Lemma 6. Let (π, U) be the covariant representation of {9ί,α}-wz'£/z
cyclic invariant vector Ω, generated by the stationary state ω; and assume
^ to be a norm-dense subset of 9ί stable for all α/? fe3F~l(@ϊ). The
following are equivalent for EeR

(i) £eSp(l/).
(ii) to each neighbourhood i^ of E there is an Aeίf with π(A) Ω Φ 0

Proof. (i)=>(ii): Let EeSp(L/) with i^ any neighbourhood of E.
Let us choose /e !F~^(β\ so that /e®, with the support of /within

12 In fact the only case needed to prove Proposition 3 is that of £f = *&. We formulate
and prove Lemma 6 as it stands because we will need it in that form for the argument in
Section IV.
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if and /(£)=!. Since EeSp(tT) one has C7/ΦO, thus by the density
of ^ in 91 and the cyclicity of Ω, there is βe^7 with Ufπ(B)Ω
= π(ocf(B))Ω + Q: therefore A = af(B) is such that π(.4)ΩΦθ and, since
Sρα(α/(B)) g Support /, one has SpΛ(A) g y.

(ii)=>(i): Since Sp^πίA) Ω) £ Spa(A) due to π(α/4) Ω) = 17 (̂4) Ω
for all /e L^(R) we see that (ii) implies Pv(i^) φ 0 for each closed neigh-
bourhood y of E. Thus Ee Sp([7).

Proof of Proposition 3. Let E1,£2

eSp(LΓ) we want to show that
E1 + E2e Sp(l7). By the preceding lemma this holds if, given any
neighbourhood y of E±+E2, there is Ae*Ά with Spα(A)ef and
π(A) Ω φ 0. To construct such an A, select first respective neighbourhoods
^,^2 °f E^E2 with i^i+^gi^' Again by Lemma 6 we can find
A19 A2 e 91 with π(AJ Ω φ 0, π(v42) Ω Φ 0, Sp^) g -j^, Spα(,42) £ τT2. Let
t e JR, we have

which by assumption tends towards ω(A2 A2)ω(AfAί)^Q for ί = oo.
Therefore t can be chosen so that π(αί(A1) ^L2) ΩΦO. Since on the other
hand Spα(αί(^l1)^2)£ Spα(αί(yl1)) + Spα(^2) we have for A = at(Al)A2

the desired properties π(A) Ω Φ 0 and Spα(^4) g f .
Now we want to show that if Sp(U) is not one-sided it coincides

with the whole real line. Assume thus that — a and b belong to Sp(L7)
with β>0 and i»0. Then mb — naeSp(U) for all positive integers m
and n by the additivity of Sp([7). If a and b have no common divisor 0
is an accumulation point of the set {mb — na, m, n positive integers}, thus
Sp(C7) has elements of arbitrarily small module. Adding appropriate
multiples of these to either b or — a we can construct elements of Sp((7)
arbitrarily close to 0 on both sides, whose multiples yield in turn points
in Sp((7) arbitrarily close to any preassigned real number. Thus Sp(C7)
covers the whole real since it is closed. In the case where a and b have a
common divisor, i.e. when mb — na = Q for some positive integers m and n
we argue as follows. We note that the assumed vanishing of HAlAlA3

for arbitrary Aί9 A2, A3e^ excludes the existence of an isolated point
E0 Φ 0 in Sp(C7), since Lemma 6 would in this case yield an A e 21 with
at(A) = elEotA for all teR. Consequently there must be an element of
Sp([/) arbitrarily close to — α, say α', which would furnish points
mb — na'eSp(U) of arbitrarily small module, allowing us to proceed
as above.

IV. Derivation of the KMS Condition

We now draw joint consequences of assumptions (i), (ii), (iii) of the
Introduction as made precise in the two preceding sections. Our aim
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is the theorem below for the proof of which the two following propositions
are key devices.

Proposition 4. Assume the stationary state ω of the dynamical system
{"31, α} to be folium-stable for inner perturbations and to have 1}-deer ease
of correlations in time. One has, for all A,hetyί

+ 00 / + oo \

ί ω([h>OLt(A) ])dt(= J ίFΛh(t)-GΛh(t) }dt\=Q (41)
- oo \ - oo /

with independent limits of integration.

Proof. By linearity, it suffices to prove the result for h self-adjoint.
This is achieved by passing to the limits S-> — oo, T-* + co in (2.9)
above, whose left hand side then vanishes due to the fact that
πω(at(A)) t=±00> co(A) I σ-weakly (see Lemma 4) whilst the linear
form ω(f\ normal for the representation πω, vanishes on multiple of the
unit.

Proposition 5. With the same assumptions as in Proposition 4 one has
for all Al9 A2, A39 hl9 h29 h3e^

ί F A ί h ί ( t ) FA2h2(t) dt = J GAlkl(t) GA2h2(t) dt (4.2)
and

ί FAlhl(t) FA2h2(t) FA3hί(t) dt = I GAίhί(t) GAzhί(t) GA2h}(t) dt (4.3)

where FAh is defined as in (3.4).

Proof. Integrate both sides of Eqs. (3.5) and (3.6): the first terms
on the right hand sides will yield zero due to (4.1). And the left hand
sides yield integrals which vanish in the limits w-^oo, respw, and t -^oo,
due to Lemma 5; plus terms vanishing due to (4.1) or (4.2).

From now on we suppose, in addition to the assumptions of
Proposition 4, that the energy spectrum in the representation generated
by ω covers the whole real line. We show as our next step that, for
A9heέ?9 the Fourier transforms FAh and GAh of FAh, ΐespGAh differ
by a factor which is a function of energy, independent of the choice
of A and h. From Lemma 4 we know that these Fourier transforms are
continuous functions. On the other hand (4.2) yields

^FAlhι(E}FA2h2(-E)dE = ̂ GAlhl(E)GA2h2(-E)dE (4.4)

for all v41? A2, hl9 h2 e ̂ . Now fix £0 e R, E0 belongs to the spectrum of
the energy, therefore we can, by Lemma 6, choose to each positive
integer n an element y4 ( n )=t=0 of ^ with SpΛ(A(n))Q[_E0—^E0+^].
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Choosing h(n) = λnAfn) with λn positive, the functions FA(n)h(n),
^A(n)h(n)

 are positive, have support in [£0-^, £0+^] and, by suitable
choice of λn we may normalize F so that

\FA(n}h(n}(-E)dE=i.

Taking now in (4.4) Al=A, hί=h,A2 = A(n), h2 = h(n) the left hand side
converges for n-»oo and we get

FAh(E0) = GAh(E0) Jim f GA^(-E] dE .

Since the sequence A(n},h(n} was constructed in a manner depending
only on E0 and not on A or h this shows the existence of a function φ(E)
such that

(E) (4.5)

for all A,
Now it is immediate from the definition of FAh and GAh that one has

Fh.A*(t) = FAh(-t) = GhA(t) (4.6)

whence the facts that GA*A and FA*A are real, A e 2ί, and

F^(-E) = GΛΛE), £e£, A , Λ e 3 I . (4.7)

Comparison with (4.5) shows that φ is real and satisfies

φ(-E) = φ(EΓl, EεR (4.8)

Finally, inserting (4.5) in

$FAlhί(E)FA2h2(E'-E)FA3h3(-E')dEdE'

= I GΛlhl(E) GA2h2(E' - E) GAίh}( - £') dEdE'

obtained from (4.3) we see that

'-E)φ(- E')-]GAllίί(E)GA2h2(E'-E)GAίh3(-E)dEdE'=Q.

Arguing as above with sequences Aί(n) and A3(n) spectrally concentrated
around EQ and Eό respectively we conclude from this that

φ(E0)φ(Ef

0-E)φ(-E'())=l, E0,E'0εR

and thus, using (4.8), that the function φ is multiplicative: we have
therefore that φ(E) = eβE for some real constant β. We have reached
the KMS condition [11]

FAh(E) = e^GAh(E) (4.9)

for A, heίf. There remains to show that (4.9) is true for arbitrary
A9 /zeSί. To this end we notice that, in the general case, FAh and GAh
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are bounded measures such that

dGAh(E) = (A*Ω\dPu(E)\hΩ)

where Pυ is the spectral measure of the representation U. Thus the
condition replacing (4.9) for general A, h E 91, namely

FAB = Φ GAh with φ(E) = ePE, (4.10)

can be expressed as the fact that

(h*Ω\f(H)\AΩ) = (A*Ω\eβHf(H)\hΩ) (4.11)

for all f(H\ where H is the hamiltonian operator (defined by eίm = Ut,
teR) and / any continuous function with compact support. Under
the latter form it is evident that the KMS condition (4.11) need only be
checked for A, h in the dense set ¥ \

Conferring what we have shown with the alternative in Proposition 3
we obtain the

Theorem. Let ω be a state of the dynamical system {91, α} which:
(i) is stationary;

(ii) is folium-stable for local (or inner) perturbations of the dynamics;
(iii) has L1 -decrease of correlations in time.
Then either the spectrum of the energy is one-sided in the representation

generated by ω, or ω is a KMS state.

Appendix — The Ideal Fermi Gas

This example provides a simple illustration of the determination
of equilibrium states by the stability condition (1.11) or (4.1). We give
only a brief sketch of the argument. For a more complete discussion
see [8]. Here 91 is the gauge invariant part of the CAR-algebra J^13.
Writing symbolically α*(/) = $f(p)a*(p)d3p, a(f) = $f(p)a(p)d3p the
time translation automorphism for a medium composed of noninter-

13 3F is the C*-algebra generated by particle annihilators a(f) satisfying the canonical
anticommutation relations

a * = a a * + a*a = (f,g): [«(/), f l fo)] + =0;
(A.I)

.

is the subalgebra of the invariant elements under the "gauge transformation

a(f)-> elφa(f) (φ a real number). (A.2)
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acting, identical Fermi particles can be characterized by

at(a*(p)) = eίε(p}ta*(p), (A.3)

where ε(p) is the energy of a single particle with momentum p.
We show first that (1.11) (together with the required stationarity

and relative purity) implies that the state ω is quasi-free and homogeneous,
i.e. ω is completely describable in terms of a single-particle momentum
distribution @(p) by

) . . . α*(/n) a(fn) . . . a(f[)) = det αίt

To see this let us choose in (1.1 1)

.a*(tta(ft...a(fί); h = a*(g)a(gf) (A.5)

with f i 9 f i , g , g ' test functions of class Si whose supports we denote
respectively by Kh K , K, K'. If K is disjoint from K'2 u K'3 u u K'n and
K' disjoint from K 2 uK 3 u uKπ then (1.11) gives

= ω α f l 2 . - « Λ ) Λ ( / π / ) α(/1

/))
where

ί'(«) = flf(«)ίδ(β(«)-β(β/))ff(ί

/)/ι(«V3«/

 }

F'(q) = g'(q) ί S(ε(q) - e(q')) g ( q ) f [ ( q ] d*q' .

Suppose we are given test functions /2, ... /Λ,/I... /„' and a compact
K x ClR3, disjoint from the origin and disjoint from u KΊ(i= 1, ...n),
then, if the supports Kt are small enough14 we can find functions g\
/i e ® with supports disjoint from K2, . . . Kn so that

φ(q) = ϊδ(8(q)-s(q'))g'(q')fl(q')d*q'
satisfies

inf \φ(q)\>0
g e K i

and φ~ 1 is infinetely differentiable within K^
In this situation, we can then represent an arbitrary FG^(K t) by

(A. 7) with geS)(K^ giving us F' = 0 since K x and Xj are disjoint.
This means that the expectation value on the right hand side of (A. 6)
has to vanish whenever the support of F is disjoint from the origin and

1 4 It will suffice to require SRn(K2\J \j Kn)c Φ 0 for

inf. \q ̂ R^ Sup \q\ .

(SR denotes the surface of a sphere with radius R around the origin, the index c the comple-
ment.)
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from all the supports oϊf (i = 1, . . . ri) and if the supports offt(i = 2, . . . n)
are small enough. In other words, the distribution

has point support at the origin in at least one of the variables (p^—pi)
(i=i,...n)oτpi.

"Since the expressions (A.6) should be bounded by the ̂  (2)-norms
of the test function the only allowed possibility is δ(p1 — pt). Since the
index 1 plays no special role we can repeat the argument, replacing pί by
any pt and conclude that W(2n} must contain a product of n factors
δ(pi — p'j). This property will persist in the truncated distributions.
For n>i this implies that unless W}2n) = 0 the correlation functions
(3.3) will not for all ij decrease as they should as (ti — £y)-κx). We
conclude

W}2n} = 0 for n>i (A.8)
and

p') (A.9)

with ρ a positive measure. In other words ω has to be of the form (A.4).
It is clear that for arbitrary ρ the state (A.4) is stationary and relatively

pure. Using the stability condition (1.11) once more we show that ρ has to
be the Fermi distribution. For this purpose we choose A as in (A. 5)
with n = 2 but h = A*. Entering with this into (1.11), choosing K1 disjoint
from K'2,K2 disjoint from K( we get

ί l/ι(Pι)|2 I/2(P2)I2 I/2V2)I2 l

•Bd3

Pld
3p2d

3p'2d*p'1=0
with

Since the test functions are essentially arbitrary B has to vanish whenever
£(Pι) + £(P2> ~ ε(#2) ~

 ε(# i) = O This means that

has to be a linear function of ε(p) i.e.

with α, β two real parameters. This the Fermi distribution.
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